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Operator norm convergence of
spectral clustering on level sets

Bruno RELLETIER[] and Pierre BDLOJ]

Abstract

Following[Hartigah [1975], a cluster is defined as a conrectemponent of
thet-level set of the underlying density, i.e., the set of pofotswhich the
density is greater than A clustering algorithm which combines a density
estimate with spectral clustering techniques is propogguat. algorithm is
composed of two steps. First, a nonparametric density atgiis used to
extract the data points for which the estimated densitystakealue greater
thant. Next, the extracted points are clustered based on thewigems
of a graph Laplacian matrix. Under mild assumptions, we @ithee almost
sure convergence in operator norm of the empirical grapheacam opera-
tor associated with the algorithm. Furthermore, we giveypeal behavior
of the representation of the dataset into the feature spateh establishes
the strong consistency of our proposed algorithm.

Index Terms Spectral clustering, graph, unsupervised classificatievel
sets, connected components.
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1 Introduction

The aim of data clustering, or unsupervised classificatgoto partition a data set
into several homogeneous groups relatively separatedronedach other with
respect to a certain distance or notion of similarity. Thexists an extensive lit-
erature on clustering methods, and we refer the reader teded)
tigan [L975],McLachlan and P¢gl 12900], Chapter 10 in DudallgP000], and
Chapter 14 i Hastie et gl. T2001] for general materials @nstibject. In partic-
ular, popular clustering algorithms, such as Gaussianurexnodels or k-means,
have proved useful in a number of applications, yet theyes@ifbrm some internal
and computational limitations. Indeed, the parametriciaggion at the core of
mixture models may be too stringent, while the standard kmaelgorithm fails
at identifying complex shaped, possibly non-convex, elsst

The class ofpectral clusteringlgorithms is presently emerging as a promising
alternative, showing improved performance over classitiadtering algorithms
on several benchmark problems and applications; se . ], von
Luxburg |Z§§7| AN OVErview of spectrai ciusterlng aig%ms may %e %ound in
von Luxburg [200]7], and connections with kernel methodsexgosed in Fil-
lipone et al. [2008]. The spectral clustering algorithm amis at embedding the
data into a feature space by using the eigenvectors of thiagiynmatrix in such
a way that the clusters may be separated using simple rutesa separation by
hyperplanes. The core component of the spectral clustafgayithm is therefore
the similarity matrix, or certain normalizations of it, geally called graph Lapla-
cian matrices; see Chynjg [1997]. Graph Laplacian matri@gsba viewed as dis-
crete versions of bounded operators between functionaespa he study of these
2], Belkin
Koltchin-

the convergence of the spectral clusterlng algorlthm has lestablished in von

Luxburg et al- [2008].

The standard k-means clustering leads to the optimal qaeantif the underly-
ing distribution; se¢ MacQudep [196[], Pollard [11981],deh [200R]. However,
determining what the limit clustering obtained[in von Lurbpet al. [2Z00B] rep-
resents for the distribution of the data remains largely penoquestion. As a




matter of fact, there exists many definitions of a clustee sg., von Luxburg
and Ben-David[[2005] of Garcia-Escudero gt al. 12008].nBes the most intu-
itive and precise definition of a cluster is the one introdubg[Hartigah [1975].
Suppose that the data is drawn from a probability denion RY and lett be a
positive number in the range éf Then a cluster in the sense[of Hartighn [1975]
is a connected component of théevel set

Z(t)={xeRy: f(x) >t}.

This definition has several advantages. First, it is gedoadly simple. Second,
it offers the possibility of filtering out possibly meaniegk clusters by keeping
only the observations falling in a region of high densitihis proves useful, for
instance, in the situation where the data exhibits a clsstecture but is contami-
nated by a uniform background noise, as illustrated in ouuktions in Section 4.

In this context, the level should be considered as a resolution level for the data
analysis. Several clustering algorithms have been intteduilding upon Har-

tigan’s definition. InfCuévas etlal 72000, 2D01], clustgria performed by es-

timating the connected components.#f(t); see also the work by Azzalini and
Torelli . Hartigan’s definition 1s also used(in Biau ] to define an

estimate of the number of clusters.

In the present paper, the definition of a cluster giveh byiHant[1975] is adopted,
and we introduce a spectral clustering algorithm on esgohétvel sets. More
precisely, given a random sampfg, . .., X, drawn from a densityf onRY, our
proposed algorithm is composed of two operations. In thedtep, given a pos-
itive numbert, we extract the observations for whidh(X,) > t, wheref,, is a
nonparametric density estimatefobased on the samplg, ..., X,. In the second
step, we perform a spectral clustering of the extractedtpoirhe remaining data
points are then left unlabeled.

Our proposal is to study the asymptotic behavior of this @ligo. As mentioned
above, strong interest has recently been shown in spetiisiedng algorithms,
and the major contribution to the proof of the convergencspeictral clustering
is certainly due tg von Cuxburg et]al T2008]. [n von Cuxbuiad [PO08], the
graph Laplacian matrix is associated with some random tmeagting on the
Banach space of continuous functions. They prove the ¢olédg compact con-
vergence of those operators towards a limit operator. Undker assumptions,

3



we strengthen their results by establishing the almost csomgergence iroper-
ator norm but in a smaller Banach space (Theorgn) 3.This operator norm
convergence is more amenable than the slightly weaker maticonvergence
established il von Luxburg et]al. [2008]. For instance, kasy to check that
the limit operator, and the graph Laplacian matrices usehenalgorithm, are
continuous in the scale parameker

We also derive the asymptotic representation of the datagbe feature space
in Corollary[3.2. This result implies that the proposed &l is strongly con-
sistent and that, asymptotically, observations#ft) are assigned to the same
cluster if and only if they fall in the same connected compurod the level set
Z(t).

The paper is organized as follows. In Sect[dpn 2, we introcsm®e notations
and assumptions, as well as our proposed algorithm. Sgtomtains our main
results, namely the convergence in operator norm of theoranoperators, and
the characterization of the dataset embedded into theréeapace. We provide
a numerical example with a simulated dataset in Segtion dtides[b and]6 are
devoted to the proofs. At the end of the paper, a technicaltres the geometry
of level sets is stated in Appendix A, some useful resultsin€fional analysis are
summarized in Appendix B, and the theoretical propertigb®fimit operator are
given in Appendix C.

2 Spectral clustering algorithm

2.1 Mathematical setting and assumptions

Let {X;}i>1 be a sequence of i.i.d. random vector&t with common probabil-
ity measureu. Suppose thgtt admits a densityf with respect to the Lebesgue
measure oiRY. The t-level sewof f is denoted byZ(t), i.e.,

2(t) = {xeR¥: f(x) >},

for all positive levelt, and givera < b, #P denotes the setx c RY : a < f(x) <
b}. The differentiation operator with respectxas denoted byDy. We assume
that f satisfies the following conditions.



Assumption 1. (i) f is of class#? onRY; (ii) ||Dxf|| > O on the set
{xeRY: f(x) =t}; (iii) f, Dxf, andDZf are uniformly bounded on
RY,

Note that under Assumption 2’(t) is compact whenevébelongs to the interior
of the range off. Moreover, Z(t) has a finite numbef of connected components
%j, ] =1,...,L. For ease of notation, the dependenc&pbnt is omitted. The
minimal distance between the connected components ©®j is denoted bymin,
e,

i#]

Let fAn be a consisAtent density estimatefdfased on the random samplg ..., X,.
Thet-level set offy, is denoted by#j(t), i.e.,

Zn(t) = {xeRY: fo(x) >t}
LetJ(n) be the set of integers defined by
Iy ={je{L,...,n}: fa(Xj) >t}

The cardinality ofJ(n) is denoted byj(n).

Letk: RY — R, be a fixed function. The unit ball &9 centered at the origin is
denoted byB, and the ball centered &t RY and of radius is denoted byx+rB.
We assume throughout that the functlosatisfies the following set of conditions.

Assumption 2. (i) k is of class¢? on RY; (ii) the support ok is
B; (iii) k is uniformly bounded from below oB/2 by some positive
number; andiv) k(—x) = k(x) for all x € RY.

Let h be a positive number. We denote ky: RY — R, the map defined by
kn(u) = k(u/h).
2.2 Algorithm
The first ingredient of our algorithm is treémilarity matrixK , , whose elements
are given by

Knn(is 1) = kn(Xj —Xi),

5



and where the integeisand j range over the random sétn). HenceK is
a random matrix indexed by(n) x J(n), whose values depend on the function
kn, and on the observation§ lying in the estimated level se¥,(t). Next, we
introduce the diagonalormalization matrixD, , whose diagonal entries are given
by

Dnn(i,i) = Z Knn(i,j), 1€J(n).

jed(n)

Note that the diagonal elements[df , are positive.

The spectral clustering algorithm is based on the m&¥x defined by

-1
Qn,h = Dn,hKn,h-

Observe thaQy is a random Markovian transition matrix. Note also that the
(random) eigenvalues @, are real numbers and th@f , is diagonalizable. In-
deed the matri, , is conjugate to the symmetric mat, := D;ﬁ/ZK n,hD;ﬁ/z

since we may write
~1/2 1

Qnh =Dy Sn,thf-
Moreover, the inequalitQn n|| < 1 implies that the spectrum(Qnp) is a sub-
set of[-1;+1]. Letl=Ap1>Ap2>...> An,j(n) = —1 be the eigenvalues of
Qn,h, Where in this enumeration, an eigenvalue is repeated ag timaes as its
multiplicity.
To implement the spectral clustering algorithm, the daiatg®f the partitioning
problem are first embedded in®S by using the eigenvectors &, h associated
with the / largest eigenvalues, namely, 1, A2, ...An,. More precisely, fix a
collectionVh 1, Vh 2, ..., Vn, Of such eigenvectors with components respectively
given bWh k= {Vhk j}jein), fork=1,....¢. Then thej™" data point, forj in J(n),
is represented by the vectpg(X;) of R defined bypn(X;) := {Vhk j t1<k<r- At
last, the embedded points are partitioned using a clasdicgtering method, such
as the k-means algorithm for instance.

2.3 Functional operators associated with the matrices of &
algorithm

As exposed in the Introduction, some functional operatmrsasociated with the
matrices acting orC?(" defined in the previous paragraph. The link between
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matrices and functional operators is provided by the evi@nanap defined in
(B.3) below. As a consequence, asymptotic results on theering algorithm
may be derived by studying first the limit behavior of theserapors.

To this aim, let us first introduce some additional notatieor Z a subset oRY,
let W(2) be the Banach space of complex-valued, bounded, and consiyu
differentiable functions with bounded gradient, endoweiththe norm

19w = [Igleo + [ Dxglo-

Consider the non-oriented graph whose vertices arXjsdor j ranging inJ(n).

The similarity matrixK, gives random weights to the edges of the graph and
the random transition matri®Q,n defines a random walk on the vertices of a
random graph. Associated with this random walk is the ttaorsbperatoiQy p :

W (Zh(t)) — W(Zn(t)) defined for any functiog by

Qnng(x) = /g o Ann(X,Y)9(Y)Pr(dy).

n

In this equationP!, is the discrete random probability measure given by

1
]Ptn = T, 5Xj7
and
nnxy) =0 wherekon() = [ ky-XFdy. 22
n, 9 Kn7h(x) ’ n, gn(t) n

In the definition ofgy ,, we use the convention that@= 0, but this situation does
not occur in the proofs of our results.

Given theevaluation mapts, : W(.Z(t)) — C' defined by

h(g) = {g(Xj) L eJ(n)}, (2.3)

the matrixQnpn and the operato@,, are related byQnpo My = Mo Qpp. Us-
ing this relation, asymptotic properties of the spectraktdring algorithm may
be deduced from the limit behavior of the sequence of opesd@nn}n. The
difficulty, though, is thaQ, » acts orW (£(t)) and.Z;(t) is a random set which
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varies with the sample. For this reason, we introduce a seguef operator@n,h
acting orW (Z(t)) and constructed fror@, , as follows.

First of all, recall that under Assumption 1, the gradienf afoes not vanish on

the set{x € RY : f(x) =t}. Sincef is of class¢, a continuity argument implies

that there existsy > 0 such thati”ttfgf)o contains no critical points of. Under this

condition, Lemmd A]l states th&f (t + €) is diffeomorphic to.Z(t) for everye
such thate| < &. In all of the following, it is assumed thag is small enough so
that

go/a(g) <h/2, wherea(g) =inf{|Dxf(x)|;xe .4 }. (2.4)

Let {en}n be a sequence of positive numbers such gat & for eachn, and
& — 0 asn — . In Lemma[A.]L an explicit diffeomorphisigy, carrying.#(t) to
Z(t— &) is constructed, i.e.,

O L) = L(t—&n). (2.5)

The diffeomorphisng;, induces the linear operatab, : W(Z(t)) — W (Z(t -
&n)) defined by®,g=go ¢, *.

Second, lef2,, be the probability event defined by
~ , ~ 1
Q0= [[Ifa—Fllo < &| N {lnf{HDan(x)H,xe 7 B EHDXme} . (26)

Note that on the ever®,, the following inclusions hold:
L(t—en) C L) C ZL(t+en). (2.7)

We assume that the indicator functidg, tends to 1 almost surely as— oo,
which is satisfied by common density estimafgsinder mild assumptions. For
instance, consider a kernel density estimate with a Gaugsimel. Then for a
densityf satisfying the conditions in Assumption 1, we ha@” f, — D || —

0 almost surely as — o, for p=0 andp = 1 (see e.g.] Prakasa Rdo [1Ip83]),
which implies thatlg, — 1 almost surely ag — .

We are now in a position to introduce the opere(ﬁarh TW(Z(t) > W(Z(t))
defined on the everf®, by

Qnh = &7 1Qnn®n, (2.8)
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and we extend the definition @/jn,h to the whole probability space by setting it
to the null operator on the compleme@f of Q. In other words, om2g, the
functionQn ng is identically zero for each € W(Z(t)).

Remark 2.1. Albeit the relevant part oﬁmh is defined onQ, for technical rea-
sons, this does not bring any difficulty as long as one is aosckwith almost
sure convergence. To see this, (&,.<7,P) be the probability space on which
the X’s are defined. Denote b2, the event on whicli, tends to 1, and recall
that P(Q.) = 1 by assumption. Thus, for every € Q, there exists a random
integerng(w) such that, for each > np(w), w lies in Q. Besideg(w) is finite

on Q.. Hence in particular, ifZ,} is a sequence of random variables such that
Zy1q, converges almost surely to some random varidhleghenZ, — Z,, almost
surely.

3 Main results

Our main result (Theorefn 3.1) states t@;h converges in operator norm to the
limit operatorQy, : W (.Z(t)) — W(Z(t)) defined by

Qa0 = [, anly)gh' (@) @Y

wherep! denotes the conditional distribution Xf given the even{X € Z(t)],
and where

Kn(y —X)
Kh(X)

Theorem 3.1(Operator Norm Convergence$uppose that Assumptions 1 and 2
hold. We have

h(xY) = WK = [ e —out iy, (32)

H@n,h - QhHW — 0 almost surely as r- c.

The proof of Theorenf 3.1 is given in Paragrgpl 98. main arguments are as
follows. First, the three classes of functions defined in bexfb.2 are shown
to be Glivenko-Cantelli. This, together with additionathaical results, leads to
uniform convergences of some linear operators (Lefnja 5.6).



Theoreni 3]1 implies the consistency of our algorithm. Wealtebat dmin given

in (2.1) is the minimal distance between the connected comms of the level
set. The starting point is the fact that, provided that dmin, the connected
components of the level set’(t) are the recurrent classes of the Markov chain
whose transitions are given ). Indeed, this process cannot jump from one
component to the other ones. Hen€g, defines the desired clustering via its
eigenspace corresponding to the eigenvalue 1.

As stated in Propositiof @.2 in the Appendices, the eigeresphthe limit op-
eratorQ associated with the eigenvalue 1 is spanned by the indiéatetions

of the connected components.&f(t). Hence the representation of the extracted
part of the dataset into the feature sp&‘e(see the end of Paragraph]2.2) tends
to concentrate around different centroids. Moreover, each of these centroids
corresponds to a cluster, i.e., to a connected compone#ft(of.

More precisely, using the convergence in operator non@rgf towardsQy, to-
gether with the results of functional analysis given in Apgi [B, we obtain the
following corollary which describes the asymptotic beloawaf our algorithm. Let
us denote byl(e) the set of integer$ such thaiX| is in the level setZ’(t). For
all j € J(e0), definek(j) as the integer such thi € ;).

Corollary 3.2. Suppose that Assumptions 1 and 2 hold, and that h (6;ithyn).
There exists a sequen¢é,}, of linear transformations oR! such that, for all
j € 3(e0), &npn(Xj) converges almost surely te g, where g ;) is the vector oR!

whose components are all 0 except thig)k component equal td.

Corollary[3.2, which is new up to our knowledge, is proved a@ti®n[f. Corol-
lary -2 states that the data points embedded in the fegbae concentrate on
separated centroids. As a consequence, any partitiorgogim (e.g.k-means)
applied in the feature space will asymptotically yield thesided clustering. In
other words, the clustering algorithm is consistent. Nb# if one is only inter-
ested in the consistency property, then this result coulddtained through an-
other route. Indeed, it is shown[in Biau et 4I. [2007] thatrie@hborhood graph
with connectivity radius has asymptotically the same number of connected com-
ponents as the level set. Hence, splitting the graph intmimected components
leads to the desired clustering as well. But Corollary 3y2giving the asymp-
totic representation of the data when embedded in the feapaceR’, provides
additional insight into spectral clustering algorithms.plarticular, Corollary 3}2
provides a rationale for the heuristic[of Zelnik-Manor arefdha [2004] for au-
tomatic selection of the number of groups. Their idea is tangifly the amount
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of concentration of the points embedded in the feature spawtto select the
number of groups leading to the maximal concentration. fTinethod compared
favorably with the eigengap heuristic considerefl in vonfiuug [2007].

Naturally, the selection of the number of groups is alsodohkvith the choice of
the parameteh. In this direction, let us emphasize that the opera@{ﬁ and

Qn depend continuously on the scale paramételhus, the spectral properties
of both operators will be close to the ones stated in Cop[BR, if his in the
neighborhood of the intervd0;dmn). This follows from the continuity of an iso-
lated set of eigenvalues, as stated in Appendix B. In pdaticthe sum of the
eigenspaces dP;, associated with the eigenvalues close to 1 is spanned by func
tions that are close to (W (-Z(t))-norm) the indicator functions of the connected
components ofZ(t). Hence, the representation of the dataset in the featuoe spa
R’ still concentrates on some neighborhood®fl < k < ¢ and a simple clus-
tering algorithm such asmeans will still give the desired result. To sum up the
above, if assumptions 1 and 2 hold, our algorithm is consi$te all hin (0, hyax)

for somehmax > dmin.

Several questions, though, remain largely open. For isstazne might ask if a
similar result holds for the classical spectral clusteafgprithm, i.e., without the
preprocessing step. This case corresponds to tdaking. One possibility may
then be to consider a sequergewith lim h, = 0 and to the study the limit of the

operatorQn p,-

4 Simulations

We consider a mixture density @&?¢ with four components corresponding to ran-
dom variables(s, ..., X4 where

(i) X1 ~ 4 (0,021) with 01 =0.2;

(i) X2 = Ro(cosby,sinG,) wheref, ~ % ([0;2r1]) andRy ~ .4(1,0.1%) ;
(i) X3 = Rs(cosBs,sinBz) whereBs ~ % ([0;2r1]) andRs ~ .47(2,0.2?) ;
(iv) Xa~ 2 ([-3;3 x[-3;3)).
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Figure 1: Left simulated pointsRight Points belonging to the estimated level set (red
triangle) and remaining points (dark cross).

The proportions of the components in the mixture are takeh08s, 32%, 53%
and 5%, respectively. The fourth componeKy)(represents a uniform back-
ground noise.

A random sample of size= 1,900 has been simulated according to the mixture.
Points are displayed in Figufg 1 (left). A nonparametrimkédensity estimate,
with a Gaussian kernel, has been adjusted to the data. Tlisviztih parameter

of the density estimate has been selected automaticallycnitss-validation. A
levelt = 0.0444 has been selected such that 85% of the simulated poméexa
tracted, i.e., 85% of the observations fall.i}(t). The extracted and discarded
points are displayed in Figufg 1 (right). The number of ested points is equal
to 1,615.

The spectral clustering has been applied to th&l% extracted points, with the
similarity function
k(%) = exp(—1/(1— [|x|)?) 1{[|x]| < 1}.

For numerical stability of the algorithm, we considered éigendecomposition
of the symmetric matrix — S, . Thus, the eigenspace associated with the eigen-
value 1 of the matriXQn , corresponds to the null space lof- S, . The scale
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Figure 2: Top Letft first 10 eigenvalues, sorted in ascending ordep Right pairs plots
of the first three eigenvectors. It may be seen that the engloeddta concen-
trate around three distinct points in the feature spgage BottomResulting
partition obtained by applying kmeans algorithm in the feature space. The
color scheme is identical to the representation of the &®mnors (top-right
panel). The three groups are accurately recovered.
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Figure 3: First 50 eigenvalues of the standard spectral clustergpgyiéhm, applied on the
initial data set, i.e., without level set pre-processingtotal of 35 eigenvalues
are found equal to zero, which leads to 35 inhomogeneougpgrandicating
failure of the standard spectral clustering algorithm.

parameteh has be empirically chosen equal t@8. The first 10 eigenvalues of
| — S, are represented in Figufe 2 (top-left). Three eigenvalue$oaind equal
to zero, indicating three distinct groups. The data is thebexrided irR3 using
the three eigenvectors of the null spacd efS, ,, and the data is partitioned in
this space using kmeans clustering algorithm. Pair plots of three eigerosct
of the null space are displayed in Fig(ife 2. It may be obsetivaithe embedded
data are concentrated around three distinct points in tiere space. Applying
ak-means algorithm in the feature space leads to the partiéjpresented in Fig-
ure[2. Note that observations considered as backgrouné acisthe discarded
points belonging to the complement &, (t). In this example, our algorithm is
successful at recovering the three expected groups.

As a comparison, we applied the standard spectral clugtalgorithm to the ini-

tial data set of sizen = 1,900. In this case, 35 eigenvalues are found equal to
zero (Figurg]3). Applying &-means clustering algorithm in the embedding space
RR3® leads to 35 inhomogeneous groups (not displayed here), sfomkich cor-
responds roughly to the expected groups (the two circulad®and the inner cir-
cle). This failure of the standard spectral clustering atgm is explained by the
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presence of the background noise which, when unfilterediiesr the formation
of distinct groups. While there remains multiple importgoestions, in particu-
lar regarding the choice of the parametethese simulations illustrate the added
value of combining a spectral clustering algorithm withdkeset techniques.

5 Proof of the convergence oﬁn,h (Theorem311)

5.1 Preliminaries

Let us start with the following simple lemma.

Lemma 5.1. Let {An}n>0 be a decreasing sequence of Borel seRInwith limit
Aw = Nn>0An. If (Aw) =0, then

1 n
PhA, = - le{xi € An} — 0 almost surely as A o,
=

whereP,, is the empirical measure associated with the random sample XX,.

Proof. First, note that limu(An) = U(Ax). Next, fix an integek. For alln > k,
An C A¢ and soPr Ay < PhA¢. But lim, P A = t(Ax) almost surely by the law
of large numbers. Consequently limsipAn < U(Ax) almost surely. Letting
k — oo yields
limsupPrAn < p(Axs) =0,
n

which concludes the proof sindgA, > 0. O

The operator norm convergence that we expect to prove isfaromiaw of large
number. The key argument is the fact that the classes ofirscof the following
lemma are Glivenko-Cantelli. Lej be a function defined on some subsebf

RY, and lete be a subset 0f7. In what follows, for allx € RY, the notation
g(x)1.(x) stands fog(x) if x € <7 and 0 otherwise.

Lemma 5.2. 1. The two collections of functions

= {y—=kn(y—X)1gn(y) : xe L(t—e0)},
= {y= Dy =X)Lz (y) : X € Z(t - 20)

F1
F2
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are Glivenko-Cantelli, where fi, denotes the differential of,k

2. Letr: Z(t) x RY be a continuously differentiable function such that

(i) there exists a compac¥” c RY such that x,y) = 0for all (x,y) € Z(t) x KS;
(ii) r is uniformly bounded onZ(t) x RY, i.e. ||r e < .

Then the collection of functions

F3 = {YH rxy)a(y)lew(y) : xe Z), [[9lwz) < 1}

is Glivenko-Cantelli.

Proof. 1. Clearly.#1 has an integrable envelope sifggs uniformly bounded.
Moreover, for each fixeg, the mapx — kn(y —X)1¢t)(y) is continuous, and
Z(t—¢gp) is compact. Hence for eaéh> 0, using a finite covering o (t — &),

it is easy to construct finitely marly; brackets of size at most whose union
cover.#1; see e.g., Example 19.8 [n_ van der Vart [1998]. .Bpis Glivenko-
Cantelli. Sincek, is continuously differentiable and with compact suppdrg t
same arguments apply to each componemi,df,, and sa%#; is also a Glivenko-
Cantelli class.

2. Setz ={y—r(xy) : xe Z(t)}. First, sincer is continuous on the com-
pact setZ(t) x %, it is uniformly continuous. So a finite covering &f of
arbitrary size in the supremum norm may be obtained from tefcovering of
Z(t) x #. HenceZ has finite entropy in the supremum norm. Second, set
G ={y—=>9Y)Lew)(y)  [9llwzq) < 1}. Denote by2" the convex hull ofZ(t),

and consider the collection of functiofs= {§: 2" — R : 1Gllw(z) <1}. Then

¢ has finite entropy in the supremum norm; $e€ Kolmogorov aRBomiroy

[[961] and[van der Vaar{ [1I9P4]. Using the surjectién— ¢ carrying g to
(glg(t)), that¥ has finite entropy in the supremum norm readily follows. To
conclude the proof, since botd and¥ are uniformly bounded, a finite covering
of .73 of arbitrary sized in the supremum norm may be obtained from finite cov-
erings ofZ and¥, which yields a finite covering of#3 by L, brackets of size at
most . So0.73 is a Glivenko-Cantelli class. O

We recall that the limit operatd®y, is given by [3]1). The following lemma gives
useful bounds oK, andqy, both defined in[(3]2).

Lemma5.3.1. The function Kis uniformly bounded from below by some positive
number onZ (t — &), i.e.,inf{Ky(X) : x€ L(t—&)} > 0;
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2. The kernel gis uniformly bounded, i.e||gh ||« < ©o;
3. The differential of gwith respect to x is uniformly bounded ofi(t — &) x RY,
i.e.,sup{||[Dxan(x.Y)[| : (x,y) € Z(t —&0) x R} < oo;
4. The Hessian ofigwith respect to x is uniformly bounded dri(t — &) x RY,
i.e.,sup{[IDZan(x,Y)| : (x.y) € L(t— &) x RI} < oo,

Proof. First observe that the statements 2, 3 and 4 are immediasegoances of
statement 1 together with the fact that the functigis of classg? with compact
support, which implies tha,(y — X), Dkn(y — X), andDZky(y — X) are uniformly
bounded.

To prove statement 1, note thidt is continuous and tha€,(x) > O for all x €
Z(t). Set
a(go) =inf{Dxf(X)[; x€ A ¢ }-

Let (x,y) € A, x 0.Z(t). Then
g0 > f(y) = f(x) = a(eo)lly—x].-
Thus,|ly—X|| < &/a(&) and so

&
a(e)’

dist(x, Z(t)) < forallxe &' .

Recall from [2Z.]4) thalh/2 > &y / a (&). Consequently, for ak € £ (t — &), the set
(x+hB/2) N.Z(t) contains a non-empty, open $&tx). Moreoverk;, is bounded
from below by some positive number bB/2 by Assumption 2. Hendg,(x) >0
for all xin .Z(t — &) and point 1 follows from the continuity d€,, and the com-
pactness ofZ (t — &). O

In order to prove the convergence@{h to Qn, we also need to study the uniform
convergence oK p, given in (Z.2). Lemm# 54 controls the difference between
Knn andKp, while Lemmg5J5 controls the ratio &, overKpp.

Lemma 5.4. As h— oo, almost surely,

1. sup Kn,h(x)—Kh(x)’ — 0 and
xe.Z (t—¢&p)

2. sup DXKn,h(x)—DXKh(x)’—>O.
xe 2 (t—&)
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Proof. Let

Krfh( : Zikh X)L 1) (%),
Kah(d) : zikh (%).
Let us start with the inequality
Knn() = Kn()| < [Knn() = K100 |+ [KIn00 =Kn(0],  (5.2)
forall x e Z(t — &). Using the inequality
Kan¥) =K1 < |55~ iz ’ Kl

we conclude that the first term ifi (b.1) tends to O uniformlyiover £ (t — &)
with probability one as — o, sincej(n)/n— p(-Z(t)) almost surely, and since
ky, is bounded oriRY.

Next, for allx € .Z(t — &), we have

Kin0 Ko+

Kin(¥) = Kn()| < KIn0 K| (5:2)

The first term in[(5]2) is bounded by

Iknlleo 2

Kin) ~ KL < Zrg s |3

Hthoo Zl o

where %,(t)AZ(t) denotes the symmetric difference betwegqt) and Z(t).
Recall that, onthe eve@,, £ (t —&n) C Zn(t) C L (t—&n). ThereforeZy(1)AZ(t) C
L on Qn, and so

i{lzn (t)(xi)}

18
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whereA, = .i”ttfsi”. Hence by Lemm@ 5.1, and sintég, — 1 almost surely as
n — oo, the first term in[(5]2) converges to 0 with probability onenas .

Next, since the collectiofly — kn(y —X)1#(1)(y) : x€ Z(t — &)} is Glivenko-
Cantelli by Lemm4 5]2, we conclude that

sup
xe 2L (t—&p)

K:L(x) —Kn(X)| — 0,
with probability one as: — . This concludes the proof of the first statement.

The second statement may be proved by developing similansegts, withk,
replaced byDyk, and by noting that the collection of functiorﬁy»—> Dykn(y —
X)1gm(y) : xe ZL(t—go)} is also Glivenko-Cantelli by Lemn{a’}.2. O

Lemma 5.5. As h— oo, almost surely,

Kn(¢n(x) _ ’
1.X€s°;[(3t) 7Kn,h(¢n(x)) 1 — 0, and
Kn(¢n(x)) H
2 50 [Py |

Proof. First of all, Ky, is uniformly continuous otZ (t — &) sinceKp, is continuous
and sinceZ (t — &) is compact. Moreovet), converges uniformly to the identity
map of Z(t) by Lemma[A.]L. Hence

sup |Kn(@n(x)) —Kn(x)| =0 ash— o,
xeZ(t)

and sinceK,, converges uniformly tdp with probability one asn — o by
Lemma[5.14, this proves 1.

We have

Kh(d’n(x)) B -2
Dy [m] = [Kn,h(d’n(x))] Dxd)n(X)

X [Kn,h(d’n(X)) Dth(d’n(X)) - Kh(d’n(x))DxKn,h(d’n(X))} .
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Since Dx¢n(x) converges to the identity matripg uniformly overx € Z(t) by
LemmaA.L,||Dx¢n(X)|| is bounded uniformly ovem andx € .Z(t) by some pos-
itive constanCy. Furthermore the map— Ky h(X) is bounded from below over
Z (t) by some positive constakiin independent af because i) inf ¢ g,) Kn(X) >
0 by Lemmg5 1B, and i) SYp ot _g,) |Knn(X) —Kn ()| — 0 by Lemmd5}4. Hence

K (¢n(x)) Cy
DX[Kn,h(d’n(X))} | km|n

where we have sat= ¢n(X) which belongs toZ(t — &,) C Z(t — &). At last,
Lemma5.4 gives

Kn,h(Y) DxKn(y) — Kn(y)DxKn ()|,

sup
ye£Z (t—&o)

Kn.h(Y)DxKn(y) — Kn(y)DxKnn(y)| — 0 almost surely

asn — oo which proves 2. O

We are now almost ready to prove the uniform convergence piréezal operators.
The following lemma is a consequence of Lemmé 5.2.

Lemma5.6.Letr: .Z(t — &) x RY — R be a continuously differentiable function
with compact support such that (i) r is uniformly bounded®it — £5) x RY, i.e.,
||l < 0, @and (ii) the differential Qr with respect to x is uniformly bounded on

L(t—e0) xRY, ie., oY) : (xY) € Z(t— &) x Rd} <o,
Define the linear operatorsfand R on V\(X(t)) respectively by

R = [, 1(9n(.Y)0(85 ") (a).
RO = [, rO<y)gyK(dy)
Then, as n— o,

sup{HRng— Rd|, : llgllw < 1} — 0 almost surely
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Proof. Set

o 1 12 1y :
Sg(x) = mn.zl ($n(X), %) 9 H(X)) Lz ) (X,
1 12
Thg(X) == mﬁi;f(¢n(X)7Xi)9(Xi)1x(t)(xi),
1 12
Ung(x) := mﬁi;f(X,N)g(N)lz(t)(N)~
and consider the inequality
[Rag(X) = RgX)| < [Rag(x) = Si9(x)| +[Shg(X) — Tag(¥)|
+ [Tha(x) Ung )| 4 [Ung(x) — Rg(X)|, (5.3)

forallxe Z(t) and allg e W(Z(t)).
The first term in[[5]3) is bounded uniformly by

n 1
}Rng(X) —Swg(xﬂ < j(n) p(Z()

and sincej(n)/ntends tou (£ (t)) almost surely as — o, we conclude that

sup{HRng—SngHw :lgllw < 1} —~0 a.s.afn— o, (5.4)

For the second term if ($.3), we have

1Si900 — Tg¥)] < (”“”"" 12» (85200) Ly (%) — G0 L) ()|
e 12
NIEGIE &

whereg, is the function defined on the whole spa&&by
%) = [0(8709) L4 ) () =909 L ().

Consider the partition dR® given byRY = By , UB, nUBg3, UB4 n, where

Bini=()NZ(t), Bzni=L(t)NZ(1)S,
Ban = Zn()°N.Z(1), Ban:=.Zn(t)°N.L(1)C.
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The sum over in (5.3) may be split into four parts as

Zlgn =11(%,9) +12(x,9) +13(x,9) +14(x, 9) (5.6)

where

— 2 3 LX< B

First,14n(X,9) = 0 sinceg, is identically 0 onB, .. Second,

1 n
12(x,9) +13(x,09) < HgHooﬁ _lez(t)Azn(t)(N) (5.7)

Applying Lemma[5]L together with the almost sure convergesfd, to 1, we
obtain that

n
aZ a2 (X)) =0 almost surely (5.8)

Third,

11(x,9) < sup |g(¢n (X)) —9(X)

xeZ(t)
< [Dsglleo SUP ([0 *(x) —X|

xeZ(t)
< [IDxglle> sUP [Ix—dn(X)]
xeZ(t)
-0 (5.9)

asn — o by LemmdAL. Thus, combinin§ (.5), (b.€), (5.7), [5.8) §\Q) leads
to
SUp{Hng—TngHm ; Hgﬂwgl} —0 a.s.as — o, (5.10)

For the third term in|[(5]3), using the inequality
[r(@n(x), %) =1 (%, %) !<HDeroo sup [6n(X) =X
we deduce that

| Thg(x) — Ung(x)| < mllgllwlleerX:;E) [6n(x) —x]I.
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and so
sup{HTng—UngH00 :lgllw < 1} —~0 a.s.af— o, (5.11)

by LemmeA.]L.

At last, for the fourth term in[(5]3), since the functipsatisfies the conditions of
the second statement in Lemng 5.2, we conclude by Lepnha&t2 th

sup{HUng— Ry, : lgllw < 1} —0 as.ag— o, (5.12)

Finally, reporting [5}4),[(5.30) andl (5]11) in (b.3) yieltie desired result. [

5.2 Proof of Theorem[3]L

We will prove that, as 1 — o, almost surely,

sup{‘
sup{‘

To this aim, we introduce the opera@a}h actingonW(Z(t)) as

6n,hg—thHw s lgllw < 1} —0 (5.13)

and

(G ~Ox(Qual | lglw <1} »0 (510

én,hg(x) :/g

n

N Gh(Pn(X), V)9 (@ *(y)) PhL(dy).

Proof of (6:13) Forallge W(.Z(t)), we have

1Qnng— Qng||., < [|Qnng— Qnngl|., + || Qnng — Qngl... (5.15)

First, by Lemmg5]3, the function= g, satisfies the condition in Lemnja}p.6, so
that

sup{ IQnng— Quglle  llgllw < 1} — 0 (5.16)

with probability one as — oo.
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Next, sincel|gn||« < 0 by Lemmg5.3, there exists a finite const@psuch that,
Hémthm <C, forallnand allgwith ||g|jw < 1. (5.17)

By definition ofqn, for all x,y in the level setZ(t), we have

Kh(X)

Onh(X,Y) = Kon(X) Oh(X,Y)- (5.18)
So
én,hg()o_én,hg()()) = %—1 én,hg(x)‘
Kn(¢n(x)) _
SChx:il,i[()t) Kn,h(d’n(X)) sk

whereC, is as in [5.3]7). Applying Lemmpg§.5 yields
sup{ Qnng ~ Qnnglle - lglw <1} 0 (5.19)
with probability one as — . Reporting [5.76) and (5.]19) ih (5]15) proves (b.13).

Proof of (6.14) We have
’ Dy [én,hg} — Dx [th}
/

The second term irff (5.R0) is bounded by

00

(5.20)

Dx [Qn,hg] — Dx [éhg]

i

Dx [6n7hg] — Dx [th]

[ee] [ee]

Dy [én,hg} — D« [th}

< || Dx¢n
where

= quh (én(x),y)9(dn *(y))Ph(dy) and

Rg(X) : /g (DxAh) (§n(X),¥)a(dn H(y)) 1t (dy).
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By lemma[A1 x — Dydn(X) converges to the identity matrly of RY, uniformly
in x over.Z(t). So||Dx¢n(X)|| is bounded by some finite constay uniformly
overnandx € .Z(t) and

By Lemmd35.B, the map: (x,y) — Dxgh(X,y) satisfies the conditions in Lemral5.6.
Thus,||Ryg — Rg|| converges to 0 almost surely, uniformly owgin the unit ball
of W(Z(t)), and we deduce that

sup{’

For the first term in[(5.20), observe first that there existersstantC/, such that,
for all nand allg in the unit ball ofW (£ (t)),

Dy [én,hg} —Dx [th} ) <Cy H Rng — RgHw-

Dx [6n,hg} — Dx [th}

[o4]

lgllw < 1} —0 as.an—ow. (5.21)

|Rangl|,, <Ch, forallnand allg with ||g|jw < 1, (5.22)

by Lemmg5]3.

On the one hand, we have

Dx [qn,h(d)n(X) ) yﬂ -

Hence,

_ Kn(9n(x)

= Kon(0000) Dxn(X)Rng(x) 4 Dy

Dy [én,hg(x)]

Kh(d’n(x)) ~
7Kn,h(¢n(x))] Qn,hg(X).
On the other hand, sind®[dh($n(X),Y)] = Dx$n(X)(Dxth) (¢n(x),y),

Dx | @nng(X)| = Didn(x)Rag ().
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Thus,

Kh(d’n(x)) ~
7Kn7h(¢n(x>)] Qn.ha(x)

Kh(¢n(x)) B
+ <7Kn,h o) 1) Dxén(X)Rng(X).

Using the inequalitied (5..7) and (5.22), we obtain

|

Dy [Q\n,hg(x)] — D« [éhg(x)] = Dx [

Dy [@n,hg] —Dx [éhg] Hoo =G e 20) >

] <Xx)>)>] i

Kn(én(x))

Kn,h(d’n(x)) —h

+CiCs sup
xeZ(t)

and by applying Lemm@§.5, we deduce that

sup{‘

Reporting [5.21) and (5.R3) if (5]20) proves (5.14). O

Dx [én,hg] — Dx [éhg]

> lgllw < 1} —0 as.an—o (5.23)

6 Proof of Corollary 82

Let us start with the following proposition, which relatée spectrum of the func-
tional operatoQ, y with the one of the matriQp p.

Proposition 6.1. On Q,,, we havemd?nﬁn,h = QnnhTh P, and the spectrum of the
functional operato@nvh is a(@mh) = {0} Ua(Qnp).

Proof. Recall that the evaluation ma, defined in [ZB) is such th&, nm, =
TmQn,n, and that, on2p, Qnp = d)nQn,hdJn_l. Moreover, sinc&, andQnp are
conjugate, their spectra are equal. Thus, there remainsow thato(Qnpn) =

{0}Ua(Qnp)-
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Remark thaQ, is a finite rank operator, and that its range is spanned by the
mapsx — gnn(X, Xj), for j € IJ(n). Thus its spectrum is composed of 0 and its
eigenvalues. By the relatioQnh = ™Qn p, it immediately follows that ifg is

an eigenfunction oQ, , with eigenvalue, thenV = m,(g) is an eigenvector of
Qnn with eigenvaluel . Conversely, if{V;}; is an eigenvector oy, then with
some easy algebra, it may be verified that the funaidefined by

g(x) = > Vithn(xXj)
j€3)

is an eigenfunction o@, h with the same eigenvalue. O

The spectrum of), may be decomposed &g Qy) = 01(Qp) U 02(Qp), Where
01(Qn) = {1} and whereg>(Q) = 0(Qp) \ {1}. Since 1is anisolated eigenvalue,
there exists)o in the open interva0; 1) such thaio (Qn) N{z€ C: |z— 1| < no}

is reduced to the singletojl}. Moreover, 1 is an eigenvalue @, of multiplic-

ity ¢, by propositio{ C]2. Hence by Theordm]BW,(.Z(t)) decomposes into
W(Z(t)) = M1 &Mz where dinfMy) = ¢.

Split the spectrum otﬁmh asa(@mh) =0 (én,h) U oz(énh), where
Ul(érm) = O'(Qn,h) N{zeC:|z—1| < no}.

By Theoren{B]1, this decomposition of the spectrurrtﬁ;;;j1 yields a decompo-
sition of W(.Z(t)) asW(Z(t)) = Mn1 & Mn 2, whereM, 1 andM,» are stable
subspaces undefvmh. Statements 4 and 6 of Theor¢m]B.2, together with Propo-
sition[6.1, gives the following convergences.

Proposition 6.2. The first/ eigenvalues\ 1,An 2, ...,An ¢ 0f Qun converge to 1
almost surely as R+ o and there existgo > O such that, for all j> ¢, A, j belongs
to {z:|z— 1| > no} for n large enough, with probability one.

In addition to the convergence of the eigenvaluegf, the convergence of
eigenspaces also holds. More precisely,[febe the projector oM, alongM>
and [Ty the projector oMy, 1 alongMp 2. Statements 2, 3, 5 and 6 of Theorem B.2
leads to

Proposition 6.3. I, converges td1 in operator norm almost surely and the di-
mension of M1 is ¢ for all large enough n.
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Denote byE, ; the subspace drM spanned by the eigenvectors ©@fh cor-
responding to the eigenvaludg 1, ...An,. If nis large enough, we have the
following isomorphisms of vector spaces:

My:M;—Mps and @y My1 — Ena, (6.1)

where, strictly speaking, the isomorphisms are defined byréistriction off1,
and T, @, to My andMp, 1, respectively.

The functionsyn k := lMylg,, k=1,...,¢ are inM;, ; and converges tt, in W-
norm. Then, the vecto, k = Th(gnko ¢, 1) are inEn 1 and, as — «,

1 ifk=k(j),

. (6.2)
0 otherwise

Inkj = Mn(lg) o by H(Xj) — 1 (X)) = {

SinceVh 1, ...,V form a basis oy 1, there exists a matrig, of dimensior? x /
such that

(
Ink = Zlfn,kj Vhi-
=

Hence thej component 0B, for all j € J(n), may be expressed as

(
Inkj= Zl'fn,k,i Vh,ij-
i=

Since pn(Xj) is the vector ofR! with componentgVy j i, the vectordn, j =
{Onk}k of RCis related tgon(X;) by the linear transformatio&, i.e.,

Ine,j = EnPn(Xj).

The convergence o9, j to &j) then follows from [E]2) and Corollary 3.2 is
proved.
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A Geometry of level sets

The proof of the following result is adapted from Theorem 8. Milnor] [[963] p.12 and Theo-
rem 5.2.1in{Jos{[1995] p.176.

Lemma A.1. Let f: RY — R be a function of clasg?. Lett<c R and suppose that there exists
& > Osuch that fl([t — &t + so]) is non empty, compact and contains no critical point of f. Let
{&n}n be a sequence of positive numbers such ¢hat & for all n, andey, — 0 as n— . Then
there exists a sequence of diffeomorphigms.Z(t) — £ (t — &y) carrying Z(t) to £ (t — &)
such that:

1. sup ||¢n(x) —x|| — O0and
xeZ(t)
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2. sup |[Dx¢n(x) —lal| = O,
xeZ(t)

as n— o, where ¢, denotes the differential @, and where is the identity matrix ofiR9.

Proof. Recall first that a one-parameter group of diffeomorphigg ,cr of RY gives rise to a
vector fieldV defined by

9(du(x)) —9(x)

' , XeRY

Vyg = lim
u—0

for all smooth functiorg : RY — R. Conversely, a smooth vector field which vanishes outside of
a compact set generates a unique one-parameter groupesfrdifphisms oR¢; see Lemma 2.4

in Milnor [1963] p. 10 and Theorem 1.6.2[in Jot [1P95] p. 42.

Denote the sefx € RY : a < f(x) < b} by £P, fora<b. Letn : RY — R be the non-negative
differentiable function with compact support defined by

1/[|Dxf (x)]|2 it xe Ly,
n(X) =1 (t+&—F(x)/[DxF Q2 if xe Z %,
0 otherwise

Then the vector field defined byWx = n(x)Dxf(x) has compact suppatt; ”0 , so thatv gener-
ates a one-parameter group of diffeomorphisms

¢RI RY ueR.

We have
Du [f(9u(x))] = (V.Dxf) g0 2 O,
sincen is non-negative. Furthermore,

(V.Dxfgu0 =1, if pu(x) €4

Consequently the map— f (¢u(x)) has constant derivative 1 as longdagx) lies in 2! . . This
proves the existence of the diffeomorphiga= ¢_¢, which carriesZ (t) to £ (t — &n).

Note that the map € R — ¢,(X) is the mtegral curve o¥ with initial conditionx. Without loss
of generality, suppose that < 1. For allxin £ *fo, we have

1600 X1 < [ [Du(Bu00)] du< an/Ben) < /B0

where we have set
B(e) :==inf{||Dxf(x)|| : xe LE} > 0.

This proves the statement 1, sinfsgx) — x is identically 0 onZ(t + &).
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For the statement 2, observe tiggtx) satisfies the relation

u(X) — X = /Ou Dy (v(x))dv= /Ouv(¢v(x)))dv.

Differentiating with respect ta yields

U
Dyu(X) — lg = /O Dy (X) o DV ((x))dv.
Sincef is of classz?, the two terms inside the integral are uniformly boundedc%l&;o, so that
there exists a consta@t> 0 such that

[Dxn —1][x < Cén,

for all xin ,,iﬁttfe‘zo. Since||Dx¢n — | ||x is identically zero onZ (t + &), this proves the statement 2.

O

B Continuity of an isolated finite set of eigenvalues

In brief, the spectruno(T) of a bounded linear operatdr on a Banach space is upper semi-
continuous inT, but not lower semi-continuous; see Hdto [1995{BV1 and 1\43.2. However, an
isolated finite set of eigenvaluesBfis continuous irT, as stated in Theorefn B.2 below.

Let T be a bounded operator on teBanach spack with spectrumo(T). Let 01(T) be a finite
set of eigenvalues df. Seto»(T) =0 (T)\ 01(T) and suppose thai (T) is separated frora,(T)
by a rectifiable, simple, and closed cuive Assume that a neighborhood@f(T) is enclosed in
the interior of/". Then we have the following theorem; dee Kdto [1995]5614 and 11156.5.

Theorem B.1(Separation of the spectrumJhe Banach space E decomposes into a pair of sup-
plementary subspaces as=EM; @ M, such that T maps Mnto M; (j = 1,2) and the spectrum

of the operator induced by T onjNk 0j(T) (j = 1,2). If additionally the total multiplicity m of
01(T) is finite, thendim(My) = m.

Moreover, the following theorem states that a finite systéraigenvalues ofl, as well as the
decomposition of of Theorem[BJL, depends continuouslyTof see[Kafo [1995], I\43.5. Let

{Tn}n be a sequence of operators which convergdsitonorm. Denote by (T,) the part of the
spectrum ofT, enclosed in the interior of the closed cufveand byo,(T,) the remainder of the
spectrum ofT,.

Theorem B.2 (Continuous approximation of the spectral decompositidrtjere exists a finite
integer ry such that the following holds true.

1. Bothoy(T,) and 0x(T,) are nonempty for all > ng provided this is true for T.

2. For each n> 0, the Banach space E decomposes into two subspaces-ag& & Mn 2 in the
manner of Theoreth B.1, i.e, Maps M j into itself and the spectrum of Bn My j is 0;(Tn).

3. For all n> ng, My j is isomorphic to M.
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4. If 01(T) isasingleton{ A }, then every sequenéa, }, with A, € g1(Ty) for all n > ng converges
toA.

5. If I is the projector on M along M and [T, the projector on M along M, 2, then /I,
converges in norm tér.

6. If the total multiplicity m ofoy(T) is finite, then, for all > ng, the total multiplicity ofoy(Tn)
is also m anddim(Mp 1) = m.

C Markov chains and limit operator

For the reader not familiar with Markov chains on a genergkstpace, we begin by summarizing
the relevant part of the theory.

C.1 Background materials on Markov chains

Let {&}i>o be a Markov chain with state spacé c RY and transition kerned(x,dy). We write
P for the probability measure when the initial state BndEx for the expectation with respect to
P«. The Markov chain is callefstrongly) Fellerif the map

xe = Qg0 = [ alx.dyg(y) = Exf(&)

is continuous for every bounded, measurable funagion.7; seefMeyn and Tweedlig [1993], p.
132. This condition ensures that the chain behaves nicelytive topology of the state spacé.
The notion of irreducibility expresses the idea that, framasbitrary initial point, each subset of
the state space may be reached by the Markov chain with ayeosibbability. A Feller chain is
saidopen set irreduciblé, for every pointsx,y in ., and everyj > 0,

> d'(x,y+nB) >0,

n>1

whereq"(x,dy) stands for ther-step transition kernel; s§e Meyn and Twekdie [1993], p.. 135
Even if open set irreducible, a Markov chain may exhibit aquic behavior, i.e., there may exist
a partition. = .U .71 U...U. A of the state space such that, for every initial state 79,

Plér€ A.& € S,....6n € N, ENnv1 € FD,... =1

Such a behavior does not occur if the Feller chatoplogically aperiodici.e., if for each initial
statex, eachn > 0, there exist$y such thaty"(x,x+ nB) > 0 for everyn > ny; see Meyn and
Tweedie [1993], p. 479.

Next we come to ergodic properties of the Markov chain. A BeetA of .7 is calledHarris
recurrentif the chain visitsA infinitely often with probability 1 when started at any poinof A,

ie.,
P <_%1A(Ei) = °°> =1
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for all x € A. The chain is then said to bdarris recurrentif every Borel setA with positive
Lebesgue measure is Harris recurrent;[see Meyn and TWeEIB], p. 204. At least two types
of behavior, called evanescence and non-evanescence anay dhe eveni§, — | denotes the
fact that the sample path visits each compact set only fymiteny often, and the Markov chain is
callednon-evanesceiift P(&n — o) = 0 for each initial state € .. Specifically, a Feller chain is
Harris recurrent if and only if it is non-evanescent; fee Mayd Tweed]e[[1993], Theorem 9.2.2,
p. 212.

The ergodic properties exposed above describe the longa@havior of the chain. A measuve
on the state space is saivariantif

vA) = [ atx vy

for every Borel seAin .. If the chain is Feller, open set irreducible, topologigalperiodic and
Harris recurrent, it admits a unique (up to constant mdspinvariant measung see Meyn and
Tweedie [1993], Theorem 10.0.1 p. 235. In this case, eittfer) < c and the chain is called
positive or v(.¥) = o and the chain is calledull. The following important result provides one
with the limit of the distribution o, whenn — o, whatever the initial state is. Assuming that
the chain is Feller, open set irreducible, topologicallgrégdic and positive Harris recurrent, the
sequence of distributiofig"(x, dy) }n>1 converges in total variation te(dy), the unique invariant
probability distribution; see Theorem 13.3.1[of Meyn ance@dif [1993], p. 326. That is to say,
for everyxin .7,

Sgp{‘/yg(y)qn(xvdy)/yg(Y)V(dY)‘} —0 ash— oo,

where the supremum is taken over all continuous functipinem . to R with ||g||e < 1.

C.2 Limit properties of Qp

With the definitions and results from the previous paragraghmay now study the properties of
the limit clustering induced by the operaf@f. The transition kerneip(x,dy) := gn(x,y)u' (dy)
defines a Markov chain with state spaggt). Recall thatZ(t) has/ connected components
61, ...,%; and that under Assumption Bjs strictly lower thardmin, the minimal distance between
the connected components.

Proposition C.1. 1. The chain is Feller and topologically aperiodic.

2. When started at a point x in some connected component stdtespace, the chain evolves
within this connected component only.

3. When the state space is reduced to some connected compbré(t), the chain is open set
irreducible and positive Harris recurrent.

Proof. 1. Since the similarity functioky is continuous, with compact supp®B, the map

X Q0= [ anlxdy)ay
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is continuous for every bounded, measurable funagiokloreoverk, is bounded from below on
(h/2)B by Assumption 2. Thus, for eacte Z(t), n> 1 andn > 0, gf}(x,x+ nB) > 0. Hence,
the chain is Feller and topologically aperiodic.

2. Without loss of generality, assume that %7. Lety be a point of#(t) which does not belong
to €1. Then||y —X|| > dmin > h so thatg,(x,y) = 0. Whence,

P& 61) = (e ) = [ anlxyl(ey) = [ antxyt(@y =1

3. Assume that the state space is reduceghtoFix x,y € 1 andn > 0. Since%; is connected,
there exists a finite sequengg xy, . . .Xn Of points in%7 such thaky = x, Xy =Y, and||x; — X1 || <
h/2 for eachi. Therefore

oY (x,y+nB) > Px(& € x +nBforalli <N) >0

which proves that the chain is topologically aperiodic.
Since%: is compact, the chain is non-evanescent, and so it is Hagcigrent. Recall thd¢(x) =
k(—x) from Assumption 2. Thereforg,(y — X) = kn(X—y) which yields

Kn(X)an(x, dy) 1 (dX) = Kn(y)an(y. dx) ' (dy).

By integrating the previous relation with respecktover%, one may verify thaky,(x) ut(dx) is
an invariant measure. At lagf, Kn(x)ut(dx) < oo, which proves that the chain is positive. [

Proposition C.2. If g is continuous and g = g, then g is constant on the connected components
of Z(t).

Proof. We will prove thatg is constant ovefs;. Propositiol provides one with a unique
invariant measure; (dy) when the state space is reducedsto Fix X in 61. Sinceg = Qng, g =
QPg for everyn > 1. Moreover by Propositiop @.1, the chain is open set irréadectopologically
aperiodic, and positive Harris recurrent @f. Thus,q(x,dy) converges in total variation norm
to v1(dy). Specifically,

Qra(x) — /f g(y)vi(dy) asn— oo,

Hence, for everxin 41, .
909 = | _gyva(ay).
Je

and since the last integral does not depend,dnfollows thatg is a constant function o#f;. O
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