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Abstract

The asymptotic properties of the quasi-maximum likelihood estimator (QMLE) of
vector autoregressive moving-average (VARMA) models are derived under the as-
sumption that the errors are uncorrelated but not necessarily independent. Relaxing
the independence assumption considerably extends the range of application of the
VARMA models, and allows to cover linear representations of general nonlinear pro-
cesses. Conditions are given for the consistency and asymptotic normality of the
QMLE. A particular attention is given to the estimation of the asymptotic variance
matrix, which may be very different from that obtained in the standard framework.
Modified versions of the Wald, Lagrange Multiplier and Likelihood Ratio tests are
proposed for testing linear restrictions on the parameters.
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1 Introduction

This paper is devoted to the problem of estimating VARMA representations
of multivariate (nonlinear) processes.
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In order to give a precise definition of a linear model and of a nonlinear
process, first recall that by the Wold decomposition (see e.g. Brockwell and
Davis, 1991, for the univariate case, and Reinsel, 1997, in the multivariate
framework) any zero-mean purely non deterministic d-dimensional stationary
process (Xt) can be written in the form

Xt =
∞
∑

ℓ=0

Ψℓǫt−ℓ, (ǫt) ∼ WN(0,Σ) (1)

where
∑

ℓ ‖Ψℓ‖2 < ∞. The process (ǫt) is called the linear innovation process of
the process X = (Xt), and the notation (ǫt) ∼ WN(0,Σ) signifies that (ǫt) is a
weak white noise. A weak white noise is a stationary sequence of centered and
uncorrelated random variables with common variance matrix Σ. By contrast,
a strong white noise, denoted by IID(0,Σ), is an independent and identically
distributed (iid) sequence of random variables with mean 0 and variance Σ.
A strong white noise is obviously a weak white noise, because independence
entails uncorrelatedness, but the reverse is not true. Between weak and strong
white noises, one can define a semi-strong white noise as a stationary mar-
tingale difference. An example of semi-strong white noise is the generalized
autoregressive conditional heteroscedastic (GARCH) model. In the present
paper, a process X is said to be linear when (ǫt) ∼ IID(0,Σ) in (1), and is
said to be nonlinear in the opposite case. With this definition, GARCH-type
processes are considered as nonlinear. Leading examples of linear processes
are the VARMA and the sub-class of the vector autoregressive (VAR) mod-
els with iid noise. Nonlinear models are becoming more and more employed
because numerous real time series exhibit nonlinear dynamics, for instance
conditional heteroscedasticity, which can not be generated by autoregressive
moving-average (ARMA) models with iid noises. 1

The main issue with nonlinear models is that they are generally hard to iden-
tify and implement. This is why it is interesting to consider weak (V)ARMA
models, that is ARMA models with weak white noises, such linear represen-
tations being universal approximations of the Wold decomposition (1). Linear
and nonlinear processes also have exact weak ARMA representations because
a same process may satisfy several models, and many important classes of
nonlinear processes admit weak ARMA representations (see Francq, Roy and
Zakoïan, 2005, and the references therein).

The estimation of autoregressive moving-average (ARMA) models is however

1 To cite few examples of nonlinear processes, let us mention the self-exciting thresh-
old autoregressive (SETAR), the smooth transition autoregressive (STAR), the expo-
nential autoregressive (EXPAR), the bilinear, the random coefficient autoregressive
(RCA), the functional autoregressive (FAR) (see Tong, 1990, and Fan and Yao, 2003,
for references on these nonlinear time series models). All these nonlinear models have
been initially proposed for univariate time series, but have multivariate extensions.
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much more difficult in the multivariate than in univariate case. A first difficulty
is that non trivial constraints on the parameters must be imposed for identi-
fiability of the parameters (see Reinsel, 1997, Lütkepohl, 2005). Secondly, the
implementation of standard estimation methods (for instance the Gaussian
quasi-maximum likelihood estimation) is not obvious because this requires a
constrained high-dimensional optimization (see Lütkepohl, 2005, for a general
reference and Kascha, 2007, for a numerical comparison of alternative estima-
tion methods of VARMA models). These technical difficulties certainly explain
why VAR models are much more used than VARMA in applied works. This
is also the reason why the asymptotic theory of weak ARMA model estima-
tion is mainly limited to the univariate framework (see Francq and Zakoïan,
2005, for a review on weak ARMA models). Notable exceptions are Dufour
and Pelletier (2005) who study the asymptotic properties of a generalization
of the regression-based estimation method proposed by Hannan and Rissanen
(1982) under weak assumptions on the innovation process, and Francq and
Raïssi (2007) who study portmanteau tests for weak VAR models.

For the estimation of ARMA and VARMA models, the commonly used esti-
mation method is the QMLE, which can also be viewed as a nonlinear least
squares estimation (LSE). The asymptotic properties of the QMLE of VARMA
models are well-known under the restrictive assumption that the errors ǫt are
independent (see Lütkepohl, 2005). The asymptotic behavior of the QMLE
has been studied in a much wider context by Dunsmuir and Hannan (1976)
and Hannan and Deistler (1988) who proved consistency, under weak assump-
tions on the noise process and based on a spectral analysis. These authors also
obtained asymptotic normality under a conditionally homoscedastic martin-
gale difference assumption on the linear innovations. However, this assumption
precludes most of the nonlinear models. Little is thus known when the mar-
tingale difference assumption is relaxed. Our aim in this paper is to consider
a flexible VARMA specification covering the structural forms encountered in
econometrics, and to relax the independence assumption, and even the mar-
tingale difference assumption, in order to be able to cover weak VARMA
representations of general nonlinear models.

The paper is organized as follows. Section 2 presents the structural weak
VARMA models that we consider here. Structural forms are employed in
econometrics in order to introduce instantaneous relationships between eco-
nomic variables. The identifiability issues are discussed. It is shown in Section 3
that the QMLE is strongly consistent when the weak white noise (ǫt) is ergodic,
and that the QMLE is asymptotically normally distributed when (ǫt) satisfies
mild mixing assumptions. The asymptotic variance of the QMLE may be very
different in the weak and strong cases. Section 4 is devoted to the estimation
of this covariance matrix. In Section 5 it is shown how the standard Wald,
LM (Lagrange multiplier) and LR (likelihood ratio) tests must be adapted in
the weak VARMA case in order to test for general linearity constraints. This
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section is also of interest in the univariate framework because, to our knowl-
edge, these tests have not been studied for weak ARMA models. Numerical
experiments are presented in Section 6. The proofs of the main results are
collected in the appendix.

2 Model and assumptions

Consider a d-dimensional stationary process (Xt) satisfying a structural
VARMA(p, q) representation of the form

A00Xt −
p
∑

i=1

A0iXt−i = B00ǫt −
q
∑

i=1

B0iǫt−i, (ǫt) ∼ WN(0,Σ0), (2)

where Σ0 is non singular and t ∈ Z = {0,±1, . . . }. The standard VARMA(p, q)
form, which is sometimes called the reduced form, is obtained for A00 = B00 =
Id. The structural forms are mainly used in econometrics to identify structural
economic shocks and to allow instantaneous relationships between economic
variables. Of course, constraints are necessary for the identifiability of the
(p + q + 3)d2 elements of the matrices involved in the VARMA equation (2).
We thus assume that these matrices are parameterized by a vector ϑ0 of lower
dimension. We then write A0i = Ai(ϑ0) and B0j = Bj(ϑ0) for i = 0, . . . , p
and j = 0, . . . , q, and Σ0 = Σ(ϑ0), where ϑ0 belongs to the parameter space
Θ ⊂ R

k0, and k0 is the number of unknown parameters, which is typically
much smaller that (p + q + 3)d2. The parametrization is often linear (see
Example 1 below), and thus satisfies the following smoothness conditions.

A1: The applications ϑ 7→ Ai(ϑ) i = 0, . . . , p, ϑ 7→ Bj(ϑ) j = 0, . . . , q and
ϑ 7→ Σ(ϑ) admit continuous third order derivatives for all ϑ ∈ Θ.

For simplicity we now write Ai, Bj and Σ instead of Ai(ϑ), Bj(ϑ) and Σ(ϑ).
Let Aϑ(z) = A0 −

∑p
i=1Aiz

i and Bϑ(z) = B0 −
∑q

i=1Biz
i. We assume that Θ

corresponds to stable and invertible representations, namely

A2: for all ϑ ∈ Θ, we have detAϑ(z) detBϑ(z) 6= 0 for all |z| ≤ 1.

To show the strong consistency of the QMLE, we will use the following as-
sumptions.

A3: We have ϑ0 ∈ Θ, where Θ is compact.

A4: The process (ǫt) is stationary and ergodic.
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A5: For all ϑ ∈ Θ such that ϑ 6= ϑ0, either the transfer functions

A−1
0 B0B

−1
ϑ (z)Aϑ(z) 6= A−1

00 B00B
−1
ϑ0
(z)Aϑ0(z)

for some z ∈ C, or

A−1
0 B0ΣB

′
0A

−1′

0 6= A−1
00 B00Σ0B

′
00A

−1′

00 .

Remark 1 The previous identifiability assumption is satisfied when the pa-
rameter space Θ is sufficiently constrained. Note that the last condition in A5

can be dropped for the standard reduced forms in which A0 = B0 = Id, but
may be important for structural VARMA forms (see Example 1 below). The
identifiability of VARMA processes has been studied in particular by Hannan
(1976) who gave several procedures ensuring identifiability. In particular A5

is satisfied when we impose A0 = B0 = Id, A2, the common left divisors of
Aϑ(L) and Bϑ(L) are unimodular (i.e. with nonzero constant determinant),
and the matrix [Ap : Bq] is of full rank.

The structural form (2) allows to handle seasonal models, instantaneous eco-
nomic relationships, VARMA in the so-called echelon form representation, and
many other constrained VARMA representations.

Example 1 Assume that income (Inc) and consumption (Cons) variables are
related by the equations Inct = c1 + α01 Inct−1 + α02 Const−1 + ǫ1t and
Const = c2 + α03 Inct + α04 Inct−1 + α05 Const−1 + ǫ2t. In the stationary
case the process Xt = {Inct −E(Inct),Const − E(Const)}′ satisfies a struc-
tural VAR(1) equation







1 0

−α03 1





Xt =







α01 α02

α04 α05





Xt−1 + ǫt.

We also assume that the two components of ǫt correspond to uncorrelated
structural economic shocks, with respective variances σ2

01 and σ2
02. We thus

have
ϑ′
0 = (α01, α02, α03, α04, α05, σ

2
01, σ

2
02).

Note that the identifiability condition A5 is satisfied because for all ϑ =
(α1, α2, α3, α4, α5, σ

2
1, σ

2
2)

′ 6= ϑ0 we have

I2 −







α1 α2

α1α3 + α4 α2α3 + α5





 z 6= I2 −







α01 α02

α01α03 + α04 α02α03 + α05





 z

for some z ∈ C, or






σ2
1 σ2

1α3

σ2
1α3 σ2

1α
2
3 + σ2

2





 6=







σ2
01 σ2

01α03

σ2
01α03 σ2

01α
2
03 + σ2

02





 .
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3 Quasi-maximum likelihood estimation

Let X1, . . . , Xn be observations of a process satisfying the VARMA repre-
sentation (2). Note that from A2 the matrices A00 and B00 are invertible.
Introducing the innovation process

et = A−1
00 B00ǫt,

the structural representation Aϑ0(L)Xt = Bϑ0(L)ǫt can be rewritten as the
reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i. (3)

For all ϑ ∈ Θ, we recursively define ẽt(ϑ) for t = 1, . . . , n by

ẽt(ϑ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(ϑ),

with initial values ẽ0(ϑ) = · · · = ẽ1−q(ϑ) = X0 = · · · = X1−p = 0. It will be
shown that these initial values are asymptotically negligible and, in particular,
that ẽt(ϑ0) − et → 0 almost surely as t → ∞. The Gaussian quasi-likelihood
is given by

L̃n(ϑ) =
n
∏

t=1

1

(2π)d/2
√
det Σe

exp
{

−1

2
ẽ′t(ϑ)Σ

−1
e ẽt(ϑ)

}

,

where

Σe = Σe(ϑ) = A−1
0 B0ΣB

′
0A

−1′

0 .

Note that the variance of et is Σe0 = Σe(ϑ0) = A−1
00 B00Σ0B

′
00A

−1′

00 . A quasi-
maximum likelihood estimator (QMLE) is a measurable solution ϑ̂n of

ϑ̂n = argmax
ϑ∈Θ

L̃n(ϑ) = argmin
ϑ∈Θ

ℓ̃n(ϑ), ℓ̃n(ϑ) =
−2

n
log L̃n(ϑ).

The following theorem shows that, for the consistency of the QMLE, the con-
ventional assumption that the noise (ǫt) is an iid sequence can be replaced by
the less restrictive ergodicity assumption A4. Dunsmuir and Hannan (1976)
for VARMA in reduced form, and Hannan and Deistler (1988) for VARMAX
models, obtained an equivalent result, using spectral analysis. For the proof, we
do not use the spectral analysis techniques employed by the above-mentioned
authors, but we follow the classical technique of Wald (1949), as was done by
Rissanen and Caines (1979) to show the strong consistency of the Gaussian
maximum likelihood estimator of VARMA models.
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Theorem 1 Let (Xt) be the causal solution of the VARMA equation (2) sat-
isfying A1–A5 and let ϑ̂n be a QMLE. Then ϑ̂n → ϑ0 a.s. as n → ∞.

For the asymptotic normality of the QMLE, it is necessary to assume that ϑ0

is not on the boundary of the parameter space Θ.

A6: We have ϑ0 ∈
◦

Θ, where
◦

Θ denotes the interior of Θ.

We now introduce mixing assumptions similar to those made by Francq and
Zakoïan (1998), hereafter FZ. We denote by αǫ(k), k = 0, 1, . . . , the strong
mixing coefficients of the process (ǫt).

A7: We have E‖ǫt‖4+2ν < ∞ and
∑∞

k=0 {αǫ(k)}
ν

2+ν < ∞ for some ν > 0.

We define the matrix of the coefficients of the reduced form (3) by

Mϑ0 = [A−1
00 A01 : · · · : A−1

00 A0p : A
−1
00 B01B

−1
00 A00 : · · · : A−1

00 B0qB
−1
00 A00 : Σe0].

Now we need an assumption which specifies how this matrix depends on the

parameter ϑ0. Let
�

Mϑ0 be the matrix ∂vec(Mϑ)/∂ϑ
′ evaluated at ϑ0.

A8: The matrix
�

Mϑ0 is of full rank k0.

One can easily verify that A8 is satisfied in Example 1.

Theorem 2 Under the assumptions of Theorem 1, and A6-A8, we have

√
n
(

ϑ̂n − ϑ0

)

L→ N (0,Ω := J−1IJ−1),

where J = J(ϑ0) and I = I(ϑ0), with

J(ϑ) = lim
n→∞

∂2

∂ϑ∂ϑ′
ℓ̃n(ϑ) a.s., I(ϑ) = lim

n→∞
Var

∂

∂ϑ
ℓ̃n(ϑ).

For VARMA models in reduced form, it is not very restrictive to assume
that the coefficients A0, . . . , Ap, B0, . . . , Bq are functionally independent of the
coefficient Σe. Thus we can write ϑ = (ϑ(1)′ , ϑ(2)′)′, where ϑ(1) ∈ Rk1 depends
on A0, . . . , Ap and B0, . . . , Bq, and where ϑ(2) ∈ Rk2 depends on Σe, with
k1+k2 = k0. With some abuse of notation, we will then write et(ϑ) = et(ϑ

(1)).

A9: With the previous notation ϑ = (ϑ(1)′ , ϑ(2)′)′, where ϑ(2) = D vec Σe for
some matrix D of size k2 × d2.

The following theorem shows that for VARMA in reduced form, the QMLE
and LSE coincide. We denote by A⊗B the Kronecker product of two matrices
A and B.
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Theorem 3 Under the assumptions of Theorem 2 and A9 the QMLE ϑ̂n =
(ϑ̂(1)′

n , ϑ̂(2)′

n )′ can be obtained from

ϑ̂(2)
n = D vec Σ̂e, Σ̂e =

1

n

n
∑

t=1

ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n ),

and

ϑ̂(1)
n = argmin

ϑ(1)
det

n
∑

t=1

ẽt(ϑ
(1))ẽ′t(ϑ

(1)).

Moreover

J =







J11 0

0 J22





 , with J11 = 2E

{

∂

∂ϑ(1)
e′t(ϑ

(1)
0 )

}

Σ−1
e0

{

∂

∂ϑ(1)′
et(ϑ

(1)
0 )

}

and J22 = D(Σ−1
e0 ⊗ Σ−1

e0 )D
′.

Remark 2 One can see that J has the same expression in the strong and
weak ARMA cases (see Lütkepohl (2005) page 480). On the contrary, the
matrix I is in general much more complicated in the weak case than in the
strong case.

Remark 3 In the standard strong VARMA case, i.e. when A4 is replaced
by the assumption that (ǫt) is iid, we have I = 2J , so that Ω = 2J−1. In the
general case we have I 6= 2J . As a consequence the ready-made software used
to fit VARMA do not provide a correct estimation of Ω for weak VARMA pro-
cesses. The problem also holds in the univariate case (see Francq and Zakoïan,
2007, and the references therein).

4 Estimating the asymptotic variance matrix

Theorem 2 can be used to obtain confidence intervals and significance tests for
the parameters. The asymptotic variance Ω must however be estimated. The
matrix J can easily be estimated by its empirical counterpart. For instance,
under A9, one can take

Ĵ =







Ĵ11 0

0 Ĵ22





 , Ĵ11 =
2

n

n
∑

t=1

{

∂

∂ϑ(1)
ẽ′t(ϑ̂

(1)
n )

}

Σ̂−1
e

{

∂

∂ϑ(1)′
ẽt(ϑ̂

(1)
n )

}

,

and Ĵ22 = D(Σ̂−1
e ⊗ Σ̂−1

e )D′. In the standard strong VARMA case Ω̂ = 2Ĵ−1

is a strongly consistent estimator of Ω. In the general weak VARMA case
this estimator is not consistent when I 6= 2J (see Remark 3). So we need a
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consistent estimator of I. Note that

I = Varas
1√
n

n
∑

t=1

Υt =
+∞
∑

h=−∞

Cov(Υt,Υt−h), (4)

where

Υt =
∂

∂ϑ

{

log det Σe + e′t(ϑ
(1))Σ−1

e et(ϑ
(1))

}

ϑ=ϑ0

. (5)

In the econometric literature the nonparametric kernel estimator, also called
heteroscedastic autocorrelation consistent (HAC) estimator (see Newey and
West, 1987, or Andrews, 1991), is widely used to estimate covariance matrices
of the form I. Let Υ̂t be the vector obtained by replacing ϑ0 by ϑ̂n in Υt. The
matrix Ω is then estimated by a "sandwich" estimator of the form

Ω̂HAC = Ĵ−1ÎHACĴ−1, ÎHAC =
1

n

n
∑

t,s=1

ω|t−s|Υ̂tΥ̂s,

where ω0, . . . , ωn−1 is a sequence of weights (see Andrews, 1991, and Newey
and West, 1987, for the problem of the choice of weights).

Interpreting (2π)−1I as the spectral density of the stationary process (Υt)
evaluated at frequency 0 (see Brockwell and Davis, 1991, p. 459), an alternative
method consists in using a parametric AR estimate of the spectral density of
(Υt). This approach, which has been studied by Berk (1974) (see also den
Haan and Levin, 1997), rests on the expression

I = Φ
−1(1)ΣuΦ

−1(1)

when (Υt) satisfies an AR(∞) representation of the form

Φ(L)Υt := Υt +
∞
∑

i=1

ΦiΥt−i = ut, (6)

where ut is a weak white noise with variance matrix Σu. Let Φ̂r(z) = Ik0 +
∑r

i=1 Φ̂r,iz
i, where Φ̂r,1, · · · , Φ̂r,r denote the coefficients of the LS regression of

Υ̂t on Υ̂t−1, · · · , Υ̂t−r. Let ûr,t be the residuals of this regression, and let Σ̂ûr

be the empirical variance of ûr,1, . . . , ûr,n.

We are now able to state the following theorem, which is an extension of a
result given in Francq, Roy and Zakoïan (2005).

Theorem 4 In addition to the assumptions of Theorem 2, assume that the
process (Υt) defined in (5) admits an AR(∞) representation (6) in which
the roots of detΦ(z) = 0 are outside the unit disk, ‖Φi‖ = o(i−2), and
Σu = Var(ut) is non-singular. Moreover we assume that ‖ǫt‖8+4ν < ∞ and
∑∞

k=0{αX,ǫ(k)}ν/(2+ν) < ∞ for some ν > 0, where {αX,ǫ(k)}k≥0 denotes the
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sequence of the strong mixing coefficients of the process (X ′
t, ǫ

′
t)

′. Then the
spectral estimator of I

ÎSP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) → I

in probability when r = r(n) → ∞ and r3/n → 0 as n → ∞.

5 Testing linear restrictions on the parameter

It may be of interest to test s0 linear constraints on the elements of ϑ0 (in
particular A0p = 0 or B0q = 0). We thus consider a null hypothesis of the form

H0 : R0ϑ0 = r0

where R0 is a known s0×k0 matrix of rank s0 and r0 is a known s0-dimensional
vector. The Wald, LM and LR principles are employed frequently for testing
H0. The LM test is also called the score or Rao-score test. We now examine if
these principles remain valid in the non standard framework of weak VARMA
models.

Let Ω̂ = Ĵ−1Î Ĵ−1, where Ĵ and Î are consistent estimator of J and I, as
defined in Section 4. Under the assumptions of Theorems 2 and 4, and the
assumption that I is invertible, the Wald statistic

Wn = n(R0ϑ̂n − r0)
′(R0Ω̂R

′
0)

−1(R0ϑ̂n − r0)

asymptotically follows a χ2
s0 distribution under H0. Therefore, the standard

formulation of the Wald test remains valid. More precisely, at the asymptotic
level α, the Wald test consists in rejecting H0 when Wn > χ2

s0(1 − α). It

is however important to note that a consistent estimator of the form Ω̂ =
Ĵ−1ÎĴ−1 is required. The estimator Ω̂ = 2Ĵ−1, which is routinely used in the
time series softwares, is only valid in the strong VARMA case.

We now turn to the LM test. Let ϑ̂c
n be the restricted QMLE of the parameter

under H0. Define the Lagrangean

L(ϑ, λ) = ℓ̃n(ϑ)− λ′(R0ϑ− r0),

where λ denotes a s0-dimensional vector of Lagrange multipliers. The first-
order conditions yield

∂ℓ̃n
∂ϑ

(ϑ̂c
n) = R′

0λ̂, R0ϑ̂
c
n = r0.

It will be convenient to write a
c
= b to signify a = b + c. A Taylor expansion

gives under H0

10



0=
√
n
∂ℓ̃n(ϑ̂n)

∂ϑ

oP (1)
=

√
n
∂ℓ̃n(ϑ̂

c
n)

∂ϑ
− J

√
n
(

ϑ̂n − ϑ̂c
n

)

.

We deduce that

√
n(R0ϑ̂n − r0) =R0

√
n(ϑ̂n − ϑ̂c

n)
oP (1)
= R0J

−1
√
n
∂ℓ̃n(ϑ̂

c
n)

∂ϑ
= R0J

−1R′
0

√
nλ̂.

Thus under H0 and the previous assumptions,

√
nλ̂

L→ N
{

0, (R0J
−1R′

0)
−1R0ΩR

′
0(R0J

−1R′
0)

−1
}

, (7)

so that the LM statistic is defined by

LMn=nλ̂′
{

(R0Ĵ
−1R′

0)
−1R0Ω̂R

′
0(R0Ĵ

−1R′
0)

−1
}−1

λ̂

=n
∂ℓ̃n
∂ϑ′

(ϑ̂c
n)Ĵ

−1R′
0

(

R0Ω̂R
′
0

)−1
R0Ĵ

−1∂ℓ̃n
∂ϑ

(ϑ̂c
n).

Note that in the strong VARMA case, Ω̂ = 2Ĵ−1 and the LM statistic takes
the more conventional form LM

∗
n = (n/2)λ̂′R0Ĵ

−1R′
0λ̂. In the general case,

strong and weak as well, the convergence (7) implies that the asymptotic
distribution of the LMn statistic is χ2

s0
under H0. The null is therefore rejected

when LMn > χ2
s0
(1 − α). Of course the conventional LM test with rejection

region LM
∗
n > χ2

s0
(1−α) is not asymptotically valid for general weak VARMA

models.

Standard Taylor expansions show that

√
n(ϑ̂n − ϑ̂c

n)
oP (1)
= −√

nJ−1R′
0λ̂,

and that the LR statistic satisfies

LRn := 2
{

log L̃n(ϑ̂n)− log L̃n(ϑ̂
c
n)
}

oP (1)
=

n

2
(ϑ̂n − ϑ̂c

n)
′J(ϑ̂n − ϑ̂c

n)
oP (1)
= LM

∗
n.

Using the previous computations and standard results on quadratic forms of
normal vectors (see e.g. Lemma 17.1 in van der Vaart, 1998), we find that the
LRn statistic is asymptotically distributed as

∑s0
i=1 λiZ

2
i where the Zi’s are iid

N (0, 1) and λ1, . . . , λs0 are the eigenvalues of

ΣLR = J−1/2SLRJ
−1/2, SLR =

1

2
R′

0(R0J
−1R′

0)
−1R0ΩR

′
0(R0J

−1R′
0)

−1R0.

Note that when Ω = 2J−1, the matrix ΣLR = J−1/2R′
0(R0J

−1R′
0)

−1R0J
−1/2

is a projection matrix. Its eigenvalues are therefore equal to 0 and 1, and the
number of eigenvalues equal to 1 is Tr J−1/2R′

0(R0J
−1R′

0)
−1R0J

−1/2 = Tr Is0 =
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s0. Therefore we retrieve the well-known result that LRn ∼ χ2
s0

under H0

in the strong VARMA case. In the weak VARMA case, the asymptotic null
distribution of LRn is complicated. It is possible to evaluate the distribution
of a quadratic form of a Gaussian vector by means of the Imhof algorithm
(Imhof, 1961), but the algorithm is time consuming. An alternative is to use
the transformed statistic

n

2
(ϑ̂n − ϑ̂c

n)
′Ĵ Ŝ−

LR
Ĵ(ϑ̂n − ϑ̂c

n) (8)

which follows a χ2
s0 under H0, when Ĵ and Ŝ−

LR
are weakly consistent estimators

of J and of a generalized inverse of SLR. The estimator Ŝ−
LR

can be obtained
from the singular value decomposition of any weakly consistent estimator ŜLR

of SLR. More precisely, defining the diagonal matrix Λ̂ = diag(λ̂1, . . . , λ̂k0)
where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k0 denote the eigenvalues of the symmetric matrix
ŜLR, and denoting by P̂ an orthonormal matrix such that ŜLR = P̂ Λ̂P̂ ′, one
can set

Ŝ−
LR

= P̂ Λ̂−P̂ ′, Λ̂− = diag
(

λ̂−1
1 , . . . , λ̂−1

s0 , 0, . . . , 0
)

.

The matrix Ŝ−
LR

then converges weakly to a matrix S−
LR

satisfying
SLRS

−
LR

SLR = SLR, because SLR has full rank s0.

6 Numerical illustrations

We first study numerically the behaviour of the QMLE for strong and weak
VARMA models of the form







X1t

X2t





 =







0 0

0 a1(2, 2)













X1,t−1

X2,t−1





+







ǫ1,t

ǫ2,t





−







0 0

b1(2, 1) b1(2, 2)













ǫ1,t−1

ǫ2,t−1





 ,

(9)
where







ǫ1,t

ǫ2,t





 ∼ IIDN (0, I2), (10)

in the strong case, and







ǫ1,t

ǫ2,t





 =







η1,t(|η1,t−1|+ 1)−1

η2,t(|η2,t−1|+ 1)−1





 , with







η1,t

η2,t





 ∼ IIDN (0, I2), (11)

in the weak case. Model (9) is a VARMA(1,1) model in echelon form. The
noise defined by (11) is a direct extension of a weak noise defined by Ro-
mano and Thombs (1996) in the univariate case. The numerical illustrations

12



of this section are made with the free statistical software R (see http://cran.r-
project.org/). We simulated N = 1, 000 independent trajectories of size
n = 2, 000 of Model (9), first with the strong Gaussian noise (10), second
with the weak noise (11). Figure 1 compares the distribution of the QMLE
in the strong and weak noise cases. The distributions of â1(2, 2) and b̂1(2, 1)
are similar in the two cases, whereas the QMLE of b̂1(2, 2) is more accurate
in the weak case than in the strong one. Similar simulation experiments, not
reported here, reveal that the situation is opposite, that is the QMLE is more
accurate in the strong case than in the weak case, when the weak noise is
defined by ǫi,t = ηi,tηi,t−1 for i = 1, 2. This is in accordance with the results of
Romano and Thombs (1996) who showed that, with similar noises, the asymp-
totic variance of the sample autocorrelations can be greater or less than 1 as
well (1 is the asymptotic variance for strong white noises).

Figure 2 compares the standard estimator Ω̂ = 2Ĵ−1 and the sandwich estima-
tor Ω̂ = Ĵ−1ÎĴ−1 of the QMLE asymptotic variance Ω. We used the spectral
estimator Î = ÎSP defined in Theorem 4, and the AR order r is automatically
selected by AIC, using the function VARselect() of the vars R package. In
the strong VARMA case we know that the two estimators are consistent. In
view of the two top panels of Figure 2, it seems that the sandwich estimator
is less accurate in the strong case. This is not surprising because the sand-
wich estimator is more robust, in the sense that this estimator continues to
be consistent in the weak VARMA case, contrary to the standard estimator.

It is clear that in the weak case nVar
{

b̂1(2, 2)− b1(2, 2)
}2

is better estimated

by Ω̂SP(3, 3) (see the box-plot (c) of the right-bottom panel of Figure 2) than
by 2Ĵ−1(3, 3) (box-plot (c) of the left-bottom panel). The failure of the stan-
dard estimator of Ω in the weak VARMA framework may have important
consequences in terms of identification or hypothesis testing.

Table 1 displays the empirical sizes of the standard Wald, LM and LR tests,
and that of the modified versions proposed in Section 5. For the nominal level
α = 5%, the empirical size over the N = 1, 000 independent replications should
vary between the significant limits 3.6% and 6.4% with probability 95%. For
the nominal level α = 1%, the significant limits are 0.3% and 1.7%, and for the
nominal level α = 10%, they are 8.1% and 11.9%. When the relative rejection
frequencies are outside the significant limits, they are displayed in bold type in
Table 1. For the strong VARMA model I, all the relative rejection frequencies
are inside the significant limits. For the weak VARMA model II, the relative
rejection frequencies of the standard tests are definitely outside the significant
limits. Thus the error of first kind is well controlled by all the tests in the
strong case, but only by modified versions of the tests in the weak case. Table
2 shows that the powers of all the tests are very similar in the Model III case.
The same is also true for the two modified tests in the Model IV case. The
empirical powers of the standard tests are hardly interpretable for Model IV,
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because we have already seen in Table 1 that the standard versions of the tests
do not well control the error of first kind in the weak VARMA framework.

From these simulation experiments and from the asymptotic theory, we draw
the conclusion that the standard methodology, based on the QMLE, allows
to fit VARMA representations of a wide class of nonlinear multivariate time
series. This standard methodology, including in particular the significance tests
on the parameters, needs however to be adapted to take into account the
possible lack of independence of the errors terms. In future works, we intent
to study how the existing identification (see e.g. Nsiri and Roy, 1996) and
diagnostic checking (see e.g. Duchesne and Roy, 2004) procedures should be
adapted in the weak VARMA framework considered in the present paper.

Table 1
Empirical size of standard and modified tests: relative frequencies (in %) of rejection
of H0 : b1(2, 2) = 0. The number of replications is N = 1000.

Model Length n Level Standard Test Modified Test

Wald LM LR Wald LM LR

α = 1% 1.1 0.7 0.8 1.7 0.7 1.7

I n = 500 α = 5% 5.0 4.5 5.1 6.0 5.2 6.0

α = 10% 8.9 9.3 9.4 11.0 9.9 10.9

α = 1% 0.7 0.8 0.7 1.0 0.6 1.0

I n = 2, 000 α = 5% 5.0 4.3 4.6 5.5 5.1 5.5

α = 10% 9.2 8.6 8.8 10.0 9.0 10.2

α = 1% 0.0 0.0 0.0 1.4 1.4 1.3

II n = 500 α = 5% 0.6 0.5 0.6 6.2 6.5 6.1

α = 10% 2.3 2.2 2.2 12.0 11.2 12.0

α = 1% 0.0 0.0 0.0 0.9 0.7 0.9

II n = 2, 000 α = 5% 0.4 0.3 0.3 4.6 4.3 4.6

α = 10% 1.3 1.3 1.3 9.2 9.8 9.2

I: Strong VARMA(1,1) model (9)-(10) with ϑ0 = (0.95, 2, 0)

II: Weak VARMA(1,1) model (9)-(11) with ϑ0 = (0.95, 2, 0)

A Technical proofs

We begin with a lemma useful to show the identifiability of ϑ0.
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Figure 1. QMLE of N = 1, 000 independent simulations of the
VARMA(1,1) model (9) with size n = 2, 000 and unknown parameter
ϑ0 = ((a1(2, 2), b1(2, 1), b1(2, 2)) = (0.95, 2, 0), when the noise is strong (left
panels) and when the noise is the weak noise (11) (right panels). Points (a)-(c), in
the box-plots of the top panels, display the distribution of the estimation errors
ϑ̂(i) − ϑ0(i) for i = 1, 2, 3. The panels of the middle present the Q-Q plot of the
estimates ϑ̂(3) = b̂1(2, 2) of the last parameter. The bottom panels display the
distribution of the same estimates. The kernel density estimate is displayed in full
line, and the centered Gaussian density with the same variance is plotted in dotted
line.

Lemma 1 Assume that Σ0 is non singular and that A5 holds true. If
A−1

0 B0B
−1
ϑ (L)Aϑ(L)Xt = A−1

00 B00ǫt with probability one and A−1
0 B0ΣB

′
0A

−1′

0 =
A−1

00 B00Σ0B
′
00A

−1′

00 , then ϑ = ϑ0.

Proof: Let ϑ 6= ϑ0. Assumption A5 implies that either A−1
0 B0ΣB

′
0A

−1′

0 6=
A−1

00 B00Σ0B
′
00A

−1′

00 or there exist matrices Ci such that Ci0 6= 0 for some i0 > 0
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Figure 2. Comparison of standard and modified estimates of the asymptotic vari-
ance Ω of the QMLE, on the simulated models presented in Figure 1. The diamond
symbols represent the mean, over the N = 1, 000 replications, of the standard-
ized squared errors n {â1(2, 2) − 0.95}2 for (a) (0.02 in the strong and weak cases),

n
{

b̂1(2, 1) − 2
}2

for (b) (1.02 in the strong case and 1.01 in the strong case) and

n
{

b̂1(2, 2)
}2

for (c) (0.94 in the strong case and 0.43 in the weak case).

and

A−1
0 B0B

−1
ϑ (z)Aϑ(z)− A−1

00 B00B
−1
ϑ0
(z)Aϑ0(z) =

∞
∑

i=i0

Ciz
i.

By contradiction, assume that A−1
0 B0B

−1
ϑ (L)Aϑ(L)Xt = A−1

00 B00ǫt =
A−1

00 B00B
−1
ϑ0

(L)Aϑ0(L)Xt with probability one. This implies that there exists
λ 6= 0 such that λ′Xt−i0 is almost surely a linear combination of the compo-
nents of Xt−i, i > i0. By stationarity, it follows that λ′Xt is almost surely a
linear combination of the components of Xt−i, i > 0. Thus λ′ǫt = 0 almost
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Table 2
Empirical power of standard and modified tests: relative frequencies (in %) of rejec-
tion of H0 : b1(2, 2) = 0. The number of replications is N = 1000.

Model Length n Level Standard Test Modified Test

Wald LM LR Wald LM LR

α = 1% 6.8 5.9 6.6 8.0 6.5 7.9

III n = 500 α = 5% 20.5 19.4 20.4 21.6 20.1 21.7

α = 10% 29.5 29.0 29.4 30.6 29.5 30.6

α = 1% 1.7 1.8 1.7 15.5 14.3 15.6

IV n = 500 α = 5% 11.4 9.4 10.1 35.1 34.0 35.0

α = 10% 21.1 20.2 20.6 47.1 44.9 46.8

III: Strong VARMA(1,1) model (9)-(10) with ϑ0 = (0.95, 2, 0.05)

IV: Weak VARMA(1,1) model (9)-(11) with ϑ0 = (0.95, 2, 0.05)

surely, which is impossible when the variance Σ0 of ǫt is positive definite.
2

Proof of Theorem 1: Note that, due to the initial conditions, {ẽt(ϑ)} is not
stationary, but can be approximated by the stationary ergodic process

et(ϑ) =A−1
0 B0B

−1
ϑ (L)Aϑ(L)Xt. (A.1)

From an extension of Lemma 1 in FZ, it is easy to show that
supϑ∈Θ ‖ẽt(ϑ)− et(ϑ)‖ → 0 almost surely at an exponential rate, as t → ∞.
We thus have

ℓ̃n(ϑ)
oP (1)
= ℓn(ϑ) :=

1

n

n
∑

t=1

lt(ϑ) as n → ∞,

where

lt(ϑ) = d log(2π) + log det Σe + e′t(ϑ)Σ
−1
e et(ϑ).

Now the ergodic theorem shows that almost surely

ℓn(ϑ)→ d log(2π) +Q(ϑ),

where Q(ϑ) = log det Σe + Ee′1(ϑ)Σ
−1
e e1(ϑ). We have
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Q(ϑ) =E {e1(ϑ0)}′Σ−1
e {e1(ϑ0)}+ log det Σe

+E {e1(ϑ)− e1(ϑ0)}′ Σ−1
e {e1(ϑ)− e1(ϑ0)}

+2E {e1(ϑ)− e1(ϑ0)}′ Σ−1
e e1(ϑ0).

The last expectation is null because the linear innovation et = et(ϑ0) is or-
thogonal to the linear past (i.e. to the Hilbert space Ht−1 generated by linear
combinations of the Xu for u < t), and because {et(ϑ)− et(ϑ0)} belongs to
this linear past Ht−1. Moreover

Q(ϑ0) = log det Σe0 + Ee′1(ϑ0)Σ
−1
e0 e1(ϑ0)

= log det Σe0 + TrΣ−1
e0 Ee1(ϑ0)e

′
1(ϑ0) = log det Σe0 + d.

Thus

Q(ϑ)−Q(ϑ0) ≥ TrΣ−1
e Σe0 − log det Σ−1

e Σe0 − d ≥ 0 (A.2)

using the elementary inequality Tr(A−1B) − log det(A−1B) ≥
Tr(A−1A) − log det(A−1A) = d for all symmetric positive semi-definite
matrices of order d× d. At least one of the two inequalities in (A.2) is strict,
unless if e1(ϑ) = e1(ϑ0) with probability 1 and Σe = Σe0, which is equivalent
to ϑ = ϑ0 by Lemma 1. The rest of the proof relies on standard compactness
arguments, and is a direct extension of Theorem 1 in FZ. 2

Proof of Theorem 2: In view of Theorem 1 and A6, we have almost surely

ϑ̂n → ϑ0 ∈ ◦

Θ. Thus ∂ℓ̃n(ϑ̂n)/∂ϑ = 0 for sufficiently large n, and a Taylor
expansion gives

0
oP (1)
=

√
n
∂ℓn(ϑ0)

∂ϑ
+

∂2ℓn(ϑ0)

∂ϑ∂ϑ′

√
n
(

ϑ̂n − ϑ0

)

, (A.3)

using arguments given in FZ (proof of Theorem 2). The proof then directly
follows from Lemma 3 and Lemma 5 below. 2

We first state elementary derivative rules, which can be found in Appendix
A.13 of Lütkepohl (1993).

Lemma 2 If f(A) is a scalar function of a matrix A whose elements aij are
function of a variable x, then

∂f(A)

∂x
=
∑

i,j

∂f(A)

∂aij

∂aij
∂x

= Tr

{

∂f(A)

∂A′

∂A

∂x

}

. (A.4)

When A is invertible, we also have
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∂ log |det(A)|
∂A′

=A−1 (A.5)

∂Tr(CA−1B)

∂A′
=−A−1BCA−1 (A.6)

∂Tr(CAB)

∂A′
=BC (A.7)

Lemma 3 Under the assumptions of Theorem 2, almost surely

∂2ℓn(ϑ0)

∂ϑ∂ϑ′
→ J,

where J is invertible.

Proof of Lemma 3: Let ϑ = (ϑ1, . . . , ϑk0)
′. In view of (A.4), (A.5) and (A.6),

for all i ∈ {1, . . . , k0}, we have

∂lt(ϑ)

∂ϑi

= Tr

{

Σ−1
e

∂Σe

∂ϑi

− Σ−1
e et(ϑ)e

′
t(ϑ)Σ

−1
e

∂Σe

∂ϑi

}

+ 2
∂e′t(ϑ)

∂ϑi

Σ−1
e et(ϑ). (A.8)

Using the previous relations and (A.7), for all i, j ∈ {1, . . . , k0}, we have

∂2lt(ϑ)

∂ϑi∂ϑj
=Tr

{

Σ−1
e

∂2Σe

∂ϑi∂ϑj
− Σ−1

e

∂Σe

∂ϑi
Σ−1

e

∂Σe

∂ϑj
− Σ−1

e et(ϑ)e
′
t(ϑ)Σ

−1
e

∂2Σe

∂ϑi∂ϑj

+Σ−1
e

∂Σe

∂ϑi

Σ−1
e et(ϑ)e

′
t(ϑ)Σ

−1
e

∂Σe

∂ϑj

+ Σ−1
e et(ϑ)e

′
t(ϑ)Σ

−1
e

∂Σe

∂ϑi

Σ−1
e

∂Σe

∂ϑj

−Σ−1
e

∂Σe

∂ϑi

Σ−1
e

∂et(ϑ)e
′
t(ϑ)

∂ϑj

}

+ 2
∂2e′t(ϑ)

∂ϑi∂ϑj

Σ−1
e et(ϑ)

+2
∂e′t(ϑ)

∂ϑi
Σ−1

e

∂et(ϑ)

∂ϑj
− 2Tr

{

Σ−1
e et(ϑ)

∂e′t(ϑ)

∂ϑi
Σ−1

e

∂Σe

∂ϑj

}

.

Using Eete
′
t = Σe, Eet = 0, the uncorrelatedness between et and the linear

past Ht−1, ∂et(ϑ0)/∂ϑi ∈ Ht−1, and ∂2et(ϑ0)/∂ϑi∂ϑj ∈ Ht−1, we have

E
∂2lt(ϑ0)

∂ϑi∂ϑj
=Tr

{

Σ−1
e0

∂Σe(ϑ0)

∂ϑi
Σ−1

e0

∂Σe(ϑ0)

∂ϑj

}

+ 2E
∂e′t(ϑ0)

∂ϑi
Σ−1

e0

∂et(ϑ0)

∂ϑj

= J(i, j). (A.9)

The ergodic theorem and the next lemma conclude. 2

Lemma 4 Under the assumptions of Theorem 2, the matrix

J = E
∂2lt(ϑ0)

∂ϑ∂ϑ′
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is invertible.

Proof of Lemma 4: In view of (A.9), we have J = J1 + J2, where

J2 = 2E
∂e′t(ϑ0)

∂ϑ
Σ−1

e0

∂et(ϑ0)

∂ϑ′

and

J1(i, j) = Tr

{

Σ
−1/2
e0

∂Σe(ϑ0)

∂ϑi

Σ
−1/2
e0 Σ

−1/2
e0

∂Σe(ϑ0)

∂ϑj

Σ
−1/2
e0

}

= h
′
ihj ,

with

hi = (Σ
−1/2
e0 ⊗ Σ

−1/2
e0 )di, di = vec

∂Σe(ϑ0)

∂ϑi
.

In the previous derivations, we used the well-known relations Tr(A′B) =
(vecA)′vecB and vec(ABC) = (C ′ ⊗ A)vecB. Note that the matrices J , J1

and J2 are semi-definite positive. If J is singular, then there exists a vector
c = (c1, . . . , ck0)

′ 6= 0 such that c
′J1c = c

′J2c = 0. Since Σ
−1/2
e0 ⊗ Σ

−1/2
e0 and

Σ−1
e0 are definite positive, we have c

′J1c = 0 if and only if

k0
∑

k=1

ckdk =
k0
∑

k=1

ckvec
∂Σe(ϑ0)

∂ϑk
= 0 (A.10)

and c
′J2c = 0 if and only if

∑k0
k=1 ck

∂et(ϑ0)
∂ϑk

= 0 a.s. Differentiating the two

sides of the reduced form representation (3), the latter equation yields the
VARMA(p−1, q−1) equation

∑p
i=1A

∗
iXt−i =

∑p
j=1B

∗
j et−j . The identifiability

assumption A5 excludes the existence of such a representation. Thus

A∗
i =

k0
∑

k=1

ck
∂A−1

0 Ai

∂ϑk
(ϑ0) = 0, B∗

j =
k0
∑

k=1

ck
∂A−1

0 BjB
−1
0 A0

∂ϑk
(ϑ0) = 0. (A.11)

It can be seen that (A.10) and (A.11), for i = 1, . . . , p and j = 1, . . . , q, are

equivalent to
�

Mϑ0 c = 0. We conclude from A8. 2

Lemma 5 Under the assumptions of Theorem 2,

√
n
∂ℓn(ϑ0)

∂ϑ
L→ N (0, I).

Proof of Lemma 5: In view of (A.1), we have

∂et(ϑ0)

∂ϑi

=
∞
∑

ℓ=1

d′ℓet−ℓ, (A.12)
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where the sequence of matrices dℓ = dℓ(i) is such that ‖dℓ‖ → 0 at a geometric
rate as ℓ → ∞. By (A.8), we have for all m

∂lt(ϑ0)

∂ϑi

=Tr

[

Σ−1
e0

{

Id − ete
′
tΣ

−1
e0

} ∂Σe(ϑ0)

∂ϑi

]

+ 2
∂e′t(ϑ0)

∂ϑi

Σ−1
e0 et

= Yt,m,i + Zt,m,i

where

Yt,m,i =Tr

[

Σ−1
e0

{

Id − ete
′
tΣ

−1
e0

} ∂Σe(ϑ0)

∂ϑi

]

+ 2
m
∑

ℓ=1

e′t−ℓd
′
ℓΣ

−1
e0 et

Zt,m,i =2
∞
∑

ℓ=m+1

e′t−ℓd
′
ℓΣ

−1
e0 et.

Let Yt,m = (Yt,m,1, . . . , Yt,m,k0)
′ and Zt,m = (Zt,m,1, . . . , Yt,m,k0)

′. The processes
(Yt,m)t and (Zt,m)t are stationary and centered. Moreover, under Assumption
A7 and m fixed, the process Y = (Yt,m)t is strongly mixing, with mixing
coefficients αY (h) ≤ αǫ (max{0, h−m}). Applying the central limit theorem
(CLT) for mixing processes (see Herrndorf, 1984) we directly obtain

1√
n

n
∑

t=1

Yt,m
L→ N (0, Im), Im =

∞
∑

h=−∞

Cov (Yt,m, Yt−h,m) .

As in FZ Lemma 3, one can show that I = limm→∞ Im exists. Since ‖Zt,m‖2 →
0 at an exponential rate when m → ∞, using the arguments given in FZ
Lemma 4, one can show that

lim
m→∞

lim sup
n→∞

P

{∣

∣

∣

∣

∣

n−1/2
n
∑

t=1

Zt,m

∣

∣

∣

∣

∣

> ε

}

= 0

for every ε > 0. From a standard result (see e.g. Brockwell and Davis, 1991,
Proposition 6.3.9), we deduce that

1√
n

n
∑

t=1

∂lt(ϑ0)

∂ϑ
=

1√
n

n
∑

t=1

Yt,m +
1√
n

n
∑

t=1

Zt,m
L→ N (0, I),

which completes the proof. 2

Proof of Theorem 3: Note that

ℓ̃n(ϑ) =
1

n

n
∑

t=1

l̃t(ϑ), l̃t(ϑ) = d log(2π) + log det Σe + ẽ′t(ϑ)Σ
−1
e ẽt(ϑ).
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Under the assumption of the theorem, ∂ẽ′t(ϑ)/∂ϑ
(2) = 0, and (A.8) yields

∂l̃t(ϑ̂n)

∂ϑi
= Tr

[

Σ̂−1
e

{

Id − ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n )Σ̂−1

e

} ∂Σe(ϑ̂n)

∂ϑi

]

for i = k1+1, . . . k0, with Σ̂e such that ϑ̂(2)
n = D vec Σ̂e. Assumption A6 entails

that the first order condition ∂ℓ̃n(ϑ̂n)/∂ϑ
(2) = 0 is satisfied for n large enough.

We then have

Σ̂e = n−1
n
∑

t=1

ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n )

and

ℓ̃n(ϑ̂n) = d log(2π) + log det Σ̂e + d,

because

1

n

n
∑

t=1

ẽ′t(ϑ̂
(1)
n )Σ̂−1

e ẽt(ϑ̂
(1)
n ) = Tr

[

1

n

n
∑

t=1

ẽt(ϑ̂
(1)
n )ẽ′t(ϑ̂

(1)
n )Σ̂−1

e

]

= d.

The conclusion follows. 2
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Estimating structural VARMA models with
uncorrelated but non-independent error terms:

Complementary results that are not submitted
for publication

A Additional example

Example 2 Denoting by a0i(k, ℓ) and b0i(k, ℓ) the generic elements of the
matrices A0i and B0i, the Kronecker indices are defined by pk = max{i :
a0i(k, ℓ) 6= 0 or b0i(k, ℓ) 6= 0 for some ℓ = 1, . . . , d}. To ensure relatively parsi-
monious parameterizations, one can specify an echelon form depending on the
Kronecker indices (p1, . . . , pd). The reader is refereed to Lütkepohl (1993) for
details about the echelon form. For instance, a 3-variate ARMA process with
Kronecker indices (1, 2, 0) admits the echelon form
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ǫt−2

where × denotes an unconstrained element. The variance of ǫt is defined by 6
additional parameters. This echelon form thus corresponds to a parametriza-
tion by a vector ϑ of size k0 = 24.

B Verification of Assumption A8 on Example 1

In this example, we have

Mϑ0 =







α01 α02 σ2
01 σ2

01α03

α01α03 + α04 α02α03 + α05 σ2
01α03 σ2

01α
2
03 + σ2

02





 .

1



Thus

�

Mϑ0=











































1 α03 0 0 0 0 0 0

0 0 1 α03 0 0 0 0

0 α01 0 α02 0 σ2
01 σ2

01 2α03σ
2
01

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 α03 α03 α2
03

0 0 0 0 0 0 0 1











































is of full rank k0 = 7.

C Details on the proof of Theorem 1

Lemma 4 Under the assumptions of Theorem 1, we have

sup
ϑ∈Θ

‖ẽt(ϑ)− et(ϑ)‖ ≤ Kρt,

where ρ is a constant belonging to [0, 1), and K > 0 is measurable with respect
to the σ-field generated by {Xu, u ≤ 0}.

Proof of Lemma 4: We have

et(ϑ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0et−i(ϑ) ∀t ∈ Z, (C.1)

and

ẽt(ϑ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(ϑ) t = 1, . . . , n (C.2)

with the initial values ẽ0(ϑ) = · · · = ẽ1−q(ϑ) = X0 = · · · = X1−p = 0. Let

et(ϑ) =





















et(ϑ)

et−1(ϑ)
...

et−q+1(ϑ)





















, ẽt(ϑ) =





















ẽt(ϑ)

ẽt−1(ϑ)
...

ẽt−q+1(ϑ)





















.

From (C.1) and (C.2), we have

et(ϑ) = bt +Cet−1(ϑ) ∀t ∈ Z,

2



and

ẽt(ϑ) = b̃t +Cẽt−1(ϑ) t = 1, . . . , n,

where

C =







A−1
0 B1B

−1
0 A0 · · · A−1

0 BqB
−1
0 A0

I(q−1)d 0(q−1)d





 , bt =





















Xt −
∑p

i=1A
−1
0 AiXt−i

0d
...

0d





















,

b̃t = bt for t > p, b̃t = 0qd for t ≤ 0, and

b̃t =





















Xt −
∑t−1

i=1 A
−1
0 AiXt−i

0d
...

0d





















for t = 1, . . . , p.

Writing dt(ϑ) = et(ϑ)− ẽt(ϑ), we obtain for t > p,

dt(ϑ) =Cdt−1(ϑ) = C
t−pdp(ϑ)

=C
t−p

{(

bp − b̃p
)

+C

(

bp−1 − b̃p−1

)

+ · · ·+C
p−1

(

b1 − b̃1
)}

+C
pb0.

Note that C is the companion matrix of the polynomial

P(z) = Id −
q
∑

i=1

A−1
0 BiB

−1
0 A0z

i = A−1
0 Bϑ(z)B

−1
0 A0.

By A2, the zeroes of P(z) are of modulus strictly greater than one:

P(z) = 0 ⇒ |z| > 1 (C.3)

By a well-known result on companion matrices, (C.3) is equivalent to ρ(C) <
1, where ρ(C) denote the spectral radius of C. By the compactness of Θ, we
thus have

sup
ϑ∈Θ

ρ(C) < 1.

We thus have

sup
ϑ∈Θ

‖dt(ϑ)‖ ≤ Kρt,

where K and ρ are as in the statement of the lemma. The conclusion follows.
2
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Lemma 5 Under the assumptions of Theorem 1, we have

sup
ϑ∈Θ

∣

∣

∣ℓ̃n(ϑ)− ℓn(ϑ)
∣

∣

∣ = o(1)

almost surely.

Proof of Lemma 5: We have

ℓ̃n(ϑ)− ℓn(ϑ) =
1

n

n
∑

t=1

{ẽt(ϑ)− et(ϑ)}′ Σ−1
e ẽt(ϑ) + e′t(ϑ)Σ

−1
e {ẽt(ϑ)− et(ϑ)} .

In the proof of this lemma and in the rest on the paper, the letters K and ρ
denote generic constants, whose values can be modified along the text, such
that K > 0 and 0 < ρ < 1. By Lemma 4,

sup
ϑ∈Θ

∣

∣

∣ℓ̃n(ϑ)− ℓn(ϑ)
∣

∣

∣≤ K

n

n
∑

t=1

ρt
(

sup
ϑ∈Θ

‖et(ϑ)‖+ sup
ϑ∈Θ

‖ẽt(ϑ)‖
)

≤ K

n

n
∑

t=1

ρt sup
ϑ∈Θ

‖et(ϑ)‖ (C.4)

In view of (C.1), and using A1 and the compactness of Θ, we have

et(ϑ) = Xt +
∞
∑

i=1

Ci(ϑ)Xt−i, sup
ϑ∈Θ

‖Ci(ϑ)‖ ≤ Kρi. (C.5)

We thus have E supϑ∈Θ ‖et(ϑ)‖ < ∞, and the Markov inequality entails

∞
∑

t=1

P

(

ρt sup
ϑ∈Θ

‖et(ϑ)‖ > ε

)

≤ E sup
ϑ∈Θ

‖et(ϑ)‖
∞
∑

t=1

ρt

ε
< ∞.

By the Borel-Cantelli theorem, ρt supϑ∈Θ ‖et(ϑ)‖ → 0 almost surely as t → ∞.
The Cesàro theorem implies that the right-hand side of (C.4) converges to
zero almost surely. 2

Lemma 6 Under the assumptions of Theorem 1, any ϑ 6= ϑ0 has a neighbor-
hood V (ϑ) such that

lim inf
n→∞

inf
ϑ∗∈V (ϑ)

ℓ̃n(ϑ
∗) > El1(ϑ0), a.s. (C.6)

Moreover for any neighborhood V (ϑ0) of ϑ0 we have

lim sup
n→∞

inf
ϑ∗∈V (ϑ0)

ℓ̃n(ϑ
∗) ≤ El1(ϑ0), a.s. (C.7)
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Proof of Lemma 6: For any ϑ ∈ Θ and any positive integer k, let Vk(ϑ) be
the open ball with center ϑ and radius 1/k. Using Lemma 5, we have

lim inf
n→∞

inf
ϑ∗∈Vk(ϑ)∩Θ

ℓ̃n(ϑ
∗)≥ lim inf

n→∞
inf

ϑ∗∈Vk(ϑ)∩Θ
ℓn(ϑ

∗)− lim sup
n→∞

sup
ϑ∈Θ

|ℓn(ϑ)− ℓ̃n(ϑ)|

≥ lim inf
n→∞

n−1
n
∑

t=1

inf
ϑ∗∈Vk(ϑ)∩Θ

lt(ϑ
∗)

=E inf
ϑ∗∈Vk(ϑ)∩Θ

l1(ϑ
∗)

For the last equality we applied the ergodic theorem to the ergodic stationary
process

{

infϑ∗∈Vk(ϑ)∩Θ ℓt(ϑ
∗)
}

t
. By the Beppo-Levi theorem, when k increases

to ∞, E infϑ∗∈Vk(ϑ)∩Θ l1(ϑ
∗) increases to El1(ϑ). Because El1(ϑ) = d log(2π)+

Q(ϑ), the discussion which follows (A.2) entails El1(ϑ) > El1(ϑ0), and (C.6)
follows.

To show (C.7), it suffices to remark that Lemma 5 and the ergodic theorem
entail

lim sup
n→∞

inf
ϑ∗∈V (ϑ)∩Θ

ℓ̃n(ϑ
∗)≤ lim sup

n→∞
inf

ϑ∗∈V (ϑ)∩Θ
ℓn(ϑ

∗) + lim sup
n→∞

sup
ϑ∈Θ

|ℓn(ϑ)− ℓ̃n(ϑ)|

≤ lim sup
n→∞

n−1
n
∑

t=1

lt(ϑ0)

=El1(ϑ0).

2

The proof of Theorem 1 is completed by the arguments of Wald (1949). More
precisely, the compact set Θ is covered by a neighborhood V (ϑ0) of ϑ0 and
a finite number of neighborhoods V (ϑ1), . . . , V (ϑk) satisfying (C.6) with ϑ
replaced by ϑi, i = 1, . . . , k. In view of (C.6) and (C.7), we have almost surely

inf
ϑ∈Θ

ℓ̃n(ϑ) = min
i=0,1,...,k

inf
ϑ∈V (ϑi)∩Θ

ℓ̃n(ϑ) = inf
ϑ∈V (ϑ0)∩Θ

ℓ̃n(ϑ)

for n large enough. Since the neighborhood V (ϑ0) can be chosen arbitrarily
small, the conclusion follows.
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D Details on the proof of Theorem 2

Lemma 7 Under the assumptions of Theorem 2, we have

√
n

{

∂ℓ̃n(ϑ0)

∂ϑ
− ∂ℓn(ϑ0)

∂ϑ

}

= o(1) a.s.

Proof of Lemma 7: Similar to (C.5), Assumption A1 entails that, for k =
1, . . . , k0,

∂et(ϑ0)

∂ϑk
=

∞
∑

i=1

C
(k)
i Xt−i,

∂ẽt(ϑ0)

∂ϑk
=

t−1
∑

i=1

C
(k)
i Xt−i,

∥

∥

∥C
(k)
i

∥

∥

∥ ≤ Kρi.

It follows that

Using (A.8), we have

√
n

{

∂ℓn(ϑ0)

∂ϑk
− ∂ℓ̃n(ϑ0)

∂ϑk

}

= a1 + a2,

with

a1=
2√
n

n
∑

t=1

{(

∂e′t(ϑ0)

∂ϑk
− ∂ẽ′t(ϑ0)

∂ϑk

)

Σ−1
e et(ϑ0) +

∂ẽ′t(ϑ0)

∂ϑk
Σ−1

e (et(ϑ0)− ẽt(ϑ0))

}

a2=Tr

(

Σ−1
e

[

{ẽt(ϑ0)− et(ϑ0)} ẽ′t(ϑ0) + et(ϑ0) {ẽt(ϑ0)− et(ϑ0)}′
]

Σ−1
e

∂Σe

∂ϑk

)

2
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