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We develop a non-anticipative calculus for functionals of a continuous semimartingale, using an extension of the Ito formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by B Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative admits a suitable extension to the space of square-integrable martingales. This extension defines a weak derivative which is shown to be the inverse of the Ito integral and which may be viewed as a non-anticipative "lifting" of the Malliavin derivative.

These results lead to a constructive martingale representation formula for Ito processes. By contrast with the Clark-Haussmann-Ocone formula, this representation only involves nonanticipative quantities which may be computed pathwise.

Introduction

In the analysis of phenomena with stochastic dynamics, Ito's stochastic calculus [START_REF] Ito | On a stochastic integral equation[END_REF][START_REF]On stochastic differential equations[END_REF][START_REF] Dellacherie | Probabilities and potential[END_REF][START_REF] Meyer | Un cours sur les integrales stochastiques[END_REF][START_REF] Kunita | On square integrable martingales[END_REF][START_REF] Protter | Stochastic integration and differential equations[END_REF][START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] has proven to be a powerful and useful tool. A central ingredient of this calculus is the Ito formula [START_REF] Ito | On a stochastic integral equation[END_REF][START_REF]On stochastic differential equations[END_REF][START_REF] Meyer | Un cours sur les integrales stochastiques[END_REF], a change of variable formula for functions ( ) of a semimartingale which allows to represent such quantities in terms of a stochastic integral. Given that in many applications such as statistics of processes, physics or mathematical finance, one is led to consider path-dependent functionals of a semimartingale and its quadratic variation process [ ] such as:

∫ 0 ( , ) [ ]( ), ( , , [ ] ), or [ ( , ( ), [ ]( ))|ℱ ] (1) 
(where ( ) denotes the value at time and = ( ( ), ∈ [0, ]) the path up to time ) there has been a sustained interest in extending the framework of stochastic calculus to such path-dependent functionals.

In this context, the Malliavin calculus [START_REF]Calcul des variations stochastique et processus de sauts[END_REF][START_REF] Nualart | Malliavin calculus and its applications[END_REF][START_REF]Stochastic analysis[END_REF][START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF][START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF][START_REF] Stroock | The Malliavin calculus, a functional analytic approach[END_REF][START_REF] Watanabe | Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels[END_REF] has proven to be a powerful tool for investigating various properties of Brownian functionals. Since the construction of Malliavin derivative does not refer to an underlying filtration ℱ , it naturally leads to representations of functionals in terms of anticipative processes [START_REF] Clark | The representation of functionals of Brownian motion by stochastic integrals[END_REF][START_REF]On the integral representation of functionals of Itô processes[END_REF][START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF]. However, in most applications it is more natural to consider non-anticipative versions of such representations.

In a recent insightful work, B. Dupire [START_REF] Dupire | Functional Itô calculus[END_REF] has proposed a method to extend the Ito formula to a functional setting in a non-anticipative manner, using a pathwise functional derivative which quantifies the sensitivity of a functional : ([0, ], ℝ) → ℝ to a variation in the endpoint of a path ∈ ([0, ], ℝ):

∇ ( ) = lim →0 ( + 1 ) -( )
Building on this insight, we develop hereafter a non-anticipative calculus [START_REF]A functional extension of the Ito formula[END_REF] for a class of processes -including the above examples-which may be represented as

( ) = ({ ( ), 0 ≤ ≤ }, { ( ), 0 ≤ ≤ }) = ( , ) (2) 
where is the local quadratic variation defined by [ ]( ) = ∫ 0 ( ) and the functional : ([0, ], ℝ ) × ([0, ], + ) → ℝ represents the dependence of on the path = { ( ), 0 ≤ ≤ } of and its quadratic variation. Our first result (Theorem 4.1) is a change of variable formula for path-dependent functionals of the form [START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF]. Introducing as additional variable allows us to control the dependence of with respect to the "quadratic variation" [ ] by requiring smoothness properties of with respect to the variable in the supremum norm, without resorting to -variation norms as in "rough path" theory [START_REF] Lyons | Differential equations driven by rough signals[END_REF]. This allows our result to cover a wide range of functionals, including the examples in [START_REF] Ahn | Semimartingale integral representation[END_REF].

We then extend this notion of functional derivative to processes: we show that for of the form [START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF] where satisfies some regularity conditions, the process ∇ = ∇ ( , ) may be defined intrinsically, independently of the choice of in [START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF]. The operator ∇ is shown to admit an extension to the space of square-integrable martingales, which is the inverse of the Ito integral with respect to : for ∈ ℒ 2 ( ), ∇ (∫ . ) = (Theorem 5.8). In particular, we obtain a constructive version of the martingale representation theorem (Theorem 5.9), which states that for any square-integrable ℱ -martingale ,

( ) = (0) + ∫ 0 ∇ . ℙ -. .
This formula can be seen as a non-anticipative counterpart of the Clark-Haussmann-Ocone formula [START_REF] Clark | The representation of functionals of Brownian motion by stochastic integrals[END_REF][START_REF] Haussmann | Functionals of Itô processes as stochastic integrals[END_REF][START_REF]On the integral representation of functionals of Itô processes[END_REF][START_REF] Karatzas | An extension of Clark's formula[END_REF][START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF]. The integrand ∇ is an adapted process which may be computed pathwise, so this formula is more amenable to numerical computations than those based on Malliavin calculus.

Finally, we show that this functional derivative ∇ may be viewed as a non-anticipative "lifting" of the Malliavin derivative (Theorem 6.1): for square-integrable martingales whose terminal values is differentiable in the sense of Malliavin ( )

∈ D 1,2 , we show that ∇ ( ) = [ |ℱ ]
. These results provide a rigorous mathematical framework for developing and extending the ideas proposed by B. Dupire [START_REF] Dupire | Functional Itô calculus[END_REF] for a large class of functionals. In particular, unlike the results derived from the pathwise approach viewpoint presented in [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF][START_REF] Dupire | Functional Itô calculus[END_REF], Theorems 5.8 and 5.9 do not require any pathwise regularity of the functionals and hold for non-anticipative square-integrable processes, including stochastic integrals and functionals which may depend on the quadratic variation of the process.

Functional representation of non-anticipative processes

Let : [0, ] × Ω → ℝ be a continuous, ℝ -valued semimartingale defined on a filtered probability space (Ω, ℱ, ℱ , ℙ) assumed to satisfy the usual hypotheses [START_REF] Dellacherie | Probabilities and potential[END_REF]. Denote by (resp. ) the associated predictable (resp. optional) sigma-algebra on [0, ]. ℱ denotes the (ℙ-

) natural filtration of . The paths of then lie in 0 ([0, ], ℝ ), which we will view as a subspace of ([0, ], ℝ ) the space of cadlag functions with values in ℝ . We denote by [ ] = ([ , ], , = 1.. ) the quadratic (co-)variation process associated to , taking values in the set + of positive × matrices. We assume that

[ ]( ) = ∫ 0 ( ) (3) 
for some cadlag process with values in + . Note that need not be a semimartingale. The paths of lie in = ([0, ], + ), the space of cadlag functions with values + .

Horizontal extension and vertical perturbation of a path

Consider a path ∈ ([0, ]), ℝ ) and denote by = ( ( ), 0 ≤ ≤ ) ∈ ([0, ], ℝ ) its restriction to [0, ] for < . For a process we shall similarly denote ( ) its value at and = ( ( ), 0 ≤ ≤ ) its path on [0, ].

For ℎ ≥ 0, we define the horizontal extension ,ℎ ∈ ([0, + ℎ], ℝ ) of to [0, + ℎ] as

,ℎ ( ) = ( ) ∈ [0, ] ; ,ℎ ( ) = ( ) ∈] , + ℎ] (4) 
For ℎ ∈ ℝ , we define the vertical perturbation ℎ of as the cadlag path obtained by shifting the endpoint by ℎ:

ℎ ( ) = ( ) ∈ [0, [ ℎ ( ) = ( ) + ℎ (5) 
or in other words ℎ ( ) = ( ) + ℎ1 = .

Adapted processes as non-anticipative functionals

A process : [0, ] × Ω → ℝ adapted to ℱ may be represented as

( ) = ({ ( ), 0 ≤ ≤ }, { ( ), 0 ≤ ≤ }) = ( , ) (6) 
where = ( ) ∈[0, ] is a family of functionals

: ([0, ], ℝ ) × → ℝ
representing the dependence of ( ) on the underlying path of and its quadratic variation. Since is non-anticipative, ( , ) only depends on the restriction of on [0, ]. This motivates the following definition: Definition 2.1 (Non-anticipative functional). A non-anticipative functional on Υ is a family of functionals = ( ) ∈[0, ] where

: ([0, ], ℝ ) × ([0, ], + ) → ℝ ( , ) → ( , )
is measurable with respect to ℬ , the canonical filtration on ([0, ], ℝ ) × ([0, ], + ).

We can also view = ( ) ∈[0, ] as a map defined on the space Υ of stopped paths:

Υ = {( , , -), ( , ) ∈ [0, ] × ([0, ], ℝ × + )} (7) 
Whenever the context is clear, we will denote a generic element ( , ) ∈ Υ simply by its second component, the path stopped at . Υ can also be identified with the 'vector bundle'

Λ = ∪ ∈[0, ] ([0, ], ℝ ) × ([0, ], + ). (8) 
A natural distance on the space Υ of stopped paths is given by

∞ (( , ), ( ′ , ′ )) = | -′ | + sup ∈[0, ] | , -( ) -′ ′ , -′ ( )| (9) (Υ, ∞ ) is then a metric space, a closed subspace of [0, ] × ([0, ], ℝ × + ), ∥.∥ ∞ )
for the product topology.

Introducing the process as additional variable may seem redundant at this stage: indeed ( ) is itself ℱ -measurable i.e. a functional of . However, it is not a continuous functional on (Υ, ∞ ). Introducing as a second argument in the functional will allow us to control the regularity of with respect to [ ] = ∫ 0 ( ) simply by requiring continuity of in supremum or norms with respect to the "lifted process" ( , ) (see Section 2.3). This idea is analogous in some ways to the approach of rough path theory [START_REF] Lyons | Differential equations driven by rough signals[END_REF], although here we do not resort to p-variation norms.

If is a ℬ -predictable process, then [8, Vol. I,Par. 97]

∀ ∈ [0, ], ( , ) = ( , -)
where -denotes the path defined on [0, ] by

-( ) = ( ) ∈ [0, [ -( ) = ( -)
Note that -is cadlag and should not be confused with the caglad path → ( -).

The functionals discussed in the introduction depend on the process via [ ] = ∫ . 0 ( ) . In particular, they satisfy the condition ( , ) = ( , -). Accordingly, we will assume throughout the paper that all functionals : ([0, ], ℝ ) × → ℝ considered have "predictable" dependence with respect to the second argument:

∀ ∈ [0, ], ∀( , ) ∈ ([0, ], ℝ ) × , ( , ) = ( , -) (10) 

Continuity for non-anticipative functionals

We now define a notion of (left) continuity for non-anticipative functionals.

Definition 2.2 (Continuity at fixed times). A functional defined on Υ is said to be continuous at fixed times for the ∞ metric if and only if:

∀ ∈ [0, ), ∀ > 0, ∀( , ) ∈ ([0, ], ℝ ) × , ∃ > 0, ( ′ , ′ ) ∈ ([0, ], ℝ ) × , ∞ (( , ), ( ′ , ′ )) < ⇒ | ( , ) -( ′ , ′ )| < (11) 
We now define a notion of joint continuity with respect to time and the underlying path:

Definition 2.3 (Continuous functionals). A non-anticipative functional = ( ) ∈[0, ) is said to be continuous at ( , ) ∈ ([0, ], ℝ ) × if ∀ > 0, ∃ > 0, ∀( ′ , ′ ) ∈ Υ, ∞ (( , ), ( ′ , ′ )) < ⇒ | ( , ) -′ ( ′ , ′ )| < (12) 
We denote ℂ 0,0 ([0, )) the set of non-anticipative functionals continuous on Υ.

Definition 2.4 (Left-continuous functionals). A non-anticipative functional = ( , ∈ [0, )) is said to be left-continuous if for each ∈ [0, ), : ([0, ], ℝ ) × → ℝ in the sup norm and ∀ > 0, ∀( , ) ∈ ([0, ], ℝ ) × , ∃ > 0, ∀ℎ ∈ [0, ], ∀( ′ , ′ ) ∈ ([0, -ℎ], ℝ ) × -ℎ , ∞ (( , ), ( ′ , ′ )) < ⇒ | ( , ) --ℎ ( ′ , ′ )| < (13)
We denote ℂ 0,0 ([0, )) the set of left-continuous functionals.

We define analogously the class of right continuous functionals ℂ 0,0 ([0, )). We call a functional "boundedness preserving" if it is bounded on each bounded set of paths:

Definition 2.5 (Boundedness-preserving functionals). Define ([0, )) as the set of non-anticipative functionals such that for every compact subset of ℝ , every > 0 and 0 < :

∃ , , 0 > 0, ∀ ≤ 0 , ∀( , ) ∈ ([0, ], ) × , sup ∈[0, ] | ( )| < ⇒ | ( , )| < , , 0 (14) 

Measurability properties

Composing a non-anticipative functional with the process ( , ) yields an ℱ -adapted process ( ) = ( , ). The results below link the measurability and pathwise regularity of to the regularity of the functional .

Lemma 2.6 (Pathwise regularity). If

∈ ℂ 0,0 then for any ( ,

) ∈ ([0, ], ℝ ) × , the path → ( -, -) is left-continuous. Proof. Let ∈ ℂ 0,0 and ∈ [0, ). For ℎ > 0 sufficiently small, ∞ (( -ℎ , -ℎ ), ( -, -)) = sup ∈( -ℎ, ) | ( ) -( -ℎ)| + sup ∈( -ℎ, ) | ( ) -( -ℎ)| + ℎ (15) 
Since and are cadlag, this quantity converges to 0 as ℎ → 0+, so

-ℎ ( -ℎ , -ℎ ) -( -, -) ℎ→0 + → 0 so → ( -, -) is left-continuous.
Theorem 2.7. (i) If is continuous at fixed times, then the process defined by (( , ), ) = ( , ) is adapted.

(ii) If ∈ ℂ 0,0 ([0, )), then the process ( ) = ( , ) is optional.

(iii) If ∈ ℂ 0,0 ([0, )), and if either is continuous or verifies [START_REF] Elliott | A short proof of a martingale representation result[END_REF], then is a predictable process.

In particular, any ∈ ℂ 0,0 is a non-anticipative functional in the sense of Definition 2.1. We propose an easy-to-read proof of points (i) and (iii) in the case where is continuous. The (more technical) proof for the cadlag case is given in the Appendix A.

Continuous case. Assume that is continuous at fixed times and that the paths of ( , ) are almost-surely continuous. Let us prove that is ℱ -adapted: ( ) is ℱ -measurable. Introduce the partition = 2 , = 0..2 of [0, ], as well as the following piecewise-constant approximations of and :

( ) = 2 ∑ =0 ( )1 [ , +1 ) ( ) + 1 { } ( ) ( ) = 2 ∑ =0 ( )1 [ , +1 ) ( ) + 1 { } ( ) (16) 
The random variable ( ) = ( , ) is a continuous function of the random variables { ( ), ( ), ≤ } hence is ℱ -measurable. The representation above shows in fact that ( ) is ℱ -measurable. and converge respectively to and almost-surely so ( ) → →∞ ( ) a.s., hence ( ) is ℱ -measurable. (i) implies point (iii) since the path of are left-continuous by Lemma 2.6.

3 Pathwise derivatives of non-anticipative functionals

Horizontal and vertical derivatives

We now define pathwise derivatives for a functional = ( ) ∈[0, ) ∈ ℂ 0,0 , following Dupire [START_REF] Dupire | Functional Itô calculus[END_REF].

Definition 3.1 (Horizontal derivative). The horizontal derivative at ( , ) ∈ ([0, ], ℝ ) × of non-anticipative functional = ( ) ∈[0, ) is defined as ( , ) = lim ℎ→0 + +ℎ ( ,ℎ , ,ℎ ) -( , ) ℎ (17) 
if the corresponding limit exists. If [START_REF] Jacod | Explicit form and robustness of martingale representations[END_REF] is defined for all ( , ) ∈ Υ the map

: ([0, ], ℝ ) × → ℝ ( , ) → ( , ) (18) 
defines a non-anticipative functional = ( ) ∈[0, ] , the horizontal derivative of .

Note that our definition [START_REF] Jacod | Explicit form and robustness of martingale representations[END_REF] is different from the one in [START_REF] Dupire | Functional Itô calculus[END_REF] where the case ( , ) = ( ) is considered.

Dupire [START_REF] Dupire | Functional Itô calculus[END_REF] also introduced a pathwise spatial derivative for such functionals, which we now introduce. Denote ( , = 1.. ) the canonical basis in ℝ .

Definition 3.2. A non-anticipative functional

= ( ) ∈[0, ) is said to be vertically differentiable at ( , ) ∈ ([0, ]), ℝ ) × ([0, ], + ) if ℝ → ℝ → ( , )
is differentiable at 0. Its gradient at 0

∇ ( , ) = (∂ ( , ), = 1.. ) where ∂ ( , ) = lim ℎ→0 ( ℎ , ) -( , ) ℎ (19) 
is called the vertical derivative of at ( , ). If [START_REF] Kunita | On square integrable martingales[END_REF] is defined for all ( , ) ∈ Υ, the maps

∇ : ([0, ], ℝ ) × → ℝ ( , ) → ∇ ( , ) (20) 
define a non-anticipative functional ∇ = (∇ ) ∈[0, ] , the vertical derivative of . is then said to be vertically differentiable on Υ.

Remark 3.3. ∂ ( , ) is simply the directional derivative of in direction (1 { } , 0). Note that this involves examining cadlag perturbations of the path , even if is continuous.

Remark 3.4. If ( , ) = ( , ( )) with ∈ 1,1 ([0, ) × ℝ ) then we retrieve the usual partial derivatives:

( , ) = ∂ ( , ( )) ∇ ( , ) = ∇ ( , ( )).

Remark 3.5. Bismut [START_REF]Calcul des variations stochastique et processus de sauts[END_REF] considered directional derivatives of functionals on ([0, ], ℝ ) in the direction of purely discontinuous (e.g. piecewise constant) functions with finite variation, which is similar to Def. 3.2. This notion, used in [START_REF]Calcul des variations stochastique et processus de sauts[END_REF] to derive an integration by parts formula for purejump processes, is natural in the context of discontinuous semimartingales. We will show that the directional derivative (19) also intervenes naturally when the underlying process is continuous, which is less obvious. Definition 3.6 (Regular functionals). Define ℂ 1, ([0, )) as the set of functionals ∈ ℂ 0,0 which are • horizontally differentiable with continuous at fixed times,

• times vertically differentiable with ∇ ∈ ℂ 0,0 ([0, )) for = 1.. .

Define ℂ 1, ([0, )) as the set of functionals ∈ ℂ 1,2 such that , ∇ , ..., ∇ ∈ ([0, )). We denote ℂ 1,∞ ([0, )) = ∩ ≥1 ℂ 1, ([0, ).
Note that this notion of regularity only involves directional derivatives with respect to local perturbations of paths, so ∇ and seems to contain less information on the behavior of than, say, the Fréchet derivative which consider perturbations in all directions in 0 ([0, ], ℝ ) or the Malliavin derivative [START_REF] Malliavin | Stochastic calculus of variation and hypoelliptic operators[END_REF][START_REF]Stochastic analysis[END_REF] which examines perturbations in the direction of all absolutely continuous functions. Nevertheless we will show in Section 4 that knowledge of , ∇ , ∇ 2 along the paths of derivatives are sufficient to reconstitute the path of ( ) = ( , ).

Example 1 (Smooth functions). In the case where reduces to a smooth function of ( ), ( , ) = ( , ( )) [START_REF] Malliavin | Stochastic calculus of variation and hypoelliptic operators[END_REF] where ∈ 1, ([0, ] × ℝ ), the pathwise derivatives reduces to the usual ones: ∈ ℂ 1, with:

( , ) = ∂ ( , ( )) ∇ ( , ) = ∂ ( , ( )) (22) 
In fact to have ∈ ℂ 1, we just need to be right-differentiable in the time variable, with rightderivative ∂ ( , .) which is continuous in the space variable and , ∇ and ∇ 2 to be jointly leftcontinuous in and continuous in the space variable.

Example 2 (Cylindrical functionals). Let ∈ 0 (ℝ , ℝ), ℎ ∈ (ℝ , ℝ) with ℎ(0) = 0. Then

( ) = ℎ ( ( ) -( -)) 1 ≥ ( ( 1 -), ( 2 -)..., ( -))
is in ℂ 1, with ( ) = 0 and

∀ = 1.. , ∇ ( ) = ℎ ( ) ( ( ) -( -)) 1 ≥ ( ( 1 -), ( 2 -)..., ( -))
Example 3 (Integrals with respect to quadratic variation). A process ( ) = ∫ 0 ( ( )) [ ]( ) where ∈ 0 (ℝ ) may be represented by the functional

( , ) = ∫ 0 ( ( )) ( ) (23) 
It is readily observed that ∈ ℂ 1,∞ , with: 

Then ∈ ℂ 1,∞ with:

( , ) = -( ) ∇ ( , ) = 2 ( ) ∇ 2 ( , ) = 2 ∇ ( , ) = 0, ≥ 3 (26) 
Example 5. = exp( -[ ]/2) may be represented as ( ) = ( )

( , ) = ( )-1 2 ∫ 0 ( ) (27) 
Elementary computations show that ∈ ℂ 1,∞ with:

( , ) = - 1 2 ( ) ( , ) ∇ ( , ) = ( , ) (28) 
Note that, although may be expressed as a functional of , this functional is not continuous and without introducing the second variable ∈ , it is not possible to represent Examples 3, 4 and 5 as a left-continuous functional of alone. ( , ) = ( -) defines a ℂ 0,∞ functional. All vertical derivatives are 0. However, fails to be horizontally differentiable.

Obstructions to regularity

Example 7 (Jump of at the current time).

( , ) = ( ) -( -) defines a functional which is infinitely differentiable and has regular pathwise derivatives:

( , ) = 0 ∇ ( , ) = 1 (29)
However, the functional itself fails to be ℂ 0,0 .

Example 8 (Jump of at a fixed time).

( , ) = 1 ≥ 0 ( ( 0 ) -( 0 -)) defines a functional in ℂ 0,0 which admits horizontal and vertical derivatives at any order at each point ( , ). However, ∇ ( , ) = 1 = 0 fails to be either right-or left-continuous so is not ℂ 0,1 in the sense of Definition 3.2.

Example 9 (Maximum).

( , ) = sup ≤ ( ) is ℂ 0,0 but fails to be vertically differentiable on the set

{( , ) ∈ ([0, ], ℝ ) × , ( ) = sup ≤ ( )}.
4 Functional Ito calculus

Functional Ito formula

We are now ready to prove our first main result, which is a change of variable formula for nonanticipative functionals of a semimartingale [START_REF]A functional extension of the Ito formula[END_REF][START_REF] Dupire | Functional Itô calculus[END_REF]: Theorem 4.1. For any non-anticipative functional ∈ ℂ 1,2 verifying (10) and any ∈ [0, ),

( , ) -0 ( 0 , 0 ) = ∫ 0 ( , ) + ∫ 0 ∇ ( , ). ( ) + ∫ 0 1 2 tr ( ∇ 2 ( , ) [ ]( ) ) . . (30) 
In particular, for any ∈ ℂ 1,2 , ( ) = ( , ) is a semimartingale. [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF] shows that, for a regular functional ∈ ℂ 1,2 ([0, )), the process = ( , ) may be reconstructed from the second-order jet ( , ∇ , ∇ 2 ) of along the paths of .

Proof. Let us first assume that

does not exit a compact set and that ∥ ∥ ∞ ≤ for some > 0. Let us introduce a sequence of random partitions ( , = 0.. ( )) of [0, ], by adding the jump times of to the dyadic partition ( = 2 , = 0..2 ):

0 = 0 = inf{ > -1 |2 ∈ ℕ or | ( ) -( -)| > 1 } ∧ (31) 
on , and and does not depend on nor on . The dominated convergence and the dominated convergence theorem for the stochastic integrals [28, Ch.IV Theorem 32] then ensure that the Lebesgue-Stieltjes integrals converge almost surely, and the stochastic integral in probability, to the terms appearing in [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF] as → ∞.

Consider now the general case where and may be unbounded. Let be an increasing sequence of compact sets with ∪ ≥0 = ℝ and denote the optional stopping times

= inf{ < | / ∈ or | | > } ∧ .
Applying the previous result to the stopped process ( ∧ , ∧ ) and noting that, by ( 10), ( , ) = ( , -) leads to:

( ∧ , ∧ ) -0 ( 0 , 0 ) = ∫ ∧ 0 ( , ) + 1 2 ∫ ∧ 0 tr ( ∇ 2 ( , ) [ ]( ) ) + ∫ ∧ 0 ∇ ( , ). + ∫ ∧ ( ∧ , ∧ )
The terms in the first line converges almost surely to the integral up to time since ∧ = almost surely for sufficiently large. For the same reason the last term converges almost surely to 0.

Remark 4.2. The above proof is probabilistic and makes use of the (classical) Ito formula [START_REF] Ito | On a stochastic integral equation[END_REF]. In the companion paper [START_REF] Cont | Change of variable formulas for non-anticipative functionals on path space[END_REF] we give a non-probabilistic proof of Theorem 4.1, using the analytical approach of Föllmer [START_REF] Föllmer | Calcul d'Itô sans probabilités[END_REF], which allows to have discontinuous (cadlag) trajectories. 

( ( ) - 1 2 [ ]( ) ) = ∫ 0 ( )-1 2 [ ]( ) ( ) (37) 
An immediate corollary of Theorem 4.1 is that, if is a local martingale, any ℂ 1,2 functional of which has finite variation is equal to the integral of its horizontal derivative:

Corollary 4.3. If is a local martingale and ∈ ℂ 1,2 , the process ( ) = ( , ) has finite variation if only if ∇ ( , ) = 0 [ ] × ℙ-almost everywhere.
Proof. ( ) is a continuous semimartingale by Theorem 4.1, with semimartingale decomposition given by [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF]. If has finite variation, then by formula [START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF], its continuous martingale component should be zero i.e. In particular this construction applies to the case where is a standard Brownian motion, where = , so we obtain the existence of a vertical derivative process for ℂ 1,2 Brownian functionals: Definition 4.6 (Vertical derivative of non-anticipative Brownian functionals). Let be a standard d-dimensional Brownian motion. For any ∈ 1,2 ( ) with representation ( ) = ( , ), the predictable process

∇ ( ) = ∇ ( , )
is uniquely defined up to an evanescent set, independently of the choice of ∈ ℂ 1,2 .

Martingale representation formulas

Consider now the case where is a Brownian martingale:

Assumption 5.1. ( ) = (0) + ∫ 0 ( ).
( ) where is a process adapted to ℱ verifying det( ( )

) ∕ = 0 × ℙ -. . (43) 
The functional Ito formula (Theorem 4.1) then leads to an explicit martingale representation formula for ℱ -martingales in 1,2 ( ). This result may be seen as a non-anticipative counterpart of the Clark-Haussmann-Ocone formula [START_REF] Clark | The representation of functionals of Brownian motion by stochastic integrals[END_REF][START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF][START_REF]On the integral representation of functionals of Itô processes[END_REF] and generalizes other constructive martingale representation formulas previously obtained using Markovian functionals [START_REF] Davis | Functionals of diffusion processes as stochastic integrals[END_REF][START_REF] Elliott | A short proof of a martingale representation result[END_REF][START_REF] Fitzsimmons | A new approach to the martingale representation theorem[END_REF][START_REF] Jacod | Explicit form and robustness of martingale representations[END_REF][START_REF] Pardoux | Backward stochastic differential equations and quaslinear parabolic partial differential equations[END_REF], Malliavin calculus [START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF][START_REF] Karatzas | An extension of Clark's formula[END_REF][START_REF]On the integral representation of functionals of Itô processes[END_REF][START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF][START_REF] Nualart | Malliavin calculus and its applications[END_REF] or other techniques [START_REF] Ahn | Semimartingale integral representation[END_REF][START_REF] Picard | Excursions, stochastic integrals and representation of wiener functionals[END_REF].

Consider an ℱ measurable random variable with | | < ∞ and consider the martingale ( ) = [ |ℱ ].

A martingale representation formula

If admits a representation ( ) = ( , ) where ∈ ℂ 1,2 , we obtain the following stochastic integral representation for in terms of its derivative ∇ with respect to :

Theorem 5.2. If ( ) = ( , ) for some functional ∈ ℂ 1,2 , then:

( ) = (0) + ∫ 0 ∇ ( , ) ( ) = (0) + ∫ 0 ∇ . (44) 
Note that regularity assumptions are not on = ( ) but on the functionals ( ) = [ |ℱ ], < , which is typically more regular than itself.

Proof. Theorem 4.1 implies that for ∈ [0, ):

( ) = [ ∫ 0 ( , ) + 1 2 ∫ 0 tr[ ∇ 2 ( , ) [ ]( )] + ∫ 0 ∇ ( , ) ( ) (45) 
Given the regularity assumptions on , the first term in this sum is a continuous process with finite variation while the second is a continuous local martingale. However, is a martingale and its Theorem 5.8 (Extension of ∇ to 1,2 ( )). The vertical derivative ∇ : ( ) → ℒ 2 ( ) is closable on 1,2 ( ). Its closure defines a bijective isometry ∇ :

1,2 ( ) → ℒ 2 ( )

∫ . 0 . → (52) 
characterized by the following integration by parts formula: for

∈ 1,2 ( ), ∇ is the unique element of ℒ 2 ( ) such that ∀ ∈ ( ), [ ( ) ( )] = [ ∫ 0 ∇ ( )∇ ( ) [ ]( ) ] . (53) 
In particular, ∇ is the adjoint of the Ito stochastic integral

: ℒ 2 ( ) → 1,2 ( ) → ∫ . 0 . ( 54 
)
in the following sense:

∀ ∈ ℒ 2 ( ), ∀ ∈ 1,2 ( ), [ ( ) ∫ 0 . ] = [ ∫ 0 ∇ [ ] ] (55) 
Proof. Any ∈ 1,2 ( ) may be written as ( ) = ∫ 0 ( ) ( ) with ∈ ℒ 2 ( ), which is uniquely defined [ ] × ℙ a.e. The Ito isometry formula then guarantees that (53) holds for . To show that (53) uniquely characterizes , consider ∈ ℒ 2 ( ) which also satisfies (53), then, denoting ( ) = ∫ . 0 its stochastic integral with respect to , (53) then implies that

∀ ∈ ( ), < ( ) -, > 1,2 ( ) = [( ( ) - ∫ 0 ) ( )] = 0 which implies ( ) = [ ] × ℙ a.e. since by construction ( ) is dense in 1,2 ( ). Hence, ∇ : ( ) → ℒ 2 ( ) is closable on 1,2 ( ).
This construction shows that ∇ : 1,2 ( ) → ℒ 2 ( ) is a bijective isometry which coincides with the adjoint of the Ito integral on 1,2 ( ).

Thus, the Ito integral with respect to : ℒ 2 ( ) → 1,2 ( ) admits an inverse on 1,2 ( ) which is an extension of the (pathwise) vertical derivative ∇ operator introduced in Definition 3.2, and

∀ ∈ ℒ 2 ( ), ∇ (∫ . 0 ) = (56)
holds in the sense of equality in ℒ 2 ( ).

The above results now allow us to state a general version of the martingale representation formula, valid for all square-integrable martingales: Theorem 5.9 (Martingale representation formula: general case). For any square-integrable ℱmartingale ,

( ) = (0) + ∫ 0 ∇ ℙ -. .

Relation with the Malliavin derivative

The above results hold in particular in the case where = is a Brownian motion. In this case, the vertical derivative ∇ may be related to the Malliavin derivative [START_REF]Stochastic analysis[END_REF][START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF][START_REF]Calcul des variations stochastique et processus de sauts[END_REF][START_REF] Stroock | The Malliavin calculus, a functional analytic approach[END_REF] as follows.

Consider the canonical Wiener space (Ω 0 = 0 ([0, ], ℝ ), ∥.∥ ∞ , ℙ) endowed with its Borelian -algebra, the filtration of the canonical process. Consider an ℱ -measurable functional Thus, the conditional expectation operator (more precisely: the predictable projection on ℱ [8, Vol. I]) can be viewed as a morphism which "lifts" relations obtained in the framework of Malliavin calculus into relations between non-anticipative quantities, where the Malliavin derivative and the Skorokhod integral are replaced, respectively, by the vertical derivative ∇ and the Ito stochastic integral.

From a computational viewpoint, unlike the Clark-Haussmann-Ocone representation which requires to simulate the anticipative process and compute conditional expectations, ∇ only involves non-anticipative quantities which can be computed path by path. It is thus more amenable to numerical computations. This topic is further explored in a forthcoming work.

(Example 4 .

 4 The martingale ( ) = ( ) 2 -[ ]( ) is represented by the functional ( , ) = ( ) 2 -

  It is instructive to observe what prevents a functional from being regular in the sense of Definition 3.6. The examples below illustrate the fundamental obstructions to regularity: Example 6 (Delayed functionals). Let > 0.

Example 10 .Example 11 . 2 ∫0

 10112 If ( , ) = ( , ( )) where ∈ 1,2 ([0, ] × ℝ ),[START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF] reduces to the standard Itô formula. For the functional in Example 5) ( , ) = ( )-1 ( ) , the formula (30) yields the well-known integral representation exp

∫ 0 ∇

 0 ( , ). ( ) = 0 a.s. Computing its quadratic variation, we obtain ∫ particular that ∥∂ ( , )∥ 2 = 0 [ ] × ℙ-almost everywhere for = 1.. . Thus, ∇ ( , ) = 0 for ( , ) / ∈ ⊂ [0, ] × Ω where ∫ [ ] × ℙ = 0 for = 1.. .

D 1 , 2 → 2 (

 122 = ( ( ), ∈ [0, ]) = ( ) with [| | 2 ] < ∞. Ifis differentiable in the Malliavin sense[START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF][START_REF]Stochastic analysis[END_REF][START_REF] Nualart | Malliavin calculus and its applications[END_REF][START_REF] Stroock | The Malliavin calculus, a functional analytic approach[END_REF] e.g.∈ D 1,2 with Malliavin derivative , then the Clark-Haussmann-Ocone formula[START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF][START_REF] Nualart | Malliavin calculus and its applications[END_REF] gives a stochastic integral representation of in terms of the Malliavin derivative of : the predictable projection of the Malliavin derivative. This yields a stochastic integral representation of the martingale ( ) = [ |ℱ ]:( ) = [ |ℱ ] = [ ]+ have been obtained under a variety of conditions[START_REF] Bismut | A generalized formula of Itô and some other properties of stochastic flows[END_REF][START_REF] Davis | Functionals of diffusion processes as stochastic integrals[END_REF][START_REF] Fitzsimmons | A new approach to the martingale representation theorem[END_REF][START_REF] Karatzas | An extension of Clark's formula[END_REF][START_REF] Pardoux | Backward stochastic differential equations and quaslinear parabolic partial differential equations[END_REF][START_REF] Nualart | Malliavin calculus and its applications[END_REF].Denote by• 2 ([0, ] × Ω) the set of (anticipative) processes on [0, ] with∫ 0 ∥ ( )∥ 2 < ∞. •the Malliavin derivative operator, which associates to a random variable ∈ D 1,2 (0, ) the (anticipative) process ()∈[0, ] ∈ 2 ([0, ] × Ω). Theorem 6.1 (Lifting theorem). The following diagram is commutative is the sense of × ℙ equality: .|ℱ ]) ∈[0, ] ↑( [.|ℱ ]) ∈[0, ] [0, ] × Ω)In other words, the conditional expectation operator intertwines ∇ with the Malliavin derivative:∀ ∈ 2 (Ω 0 , ℱ , ℙ), ∇ ( [ |ℱ ]) = [ |ℱ ](58)Proof. The Clark-Haussmann-Ocone formula[START_REF] Ocone | Malliavin's calculus and stochastic integral representations of functionals of diffusion processes[END_REF] gives∀ ∈ D 1,2, the predictable projection of the Malliavin derivative. On other hand theorem 5.2 gives: ∀ ∈ 2 (Ω 0 , ℱ , ℙ), = [ |ℱ ]. Hence [ |ℱ ] = ∇ [ |ℱ ], × ℙ almost everywhere.

The following arguments apply pathwise. Lemma A. [START_REF]Calcul des variations stochastique et processus de sauts[END_REF] 

where we have used the fact that has predictable dependence in the second variable to have ( , ) = ( , -). The first term in [START_REF] Watanabe | Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels[END_REF] can be written (ℎ ) -(0) where:

Since ∈ ℂ 1,2 ([0, ]), is right-differentiable and left-continuous by Lemma 2.6, so:

The second term in [START_REF] Watanabe | Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels[END_REF] can be written ( ( +1 )-( ))-(0) where ( ) = ( -, ).

Since ∈ ℂ 1,2 , is a 2 function and

). Applying the Ito formula to between 0 and +1 -and the (ℱ + ) ≥0 continuous semimartingale ( ( + )) ≥0 , yields:

Summing over ≥ 0 and denoting ( ) the index such that ∈ [ ( ) , ( )+1 ), we have shown:

( , ) converges to ( , ) almost surely. Since all approximations of ( , ) appearing in the various integrals have a ∞ -distance from ( , ) less than → 0, the continuity at fixed times of and left-continuity ∇ , ∇ 2 imply that the integrands appearing in the above integrals converge respectively to ( , ), ∇ ( , ), ∇ 2 ( , ) as → ∞. Since the derivatives are in the integrands in the various above integrals are bounded by a constant dependant only

Vertical derivative of an adapted process

For a (ℱ -adapted) process , the the functional representation (42) is not unique, and the vertical ∇ depends on the choice of representation . However, Theorem 4.1 implies that the process ∇ ( , ) has an intrinsic character i.e. independent of the chosen representation:

Then, outside an evanescent set:

Proof. Let ( ) = ( ) + ( ) where is a continuous process with finite variation and is a continuous local martingale. There exists Ω 1 ⊂ Ω such that ℙ(Ω 1 ) = 1 and for ∈ Ω the path of → ( , ) is continuous and → ( , ) is cadlag. Theorem 4.1 implies that the local martingale part of 0 = 1 ( , ) -2 ( , ) can be written:

Considering its quadratic variation, we have, on Ω 1

By Lemma 2.6 (∇ 1 ( , ) = ∇ 1 ( -, -) since is continuous and verifies [START_REF] Elliott | A short proof of a martingale representation result[END_REF]. So on Ω 1 the integrand in (41) is left-continuous; therefore (41) implies that for < and ∈ Ω 1 ,

In the case where for all < , ( -) is almost surely positive definite, Corollary 4.4 allows to define intrinsically the pathwise derivative of a process which admits a functional representation ( ) = ( , ):

Definition 4.5 (Vertical derivative of a process). Define 1,2 ( ) the set of ℱ -adapted processes which admit a functional representation in ℂ 1,2 :

)) ∕ = 0 × ℙ almost-everywhere then for any ∈ 1,2 ( ), the predictable process:

is uniquely defined up to an evanescent set, independently of the choice of ∈ ℂ 1,2 in the representation (42). We will call ∇ the vertical derivative of with respect to .

decomposition as sum of a finite variation process and a local martingale is unique [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]. Hence the first term is 0 and: ( ) = ∫ 0 ( , ) . Since ∈ ℂ 0,0 ([0, ]) ( ) has limit ( , ) as → , so the stochastic integral also converges.

yields the familiar formula:

Extension to square-integrable functionals

Let ℒ 2 ( ) be the Hilbert space of progressively-measurable processes such that:

and ℐ 2 ( ) be the space of square-integrable stochastic integrals with respect to :

( ) is then a bijective isometry from ℒ 2 ( ) to ℐ 2 ( ).

We will now show that the operator ∇ : → ℒ 2 ( ) admits a suitable extension to ℐ 2 ( ) which verifies

i.e. ∇ is the inverse of the Ito stochastic integral with respect to .

Definition 5.3 (Space of test processes). The space of test processes ( ) is defined as

Theorem 5.2 allows to define intrinsically the vertical derivative of a process in ( ) as an element of ℒ 2 ( ). Definition 5.4. Let ∈ ( ), define the process ∇ ∈ ℒ 2 ( ) as the equivalence class of ∇ ( , ), which does not depend on the choice of the representation functional ( ) = ( , ) Proposition 5.5 (Integration by parts on ( )). Let , ∈ ( ). Then:

Proof. Let , ∈ ( ) ⊂ 1,2 ( ). Then , are martingales with (0) = (0) = 0 and

Applying Theorem 5.2 to and , we obtain

Applying the Ito isometry formula yields the result.

Using this result, we can extend the operator ∇ in a weak sense to a suitable space of the space of (square-integrable) stochastic integrals, where ∇ is characterized by (51) being satisfied against all test processes.

The following definition introduces the Hilbert space 1,2 ( ) of martingales on which ∇ acts as a weak derivative, characterized by integration-by-part formula (51). This definition may be also viewed as a non-anticipative counterpart of Wiener-Sobolev spaces in the Malliavin calculus [START_REF]Stochastic analysis[END_REF][START_REF] Shigekawa | Derivatives of Wiener functionals and absolute continuity of induced measures[END_REF]. Definition 5.6 (Martingale Sobolev space). The Martingale Sobolev space 1,2 ( ) is defined as the closure in ℐ 2 ( ) of ( ).

The Martingale Sobolev space 1,2 ( ) is in fact none other than ℐ 2 ( ), the set of squareintegrable stochastic integrals:

Proof. We first observe that the set of "cylindrical" processes of the form , ,( 1 ,.., ) ( ) = ( ( 1 ), ..., ( ))1 > where ≥ 1, 0 ≤ 1 < .. < ≤ and ∈ ∞ (ℝ , ℝ) is a total set in ℒ 2 ( ) i.e. the linear span of is dense in ℒ 2 ( ). For such an integrand , ,( 1,.., ) , the stochastic integral with respect to is given by the martingale

where the functional is defined on Υ as:

Since is bounded, is obviously square integrable so ∈ ( ). Hence ( ) ⊂ ( ). Since is a bijective isometry from ℒ 2 ( ) to ℐ 2 ( ), the density of in ℒ 2 ( ) entails the density of ( ) in ℐ 2 ( ), so 1,2 ( ) = ℐ 2 ( ).

A Proof of Theorem 2.7

In order to prove theorem 2.7 in the general case where is only required to be cadlag, we need the following three lemmas. The first lemma states a property analogous to 'uniform continuity' for cadlag functions:

Proof. If (61) does not hold, then there exists a sequence ( ,

We can extract a convergent subsequence ( ( ) ) such that ( ) → . Noting that either an infinity of terms of the sequence are less than or an infinity are more than , we can extract monotone subsequences ( , Lemma A.2. If ∈ ℝ and is an adapted cadlag process defined on a filtered probability space (Ω, ℱ, (ℱ ) ≥0 , ℙ) and is a optional time, then:

is a stopping time.

Proof. We can write that:

and, using Lemma A.1,

Lemma A.3 (Uniform approximation of cadlag functions by step functions).

Let ∈ ([0, ], ℝ ) and = ( ) ≥1, =0.. a sequence of partitions (0 = 0 < 1 < ... < = ) of [0, ] such that:

) using the notation of Lemma A.1. Then, applying Lemma A.1 to we obtain, for ≥ , sup

We can now prove Theorem 2.7 in the case where is a cadlag adapted process. Proof of Theorem 2.7: Let us first show that ( , ) is adapted. Define:

From lemma A.2, are stopping times. Define the following piecewise constant approximations of and along the partition ( , ≥ 0):

as well as their truncations of rank : 

The approximations ( , ) are ℱ -measurable as they are continuous functions of the random variables: {( ( )1 ≤ , ( )1 ≤ ), ≤ } so their limit ( , ) is also ℱ -measurable. Thanks to Lemma A.3, and converge uniformly to and , hence ( , ) converges to ( , ) since : ( ([0, ], ℝ )× , ∥.∥ ∞ ) → ℝ is continuous.

To show the optionality of in point (ii), we will show that it as limit of right-continuous adapted processes. For ∈ [0, ], define ( ) to be the integer such that ∈ [ , ( +1) ). Define the process: = ( ( )) ( ( ( )) , ( ( )) ), which is piecewise-constant and has right-continuous trajectories, and is also adapted by the first part of the theorem. Since ∈ ℂ 0,0 , ( ) → ( ) almost surely, which proves that is optional. Point (iii) follows from (i) and lemma 2.6, since in both cases ( , ) = ( -, -) hence has left-continuous trajectories.