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Abstract

We consider portmanteau tests for testing the adequacy of structural vector
autoregressive moving-average (VARMA) models under the assumption that
the errors are uncorrelated but not necessarily independent. The structural
forms are mainly used in econometrics to introduce instantaneous relation-
ships between economic variables. We first study the joint distribution of the
quasi-maximum likelihood estimator (QMLE) and the noise empirical auto-
covariances. We then derive the asymptotic distribution of residual empirical
autocovariances and autocorrelations under weak assumptions on the noise.
We deduce the asymptotic distribution of the Ljung-Box (or Box-Pierce)
portmanteau statistics in this framework. It is shown that the asymptotic
distribution of the portmanteau tests is that of a weighted sum of independent
chi-squared random variables, which can be quite different from the usual chi-
squared approximation used under independent and identically distributed
(iid) assumptions on the noise. Hence we propose a method to adjust the
critical values of the portmanteau tests. Monte carlo experiments illustrate
the finite sample performance of the modified portmanteau test.
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1. Introduction

Consider a d-dimensional stationary process (Xt) satisfying a
VARMA(p, q) representation of the form

A00Xt −
p
∑

i=1

A0iXt−i = B00ǫt −
q
∑

i=1

B0iǫt−i, ∀t ∈ Z = {0,±1, . . . }. (1)

When A00 = B00 = Id, the VARMA(p, q) representation is said to be in
reduced form. Otherwise, it is said to be structural. The structural forms
are mainly used in econometrics to introduce instantaneous relationships be-
tween economic variables. The representation (1) is said to satisfy a weak
VARMA(p, q) representation if ǫt is a weak white noise, namely a stationary
sequence of centered and uncorrelated random variables with a non singular
variance Σ0. It is customary to say that (Xt) is a strong VARMA(p, q) model
if (ǫt) is an iid sequence of random variables with mean 0 and common vari-
ance matrix Σ0 (i.e. strong white noise). A strong white noise is obviously
a weak white noise, because independence entails uncorrelatedness, but the
reverse is not true. Between weak and strong VARMA(p, q) representations,
one can say that (1) is a semi-strong VARMA(p, q) representation if (ǫt) is a
stationary martingale difference (i.e. semi-strong white noise).

The structural VARMA(p, q) representation (1) can be rewritten in a
standard reduced VARMA(p, q) form if the matrices A00 and B00 are non
singular. Indeed, premultiplying (1) by A−1

00 and introducing the innovation
process et = A−1

00 B00ǫt, with non singular variance Σe0 = A−1
00 B00Σ0B

′
00A

−1′

00 ,
we obtain the reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i. (2)

The structural form (1) allows to handle seasonal models, instantaneous
economic relationships, VARMA in the so-called echelon form representa-
tion, and many other constrained VARMA representations (see Lütkepohl,
2005, chap. 12). The reduced form (2) is more practical from a statistical
viewpoint, because it gives the forecasts of each component of (Xt) according
to the past values of the set of the components.

The above discussion shows that VARMA representations are not unique,
that is, a given process (Xt) can be written in reduced form or in structural
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form by premultiplying by any non singular (d × d) matrix. Of course, in
order to ensure the uniqueness of a VARMA representation, constraints are
necessary for the identifiability of the (p+ q + 3)d2 elements of the matrices
involved in the VARMA equation (1). In contrast, the echelon form guar-
antees uniqueness of the VARMA representation (see also Lütkepohl, 2005).
The echelon form is the most widely identified VARMA representation em-
ployed in the literature. The identifiability of VARMA processes has been
studied in particular by Hannan (1976) who gave several procedures ensuring
identifiability.

The validity of the different steps of the traditional methodology of Box
and Jenkins, identification, estimation and validation, depends on the noise
properties. After identification and estimation of the VARMA processes,
the next important step in the VARMA modeling consists in checking if
the estimated model fits satisfactorily the data. This adequacy checking
step allows to validate or invalidate the choice of the orders p and q. In
VARMA(p, q) models, the choice of p and q is particularly important because
the number of parameters, (p+q+2)d2, quickly increases with p and q, which
entails statistical difficulties.

In particular, the selection of too large orders p and q has the effect of
introducing terms that are not necessarily relevant in the model. Overiden-
tification thus generally leads to a loss of precision in parameter estimation.
Conversely, the selection of too small orders p and q causes loss of some in-
formation, that results in a lack of asymptotic precision for the predictions.

Thus it is important to check the validity of a VARMA(p, q) model, for
given orders p and q. This paper is devoted to the problem of the valida-
tion step of VARMA representations of multivariate processes. Based on
the residual empirical autocorrelations, Box and Pierce (1970) (BP here-
after) derived a goodness-of-fit test, the portmanteau test, for univariate
strong ARMA models. Ljung and Box (1978) (LB hereafter) proposed a
modified portmanteau test which is nowadays one of the most popular di-
agnostic checking tool in ARMA modeling of time series. The multivariate
version of the BP portmanteau statistic was introduced by Chitturi (1974).
We use the portmanteau tests considered by Chitturi (1974) and Hosking
(1980) for checking the overall significance of the residual autocorrelations of
a VARMA(p, q) model (see also Chitturi (1976), Hosking (1981a,b), Li and
McLeod (1981), Ahn (1988). Hosking (1981a) gave several equivalent forms
of this statistic. Arbués (2008) proposed an extended portmanteau test for
VARMA models with mixing nonlinear constraints.
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The works on the multivariate version of the portmanteau statistic are
generally performed under the assumption that the errors ǫt are indepen-
dent. This independence assumption is often considered too restrictive by
practitioners. It precludes conditional heteroscedasticity and/or other forms
of nonlinearity (see Francq and Zakoïan, 2005, for a review on weak univari-
ate ARMA models). Relaxing this independence assumption allows to cover
linear representations of general nonlinear processes and to extend the range
of application of the VARMA models.

The asymptotic theory of weak ARMA model validation is mainly limited
to the univariate framework (see Francq, Roy and Zakoïan, 2005, hereafter
FRZ). In the multivariate analysis, a notable exception is Francq and Raïssi
(2007) who study portmanteau tests for weak VAR models. We will gener-
alize this result to VARMA models. This extension raises difficult problems.
First, non trivial constraints on the parameters must be imposed for identifi-
ability of the parameters (see Reinsel, 1997, Lütkepohl, 2005). Secondly, the
implementation of standard estimation methods (for instance the Gaussian
quasi-maximum likelihood estimation) is not obvious because this requires a
constrained high-dimensional optimization (see also Lütkepohl, 2005). These
technical difficulties certainly explain why VAR models are much more used
than VARMA in applied works.

Recently Boubacar Mainassara and Francq (2010) (hereafter BMF) study
the consistency and the asymptotic normality of the QMLE for a weak
VARMA model. The QMLE is obtained by maximizing a function that
would be the logarithm of the likelihood function if the process was Gaus-
sian, but is not equal to it when the process (ǫt) is not iid Gaussian. The
function that is maximized is often called quasi-likelihood. The QMLE can
also be viewed as a nonlinear least squared estimator (LSE). Dufour and
Pelletier (2005) and Boubacar Mainassara (in a working paper, 2010) study
the choice of the orders p and q of weak VARMA models using information
criteria, Chabot-Hallé and Duchesne (2008) study the asymptotic distribu-
tion of LSE and portmanteau test for semi-strong VAR. The main goal of the
present paper is to complete the available results concerning the statistical
analysis of weak VARMA models by considering the adequacy problem under
general error terms. We proceed to study the behaviour of the goodness-of
fit portmanteau tests when the ǫt are not independent. It is shown that
the standard portmanteau tests can be quite misleading in the framework of
non independent errors. Consequently, a modified version of these tests is
proposed.
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The paper is organized as follows. Section 2 presents the parametrization
and assumptions used in the sequel. In Section 3, we recall the results on
the QMLE asymptotic distribution obtained by BMF when (ǫt) satisfies mild
mixing assumptions. Section 4 is devoted to the derivation of the joint distri-
bution of the QMLE and the noise empirical autocovariances. In Section 5,
we derive the asymptotic distribution of residual empirical autocovariances
and autocorrelations under weak assumptions on the noise. In Section 6,
it is shown how the standard Ljung-Box (or Box-Pierce) portmanteau tests
must be adapted in the case of VARMA models with nonindependent inno-
vations. Numerical experiments are presented in Section 7 and we provide a
conclusion in Section 8. The proofs of the main results are collected in the
appendix.

2. Parametrization and assumptions

Let [A00 . . . A0pB00 . . . B0q] be the d × (p + q + 2)d matrix of VAR and
MA coefficients involved in the VARMA equation (1). The matrix Σ0 is
considered as a nuisance parameter. The parameter of interest is denoted θ0,
where θ0 belongs to the parameter space Θ ⊂ Rk0, and k0 is the number of
unknown parameters, which is typically much smaller that (p+q+3)d2. The
matrices A00, . . . A0p, B00, . . . B0q involved in (1) and Σ0 are specified by θ0.
More precisely, we write A0i = Ai(θ0) and B0j = Bj(θ0) for i = 0, . . . , p and
j = 0, . . . , q, and Σ0 = Σ(θ0). To ensure the consistence and the asymptotic
normality of the QMLE, we assume that the parametrization satisfies the
following smoothness conditions.

A1: The functions θ 7→ Ai(θ) i = 0, . . . , p, θ 7→ Bj(θ) j = 0, . . . , q and
θ 7→ Σ(θ) admit continuous third order derivatives for all θ ∈ Θ.

For simplicity, we now write Ai, Bj and Σ instead of Ai(θ), Bj(θ) and Σ(θ).
Let Aθ(z) = A0 −

∑p
i=1Aiz

i and Bθ(z) = B0 −
∑q

i=1Biz
i. We assume that

Θ corresponds to stable and invertible representations, namely

A2: for all θ ∈ Θ, we have detAθ(z) detBθ(z) 6= 0 for all |z| ≤ 1.

To ensure the strong consistency of the QMLE, a compactness assumption
is required.

A3: We have θ0 ∈ Θ, where Θ is compact.
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The structural VARMA model (1) can be written more compactly as

Aθ0(L)Xt = Bθ0(L)ǫt where Aθ0(L) = A00−
p
∑

i=1

A0iL
i, Bθ0(L) = B00−

q
∑

i=1

B0iL
i

(3)
and where L is the backward operator.

A4: The process (ǫt) is stationary and ergodic.

Note that A4 is entailed by the uncorrelated innovations, but not by the iid
innovations. In view of (3), Xt = A−1

θ0
(L)Bθ0(L)ǫt and ǫt = B−1

θ0
(L)Aθ0(L)Xt,

(ǫt) can be replaced by (Xt) in A4. In the structural VARMA model (1),
the assumption A2 does not guarantee the identifiability of the parameter.
Thus, we make the following global assumption for all θ ∈ Θ.

A5: For all θ ∈ Θ such that θ 6= θ0, either the transfer func-
tions A−1

0 B0B
−1
θ (z)Aθ(z) 6= A−1

00 B00B
−1
θ0
(z)Aθ0(z) for some z ∈ C, or

A−1
0 B0ΣB

′
0A

−1′

0 6= A−1
00 B00Σ0B

′
00A

−1′

00 .

In the reduced VARMA representation (2), note that, the last condition in
A5 can be dropped, but may be important for structural VARMA forms. In
particular, A5 is satisfied when we impose: A0 = B0 = Id, A2, the common
left divisors of Aθ(L) and Bθ(L) are unimodular (i.e. with nonzero constant
determinant), and the matrix [Ap : Bq] is of full rank. For the asymptotic
normality of the QMLE, additional assumptions are required. It is necessary
to assume that θ0 is not on the boundary of the parameter space Θ.

A6: We have θ0 ∈
◦

Θ, where
◦

Θ denotes the interior of Θ.

We now introduce, as in Francq and Zakoïan (1998) (hereafter FZ) the strong
mixing coefficients of a stationary process Z = (Zt) denoted by

αZ(h) = sup
A∈σ(Zu,u≤t),B∈σ(Xu ,u≥t+h)

|P (A ∩ B)− P (A)P (B)| ,

measuring the temporal dependence of the process Z. Denoting by ‖Z‖ the
Euclidean norm of Z.

A7: We have E‖ǫt‖4+2ν < ∞ and
∑∞

k=0 {αǫ(k)}
ν

2+ν < ∞ for some ν > 0.

Note that assumption A7 does not require independence of the noise, nor
the fact that it is a martingale difference.
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3. Quasi-maximum likelihood estimation

For all θ ∈ Θ, let A0 = A0(θ), . . . , Ap = Ap(θ), B0 = B0(θ), . . . , Bq =
Bq(θ) and Σ = Σ(θ). Note that from A2, the matrices A0 and B0 are
invertible. Thus, the structural representation (1) can be rewritten as the
reduced VARMA representation (2). For the sake of simplicity, we omit the
notation θ in all quantities taken at the true value θ0. For all θ ∈ Θ, the
assumption on the MA polynomial (from A2) implies that there exists a
sequence of constants matrices (Ci(θ)) such that

∑∞

i=1 ‖Ci(θ)‖ < ∞ and

et(θ) = Xt −
∞
∑

i=1

Ci(θ)Xt−i. (4)

Given a realization X1, X2, . . . , Xn satisfying the VARMA representation (1),
the variable et(θ) can be approximated, for 0 < t ≤ n, by ẽt(θ) defined
recursively by

ẽt(θ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(θ),

where the unknown initial values are set to zero: ẽ0(θ) = · · · = ẽ1−q(θ) =
X0 = · · · = X1−p = 0. The Gaussian quasi-likelihood is given by

L̃n(θ,Σe) =
n
∏

t=1

1

(2π)d/2
√
det Σe

exp

{

−1

2
ẽ′t(θ)Σ

−1
e ẽt(θ)

}

, Σe = A−1
0 B0ΣB

′
0A

−1′

0 .

A QMLE of (θ,Σe) is a measurable solution (θ̂n, Σ̂e) of

(θ̂n, Σ̂e) = argmin
θ,Σe

{

log(det Σe) +
1

n

n
∑

t=1

ẽt(θ)Σ
−1
e ẽ′t(θ)

}

.

We use the matrix Mθ0 of the coefficients of the reduced form (2), where

Mθ0 = [A−1
00 A01 : · · · : A−1

00 A0p : A
−1
00 B01B

−1
00 A00 : · · · : A−1

00 B0qB
−1
00 A00].

Now, we need a local identifiability assumption which completes A5 and
specifies how this matrix depends on the parameter θ0. We denote by A⊗B
the Kronecker product of two matrices A and B, and by vec(A) the vector

obtained by stacking the columns of A. Let
�

Mθ0 be the matrix ∂vec(Mθ)/∂θ
′

evaluated at θ0.
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A8: The matrix
�

M θ0 is of full rank k0.

Under the following additional assumption, BMF showed the consistency
and the asymptotic normality of the QMLE of a weak VARMA model (see
Theorem 1 in BMF). One of the most popular estimation procedures is that
of the least squares estimation. For the processes of the form (2), under A1-
A8, it can be shown (see e.g. Theorem 2 in BMF), that the LSE of θ coincides
with the QMLE. Then under the assumptions A1–A8, BMF showed that
θ̂n → θ0 a.s. as n → ∞ and

√
n(θ̂n − θ0) is asymptotically normal with

mean 0 and covariance matrix Σθ̂n
:= J−1IJ−1, where J = J(θ0,Σe0) and

I = I(θ0,Σe0), with

J(θ,Σe) = lim
n→∞

−2

n

∂2

∂θ∂θ′
log L̃n(θ,Σe) a.s.

and

I(θ,Σe) = lim
n→∞

Var
2√
n

∂

∂θ
log L̃n(θ,Σe).

In the standard strong VARMA case, i.e. when A4 is replaced by the
assumption that (ǫt) is an iid sequence, we have I = 2J , so that Σθ̂n

= 2J−1.

4. Joint distribution of θ̂n and the noise empirical autocovariances

Let êt = ẽt(θ̂n) be the quasi-maximum likelihood residuals when p > 0 or
q > 0, and let êt = et = Xt when p = q = 0. When p+ q 6= 0, we have êt = 0
for t ≤ 0 and t > n and

êt = Xt −
p
∑

i=1

A−1
0 (θ̂n)Ai(θ̂n)X̂t−i +

q
∑

i=1

A−1
0 (θ̂n)Bi(θ̂n)B

−1
0 (θ̂n)A0(θ̂n)êt−i,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1. We denote by

γ(h) =
1

n

n
∑

t=h+1

ete
′
t−h and Γ̂e(h) =

1

n

n
∑

t=h+1

êtê
′
t−h

the white noise "empirical" autocovariances and residual autocovariances. It
should be noted that γ(h) is not a statistic (unless if p = q = 0) because it
depends on the unobserved innovations et. For a fixed integer m ≥ 1, let

γm =
(

{vecγ(1)}′ , . . . , {vecγ(m)}′
)′
, Γ̂m =

(

{

vecΓ̂e(1)
}′

, . . . ,
{

vecΓ̂e(m)
}′
)′

8



and

Γ(ℓ, ℓ′) =
∞
∑

h=−∞

E
(

{et−ℓ ⊗ et} {et−h−ℓ′ ⊗ et−h}′
)

, for (ℓ, ℓ′) 6= (0, 0).

For the univariate ARMA model, FRZ have showed that
∑∞

h=−∞
|Eetet+ℓet+het+h+ℓ′ | < +∞ (see Lemma A.1), which in turn implies

the existence of Γ(ℓ, ℓ′). We can generalize this result for the VARMA
models. Then we obtain

∑∞

h=−∞

∥

∥E {et−ℓ ⊗ et} {et−h−ℓ′ ⊗ et−h}′
∥

∥ < +∞.
The proof is similar to the univariate case.

We are now able to state the following Theorem, which is an extension
of a result given in FRZ.

Theorem 4.1. Assume that p > 0 or q > 0. Under Assumptions A1–A8,

as n → ∞,
√
n(γm, θ̂n − θ0)

′ d⇒ N (0,Ξ) where

Ξ =

(

Σγm Σγm,θ̂n

Σ′

γm,θ̂n
Σθ̂n

)

,

with Σγm = {Γ(ℓ, ℓ′)}1≤ℓ,ℓ′≤m, Σ′

γm,θ̂n
= Cov(

√
nJ−1Yn,

√
nγm) and Σθ̂n

=

limn→∞ Var(
√
nJ−1Yn) = J−1IJ−1 and Yn is given by (15) in the proof of

this Theorem. The matrices I and J are defined in Section 3.

Remark 4.1. FRZ considered the univariate case d = 1. In their paper,
they used the LSE and they obtained that

Σγm =

+∞
∑

h=−∞

{E(etet−ℓet−het−ℓ′−h)}1≤ℓ,ℓ′≤m

and denoted it by Γm,m′ = {Γ(ℓ, ℓ′)}1≤ℓ,ℓ′≤m. They introduce the vectors λi =
(

−φ∗
i−1, . . . ,−φ∗

i−p, ϕ
∗
i−1, . . . , ϕ

∗
i−q

)′ ∈ Rp+q, with the convention φ∗
i = ϕ∗

i = 0
when i < 0 and where φ∗

h and ϕ∗
h denote the coefficients defined by

A−1
θ (z) =

∞
∑

h=0

φ∗
hz

h, B−1
θ (z) =

∞
∑

h=0

ϕ∗
hz

h, |z| ≤ 1 for h ≥ 0.

They also introduce the (p+ q)×m matrices Λm = (λ1, . . . , λm). Using the
QMLE, their result gives

Σθ̂n
= (Λ∞Λ′

∞)−1σ−4
e Λ∞Γ∞,∞Λ′

∞(Λ∞Λ′
∞)−1

9



where σ2
e is the variance of the univariate process et. Using the fact that

∂et(θ0)

∂θ
=
∑

i≥1

λiet−i(θ0),

we also have
Σ′

γm,θ̂n
= −σ−2

e (Λ∞Λ′
∞)

−1
Λ∞Γ∞,m,

which are the expressions given in Theorem 1 of FRZ.

5. Asymptotic distribution of residual empirical autocovariances

and autocorrelations

Denoting the diagonal matrices by

Se = Diag (σe(1), . . . , σe(d)) and Ŝe = Diag (σ̂e(1), . . . , σ̂e(d)) ,

where σ2
e(i) is the variance of the i-th coordinate of et and σ̂2

e(i) is its sample
estimate (i.e. σe(i) =

√

Ee2it and σ̂e(i) =
√

n−1
∑n

t=1 ê
2
it). The theoretical

and sample autocorrelations at lag ℓ are respectively defined by Re(ℓ) =
S−1
e Γe(ℓ)S

−1
e and R̂e(ℓ) = Ŝ−1

e Γ̂e(ℓ)Ŝ
−1
e , with Γe(ℓ) := Eete

′
t−ℓ = 0 for all

ℓ 6= 0. Consider the vector of the first m sample autocorrelations

ρ̂m =

(

{

vecR̂e(1)
}′

, . . . ,
{

vecR̂e(m)
}′
)′

.

The following Theorem gives the limiting distribution of the residual auto-
covariances and autocorrelations.

Theorem 5.1. Under the none Assumptions as in Theorem 4.1,

√
nΓ̂m ⇒ N

(

0,ΣΓ̂m

)

and
√
nρ̂m ⇒ N (0,Σρ̂m) where,

ΣΓ̂m

= Σγm + ΦmΣθ̂n
Φ′

m + ΦmΣθ̂n,γm
+ Σ′

θ̂n,γm
Φ′

m (5)

Σρ̂m =
{

Im ⊗ (Se ⊗ Se)
−1
}

ΣΓ̂m

{

Im ⊗ (Se ⊗ Se)
−1
}

(6)

and Φm is given by (18) in the proof of this Theorem.

Chabot-Hallé and Duchesne (2008) obtained a similar result under a differ-
ence martingale assumption on the noises.
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Remark 5.1. Considered the univariate case d = 1, as in FRZ. We obtain

Φm = E

















et−1
...

et−m






⊗ ∂e′t(θ0)

∂θ











=
∑

i≥1

E

















et−1
...

et−m






et−iλ

′
i











=

m
∑

i=1

E

















et−1et−i
...

et−met−i






λ′
i











= σ2
eΛ

′
m.

Using this notation and in view of Remark 4.1, Theorem 5.1 gives

ΣΓ̂m

= Γm,m + Λ′
m (Λ∞Λ′

∞)
−1

Λ∞Γ∞,∞Λ′
∞ (Λ∞Λ′

∞)
−1

Λm

−Λ′
m (Λ∞Λ′

∞)
−1

Λ∞Γ∞,m − Γm,∞Λ′
∞ (Λ∞Λ′

∞)
−1

Λm,

and Σρ̂m = σ−4
e ΣΓ̂m

. This last is the result given in Theorem 2 of FRZ.

Remark 5.2. In the standard strong VARMA case, i.e. when A4 is replaced
by the assumption that (ǫt) is an iid sequence, we have Σγm = Im⊗Σe0⊗Σe0,
Σθ̂n

= 2J−1 (because I = 2J) and

Σ′

θ̂n,γm
= −2E

















et−1
...

et−m






⊗ et











{

e′tΣ
−1
e0

∂et(θ0)

∂θ′
J−1

}

= −E























et−1
...

et−m






⊗ ∂et(θ0)

∂θ′







(

2J−1
)











= −ΦmΣθ̂n
.

Thus ΣΓ̂m

= Im⊗Σe0⊗Σe0−ΦmΣθ̂n
Φ′

m, that the result obtained by Hosking
(1981b), Chabot-Hallé and Duchesne (2008).

6. Limiting distribution of the portmanteau statistics

Box and Pierce (1970) (BP hereafter) derived a goodness-of-fit test, the
portmanteau test, for univariate strong ARMA models. Ljung and Box
(1978) (LB hereafter) proposed a modified portmanteau test which is nowa-
days one of the most popular diagnostic checking tools in ARMA modeling
of time series. The multivariate version of the BP portmanteau statistic
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was introduced by Chitturi (1974). Hosking (1981a) gave several equivalent
forms of this statistic. Basic forms are

Qm = n

m
∑

h=1

Tr
(

Γ̂′
e(h)Γ̂

−1
e (0)Γ̂e(h)Γ̂

−1
e (0)

)

= n
m
∑

h=1

vec
(

Γ̂e(h)
)′ (

Γ̂−1
e (0)⊗ Id

)

vec
(

Γ̂−1
e (0)Γ̂e(h)

)

= n
m
∑

h=1

vec
(

Γ̂e(h)
)′ (

Γ̂−1
e (0)⊗ Id

)(

Id ⊗ Γ̂−1
e (0)

)

vec
(

Γ̂e(h)
)

= n

m
∑

h=1

vec
(

Γ̂e(h)
)′ (

Γ̂−1
e (0)⊗ Γ̂−1

e (0)
)

vec
(

Γ̂e(h)
)

= nΓ̂′
m

(

Im ⊗
{

Γ̂−1
e (0)⊗ Γ̂−1

e (0)
})

Γ̂m

= nρ̂′m

(

Im ⊗
{

Γ̂e(0)Γ̂
−1
e (0)Γ̂e(0)

}

⊗
{

Γ̂e(0)Γ̂
−1
e (0)Γ̂e(0)

})

ρ̂m

= nρ̂′m

(

Im ⊗
{

R̂−1
e (0)⊗ R̂−1

e (0)
})

ρ̂m.

Where the equalities is obtained from the elementary identities vec(AB) =
(I ⊗ A) vecB, (A⊗ B)(C ⊗D) = AC ⊗ BD and Tr(ABC) = vec(A′)′(C ′ ⊗
I) vecB. As for the univariate LB portmanteau statistic, Hosking (1980)
defined the modified portmanteau statistic

Q̃m = n2

m
∑

h=1

(n− h)−1Tr
(

Γ̂′
e(h)Γ̂

−1
e (0)Γ̂e(h)Γ̂

−1
e (0)

)

.

These portmanteau statistics are generally used to test the null hypothesis

H0 : (Xt) satisfies a VARMA(p, q) representation

against the alternative

H1 : (Xt) does not admit a VARMA representation or admits a

VARMA(P,Q) representation with P > p or Q > q.

These portmanteau tests are very useful tools for checking the overall sig-
nificance of the residual autocorrelations. Under the assumption that the
data generating process (DGP) follows a strong VARMA(p, q) model, the

12



asymptotic distribution of the statistics Qm and Q̃m is generally approxi-
mated by the χ2

d2m−k0
distribution (d2m > k0). When the innovations are

gaussian, Hosking (1980) found that the finite-sample distribution of Q̃m is
more nearly to χ2

d2(m−(p+q)) than that of Qm. From Theorem 5.1 we deduce

the following result, in the case of weak VARMA(p, q) models, which gives
the exact asymptotic distribution of the standard portmanteau statistics Qm.
We will see that the distribution may be very different from the χ2

d2m−k0
in

the case of strong VARMA(p, q) models.

Theorem 6.1. Under Assumptions in Theorem 5.1, the statistics Qm and
Q̃m converge in distribution, as n → ∞, to

Zm(ξm) =
d2m
∑

i=1

ξi,d2mZ
2
i

where ξm = (ξ1,d2m, . . . , ξd2m,d2m)
′ is the vector of the eigenvalues of the matrix

Ωm =
(

Im ⊗ Σ−1/2
e ⊗ Σ−1/2

e

)

ΣΓ̂m

(

Im ⊗ Σ−1/2
e ⊗ Σ−1/2

e

)

,

and Z1, . . . , Zd2m are independent N (0, 1) variables.

Francq and Raïssi (2007) considered the sub-class of a weak vector autore-
gressive (VAR). They obtained a similar result and showed that the χ2

d2(m−p)

approximation is no longer valid in the weak VAR(p) cases. Considering
the univariate ARMA case, d = 1, we retrieve exactly the result given in
Theorem 3 of FRZ.

It is seen in Theorem 6.1, that the asymptotic distribution of the BP

and LB portmanteau tests depends on the nuisance parameters involving in
Σe, the matrix Φm and the elements of the matrix Ξ. We need a consistent
estimator of the above unknown matrices. The matrix Σe can be consistently
estimated by its sample estimate Σ̂e = Γ̂e(0). The matrix Φm can be easily
estimated by its empirical counterpart

Φ̂m =
1

n

n
∑

t=1

{

(

ê′t−1, . . . , ê
′
t−m

)′ ⊗ ∂et(θ0)

∂θ′

}

θ0=θ̂n

.

In the econometric literature the nonparametric kernel estimator, also called
heteroskedastic autocorrelation consistent (HAC) estimator (see Newey and
West, 1987, or Andrews, 1991), is widely used to estimate covariance matrices
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of the form Ξ. Interpreting (2π)−1Ξ as the spectral density of the stationary
process (Υt) evaluated at frequency 0 (see Brockwell and Davis, 1991, p.
459), an alternative method consists in using a parametric AR estimate of
the spectral density of Υt =

(

Υ′
1,t,Υ

′
2,t

)′
, where Υ1,t =

(

e′t−1, . . . , e
′
t−m

)′ ⊗ et
and Υ2,t = −2J−1 (∂e′t(θ0)/∂θ) Σ

−1
e0 et(θ0). This approach, which has been

studied by Berk (1974) (see also den Hann and Levin, 1997), rests on the
expression

Ξ = Φ
−1(1)ΣuΦ

′−1
(1)

when (Υt) satisfies an AR(∞) representation of the form

Φ(L)Υt := Υt +
∞
∑

i=1

ΦiΥt−i = ut, (7)

where ut is a weak white noise with variance matrix Σu. Since Υt is not
observable, let Υ̂t be the vector obtained by replacing θ0 by θ̂n in Υt. Let
Φ̂r(z) = Ik0+d2m +

∑r
i=1 Φ̂r,iz

i, where Φ̂r,1, . . . , Φ̂r,r denote the coefficients of

the LS regression of Υ̂t on Υ̂t−1, . . . , Υ̂t−r. Let ûr,t be the residuals of this

regression, and let Σ̂ûr
be the empirical variance of ûr,1, . . . , ûr,n.

We are now able to state the following Theorem, which is an extension
of a result given in FRZ.

Theorem 6.2. In addition to the assumptions of Theorem 6.1, assume
that the process (Υt) admits an AR(∞) representation (7) in which the
roots of detΦ(z) = 0 are outside the unit disk, ‖Φi‖ = o(i−2), and
Σu = Var(ut) is non-singular. Moreover we assume that E ‖ǫt‖8+4ν < ∞
and

∑∞

k=0{αX,ǫ(k)}ν/(2+ν) < ∞ for some ν > 0, where {αX,ǫ(k)}k≥0 denotes
the sequence of the strong mixing coefficients of the process (X ′

t, ǫ
′
t)

′. Then,
the spectral estimator of Ξ

Ξ̂SP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) → Ξ

in probability when r = r(n) → ∞ and r3/n → 0 as n → ∞.

Let Ω̂m be the matrix obtained by replacing Ξ by Ξ̂ and Σe by Σ̂e in Ωm.
Denote by ξ̂m = (ξ̂1,d2m, . . . , ξ̂d2m,d2m)

′ the vector of the eigenvalues of Ω̂m. At
the asymptotic level α, the LB test (resp. the BP test) consists in rejecting
the adequacy of the weak VARMA(p, q) model when

Q̃m > Sm(1− α) (resp. Qm > Sm(1− α))

where Sm(1− α) is such that P
{

Zm(ξ̂m) > Sm(1− α)
}

= α.
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7. Numerical illustrations

In this section, we present the models we simulate and we give the steps
to implement the modified version of the portmanteau test. By means of
Monte Carlo experiments, we investigate the finite sample properties of the
test introduced in this paper.

7.1. Simulating models

To generate the strong and the weak VARMA models, we consider the
following bivariate VARMA(1,1) model in echelon form

(

X1,t

X2,t

)

=

(

0 0
0 a1(2, 2)

)(

X1,t−1

X2,t−1

)

+

(

ǫ1,t
ǫ2,t

)

−
(

0 0
b1(2, 1) b1(2, 2)

)(

ǫ1,t−1

ǫ2,t−1

)

, (8)

where (a1(2, 2), b1(2, 1), b1(2, 2)) = (0.950,−0.313, 0.250) and ǫt = (ǫ1,t, ǫ2,t)
′

follows a strong or weak white noise.

7.2. Implementation of the goodness-of-fit portmanteau tests

Let X1, . . . , Xn, be observations of a d-multivariate process. For testing
the adequacy of a weak VARMA(p, q) model, we implement the modified
version of the portmanteau test, using the following steps:

1. Compute the estimates Â1, . . . , Âp, B̂1, . . . , B̂q by QMLE.

2. Compute the QMLE residuals êt = ẽt(θ̂n) when p > 0 or q > 0, and
let êt = et = Xt when p = q = 0. When p + q 6= 0, we have êt = 0 for
t ≤ 0 and t > n and

êt = Xt−
p
∑

i=1

A−1
0 (θ̂n)Ai(θ̂n)X̂t−i+

q
∑

i=1

A−1
0 (θ̂n)Bi(θ̂n)B

−1
0 (θ̂n)A0(θ̂n)êt−i,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.

3. Compute the residual autocovariances Γ̂e(0) = Σ̂e and Γ̂e(h) for h =

1, . . . , m and Γ̂m =

(

{

Γ̂e(1)
}′

, . . . ,
{

Γ̂e(m)
}′
)′

.

4. Compute the matrix Ĵ = 2n−1
∑n

t=1 (∂ê
′
t/∂θ) Σ̂

−1
e0 (∂êt/∂θ

′) .

15



5. Compute Υ̂t =
(

Υ̂′
1,t, Υ̂

′
2,t

)′

, where Υ̂1,t =
(

ê′t−1, . . . , ê
′
t−m

)′ ⊗ êt and

Υ̂2,t = −2Ĵ−1 (∂ê′t/∂θ) Σ̂
−1
e êt.

6. Fit the VAR(r) model

Φ̂r(L)Υ̂t :=

(

Id2m+k0 +

r
∑

i=1

Φ̂r,i(L)

)

Υ̂t = ûr,t.

The VAR order r can be fixed in a strong VARMA case or selected by
AIC/BIC information criteria in a weak VARMA case.

7. Use the spectral estimator

Ξ̂SP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) =

(

Σ̂γm Σ̂γm,θ̂n

Σ̂′

γm,θ̂n
Σ̂θ̂n

)

, Σ̂ûr
=

1

n

n
∑

t=1

ûr,tû
′
r,t,

defined in Theorem 6.2.

8. Define the estimator

Φ̂m =
1

n

n
∑

t=1

{

(

ê′t−1, . . . , ê
′
t−m

)′ ⊗ ∂et(θ0)

∂θ′

}

θ0=θ̂n

.

9. Define the estimators

Σ̂Γ̂m

= Σ̂γm + Φ̂mΣ̂θ̂n
Φ̂′

m + Φ̂mΣ̂θ̂n,γm
+ Σ̂′

θ̂n,γm
Φ̂′

m

Σ̂ρ̂m =
{

Im ⊗ (Ŝe ⊗ Ŝe)
−1
}

Σ̂Γ̂m

{

Im ⊗ (Ŝe ⊗ Ŝe)
−1
}

.

10. Compute the eigenvalues ξ̂m = (ξ̂1,d2m, . . . , ξ̂d2m,d2m)
′ of the matrix

Ω̂m =
(

Im ⊗ Σ̂−1/2
e ⊗ Σ̂−1/2

e

)

Σ̂Γ̂m

(

Im ⊗ Σ̂−1/2
e ⊗ Σ̂−1/2

e

)

.

11. Compute the portmanteau statistics

Qm = nρ̂′m

(

Im ⊗
{

R̂−1
e (0)⊗ R̂−1

e (0)
})

ρ̂m and

Q̃m = n2
m
∑

h=1

1

(n− h)
Tr
(

Γ̂′
e(h)Γ̂

−1
e (0)Γ̂e(h)Γ̂

−1
e (0)

)

.
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12. Evaluate the p-values

P
{

Zm(ξ̂m) > Qm

}

and P
{

Zm(ξ̂m) > Q̃m

}

, Zm(ξ̂m) =
d2m
∑

i=1

ξ̂i,d2mZ
2
i ,

using the Imhof algorithm (1961). The BP test (resp. the LB test)
rejects the adequacy of the weak VARMA(p, q) model when the first
(resp. the second) p-value is less than the asymptotic level α.

7.3. Empirical size

In this paper, we only present the results of the modified and standard
versions of the LB test. The results concerning the BP test are not pre-
sented here, because they are very close to those of the LB test. The
numerical illustrations of this section are made with the softwares R (see
http://cran.r-project.org/) and FORTRAN (to compute the p-values using
the Imohf algorithm, 1961).

For the nominal level α = 5%, the empirical size over the N = 1, 000
independent replications should vary between the significant limits 3.6% and
6.4% with probability 95%. When the relative rejection frequencies are out-
side the significant limits, they are displayed in bold type in Tables 1, 2, 3
and 4.

7.3.1. Strong VARMA model case

We first consider the strong VARMA case. To generate this model, we
assume that in (8) the innovation process (ǫt) is defined by

(

ǫ1,t
ǫ2,t

)

∼ IIDN (0, I2). (9)

We simulated N = 1, 000 independent trajectories of size n = 100, n = 500
and n = 2, 000 of Model (8) with the strong gaussian noise (9). For each of
these N replications we estimated the coefficients (a1(2, 2), b1(2, 1), b1(2, 2)),
using the Gaussian maximum likelihood estimation method, and we applied
portmanteau tests to the residuals for different values of m, where m is the
number of autocorrelations used in the portmanteau test statistic. For the
standard LB test, the model is therefore rejected when the statistic Q̃m

is greater than χ2
(4m−3)(0.95). This corresponds to a nominal asymptotic

level α = 5% in the standard case. We know that the asymptotic level of
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the standard LB test is indeed α = 5% when (a1(2, 2), b1(2, 1), b1(2, 2)) =
(0, 0, 0). Note however that, even when the noise is strong, the asymptotic
level is not exactly α = 5% when (a1(2, 2), b1(2, 1), b1(2, 2)) 6= (0, 0, 0)).

For the modified LB test, the model is rejected when the statistic Q̃m is
greater than Sm(0.95) i.e. when the p-value (P{Zm(ξ̂m) > Q̃m}) is less than
the asymptotic level α = 0.05. Let A and B be the (2 × 2)-matrices with
non zero elements a1(2, 2), b1(2, 1) and b1(2, 2). When the roots of det(I2 −
Az) det(I2 − Bz) = 0 are near the unit disk, the asymptotic distribution
of Q̃m is likely to be far from its χ2

(4m−3) approximation. Table 1 displays
the relative rejection frequencies of the null hypothesis H0 that the DGP

follows a VARMA(1, 1), over the N = 1, 000 independent replications. As
expected the observed relative rejection frequency of the standard LB test
is very far from the nominal α = 5% when the number m of autocorrelations
used in the LB statistic is small. This is in accordance with the results in the
literature on the standard VARMA models. In particular, Hosking (1980)
showed that the statistic Q̃m has approximately the chi-squared distribution
χ2
d2(m−(p+q)) without any identifiability contraint. The theory that the χ2

(4m−3)

approximation is better for larger m is confirmed. We draw the conclusion
that, even in the strong VARMA case, the modified version is preferable to
the standard one, when the number m of autocorrelations used is small.

Table 1: Empirical size (in %) of the standard and modified versions of the LB test
in the case of the strong VARMA(1, 1) model (8)-(9).

m = 1 m = 2 m = 3
Length n 100 500 2, 000 100 500 2, 000 100 500 2, 000
modified LB 5.5 5.6 4.0 3.7 4.4 4.8 2.6 4.1 3.3

standard LB 16.2 16.3 15.5 8.2 8.0 7.7 6.7 6.8 5.8

m = 4 m = 6 m = 10
Length n 100 500 2, 000 100 500 2, 000 100 500 2, 000
modified LB 2.2 3.9 4.4 2.3 3.7 3.4 6.8 4.2 3.5

standard LB 5.6 6.0 6.2 5.1 5.9 4.5 5.0 5.7 4.9

7.3.2. Weak VARMA model case

The GARCH(p, q) models constitute important examples of weak white
noises in the univariate case. These models have numerous extensions to the
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multivariate framework (see Bauwens, Laurent and Rombouts (2006) for a re-
view). Jeantheau (1998) has proposed a simple extension of the multivariate
GARCH(p, q) with conditional constant correlation. In this model, the pro-
cess (ǫt) verifies the following relation ǫt = Htηt where {ηt = (η1,t, . . . , ηd,t)

′}t
is an iid centered process with Var {ηi,t} = 1 and Ht is a diagonal matrix
whose elements hii,t verify







h2
11,t
...

h2
dd,t






=







c1
...
cd






+

q
∑

i=1

Ai







ǫ21,t−i
...

ǫ2d,t−i






+

p
∑

j=1

Bj







h2
11,t−j
...

h2
dd,t−j






.

The elements of the matrices Ai and Bj, as well as the vector ci, are supposed
to be positive. In addition, suppose that the stationarity conditions hold.
For simplicity, we consider the following bivariate ARCH(1) (i.e. a bivariate
GARCH(p, q) model with p = 0, q = 1) model

(

ǫ1,t
ǫ2,t

)

=

(

h11,t 0
0 h22,t

)(

η1,t
η2,t

)

(10)

where
(

h2
11,t

h2
22,t

)

=

(

c1
c2

)

+

(

a11 0
a21 a22

)(

ǫ21,t−1

ǫ22,t−1

)

.

We now repeat the same experiment on different weak VARMA(1, 1) models.
For the estimation of the coefficients, we used the quasi-maximum likelihood
estimation method and we applied portmanteau tests to the residuals for
different values of m. We first assume that in (8) the innovation process
(ǫt) is an ARCH(1) model defined in equation (10) with c1 = 0.3, c2 = 0.2,
a11 = 0.45, a21 = 0.4 and a22 = 0.25. In two other sets of experiments, we
assume that in (8) the innovation process (ǫt) is defined by

(

ǫ1,t
ǫ2,t

)

=

(

η1,tη2,t−1η1,t−2

η2,tη1,t−1η2,t−2

)

, with

(

η1,t
η2,t

)

∼ IIDN (0, I2), (11)

and then by

(

ǫ1,t
ǫ2,t

)

=

(

η1,t(|η1,t−1|+ 1)−1

η2,t(|η2,t−1|+ 1)−1

)

, with

(

η1,t
η2,t

)

∼ IIDN (0, I2). (12)
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These noises are direct extensions of the weak noises defined by Romano and
Thombs (1996) in the univariate case.

As expected, Tables 2 and 3 show that the standard LB test poorly
performs to assess the adequacy of these weak VARMA(1, 1) models. In
view of the observed relative rejection frequency, the standard LB test rejects
very often the true VARMA(1, 1) and all the relative rejection frequencies
are definitely outside the significant limits. By contrast, the error of first
kind is well controlled by the modified version of the LB test. We draw
the conclusion that, for these particular weak VARMA models, the modified
version is clearly preferable to the standard one. In contrast, Table 4 shows
that the error of first kind is well controlled by all the tests in this particular
weak VARMA model, except for the standard LB test when m = 1. The
modified version is also slightly preferable to the standard one.

Table 2: Empirical size (in %) of the standard and modified versions of the LB test
in the case of the weak VARMA(1, 1) model (8)-(10).

m = 1 m = 2 m = 3
Length n 500 2, 000 10, 000 500 2, 000 10, 000 500 2, 000 10, 000
modified LB 6.9 8.5 7.4 5.9 6.4 6.3 4.2 6.1 5.3
standard LB 38.5 39.7 43.1 32.0 38.2 42.9 27.6 35.6 42.1

m = 4 m = 6 m = 10
Length n 500 2, 000 10, 000 500 2, 000 10, 000 500 2, 000 10, 000
modified LB 3.9 4.8 5.5 3.3 3.8 6.0 2.7 3.5 3.8
standard LB 24.9 32.3 39.2 21.2 27.3 32.1 17.0 21.2 25.4

7.4. Empirical power

In this part, we simulated N = 1, 000 independent trajectories of size
n = 500, n = 1, 000 and n = 5, 000 of a weak VARMA(2, 2) defined by
(

X1,t

X2,t

)

=

(

0 0
0 0.225

)(

X1,t−1

X2,t−1

)

+

(

0 0
0 0.100

)(

X1,t−2

X2,t−2

)

+

(

ǫ1,t
ǫ2,t

)

−
(

0 0
−0.313 0.250

)(

ǫ1,t−1

ǫ2,t−1

)

−
(

0 0
−0.140 −0.160

)(

ǫ1,t−2

ǫ2,t−2

)

, (13)
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Table 3: Empirical size (in %) of the standard and modified versions of the LB test
in the case of the weak VARMA(1, 1) model (8)-(11).

m = 1 m = 2 m = 3
Length n 500 2, 000 10, 000 500 2, 000 10, 000 500 2, 000 10, 000
modified LB 4.7 3.9 5.3 3.4 2.8 4.7 3.1 2.5 4.7
standard LB 58.7 58.3 62.9 59.2 57.7 64.2 48.0 53.2 57.7

m = 4 m = 6 m = 10
Length n 500 2, 000 10, 000 500 2, 000 10, 000 500 2, 000 10, 000
modified LB 2.2 2.2 5.3 1.9 2.0 4.6 3.6 3.1 5.3
standard LB 41.4 46.4 51.8 33.9 40.3 44.9 25.8 32.4 37.3

where the innovation process (ǫt) is given by (11).
For each of these N = 1, 000 replications we fitted a VARMA(1, 1) model

and perform standard and modified LB test based on m = 1, . . . , 4, 6 and
10 residual autocorrelations. The adequacy of the VARMA(1, 1) model is
rejected when the p-value is less than 5%. For this particular weak VARMA
model, we have seen that the actual level of the standard version is generally
much greater than the 5% nominal level (see Table 3). As in Hong (1996),
we will use the empirical critical values obtained under a weak VARMA(1, 1)
model (8)-(11) based on N = 1, 000 replications to compare the powers of
the two tests on an equal basis. Table 5 displays the relative rejection fre-
quencies of over the N = 1, 000 independent replications. In this example,
the standard and modified versions of the LB test have very similar pow-
ers. Note that, the empirical critical values strongly depend on the type of
weak VARMA which is generated under the null hypothesis. Therefore, this
method consisting in adjusting the critical values only works for very specific
hypotheses.

8. Conclusion

In this paper we derive the asymptotic distribution of residual empir-
ical autocovariances and autocorrelations under weak assumptions on the
noise. We establish the asymptotic distribution of the LB (or BP) port-
manteau test statistics for structural VARMA models with nonindependent
innovations. This asymptotic distribution is quite different from the usual
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Table 4: Empirical size (in %) of the standard and modified versions of the LB test
in the case of the weak VARMA(1, 1) model (8)-(12).

m = 1 m = 2 m = 3
Length n 500 2, 000 10, 000 500 2, 000 10, 000 500 2, 000 10, 000
modified LB 5.0 5.1 4.3 5.2 5.0 5.0 4.3 5.6 5.4
standard LB 7.7 8.1 6.4 6.6 5.6 6.2 5.3 6.1 5.6

m = 4 m = 6 m = 10
Length n 500 2, 000 10, 000 500 2, 000 10, 000 500 2, 000 10, 000
modified LB 4.2 5.6 5.2 3.9 4.4 4.8 3.8 4.1 4.9
standard LB 4.8 6.3 5.5 4.6 4.7 4.9 4.8 4.3 4.9

chi-squared approximation (i.e. χ2
d2(m−p−q)) used under iid assumptions on

the noise. Therefore the modified versions of LB and BP are more difficult
to implement because their critical values have to be computed from the
data, whereas those of the standard versions are simply given in a χ2-table.

In Monte Carlo experiments, we demonstrated that the proposed modi-
fied portmanteau test statistics have reasonable finite sample performance, at
least for the models considered in our study. Under nonindependent errors,
it appears that the standard test statistics are generally unreliable, overre-
jecting severally, while the proposed test statistics offers satisfactory levels
in most cases. Even for independent errors, the modified version may be
preferable to the standard one, when the number m of autocorrelations is
small. Concerning the relative powers of the two versions, we also show that
the modified versions of the LB and BP tests have similar powers when the
critical values are adjusted. Moreover, the error of first kind is well controlled
by the modified versions of the LB and BP tests. We draw the conclusion
that the modified versions are preferable to the standard ones for diagnosing
multivariate models under nonindependent errors.
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Table 5: Empirical power (in %) of the standard and modified versions of the LB

test in the case of the weak VARMA(2, 2) model (13)-(11), with critical values
adjusted to obtain exactly 5% empirical sizes under the null hypothesis of the
weak VARMA(1, 1) model (8)-(11).

m = 1 m = 2 m = 3
Length n 500 1, 000 5, 000 500 1, 000 5, 000 500 1, 000 5, 000
modified LB 10.9 37.0 96.5 70.4 96.8 99.9 80.4 92.6 99.9
standard LB 9.1 14.3 99.8 54.4 87.8 100.0 53.5 87.0 100.0

m = 4 m = 6 m = 10
Length n 500 1, 000 5, 000 500 1, 000 5, 000 500 1, 000 5, 000
modified LB 81.0 90.3 99.9 86.3 91.8 99.9 46.3 90.4 100.0
standard LB 50.5 86.4 100.0 50.7 87.2 100.0 45.6 87.5 100.0

9. Appendix

Proof of Theorem 4.1. Let ℓ̃n(θ,Σe) = −2n−1 log L̃n(θ,Σe). In BMF, it is
shown that ℓn(θ,Σe) = ℓ̃n(θ,Σe) + o(1) a.s, where

ℓn(θ,Σe) := −2

n
log Ln(θ,Σe) =

1

n

n
∑

t=1

{

d log(2π) + log det Σe + e′t(θ)Σ
−1
e et(θ)

}

,

and where (et(θ)) is given by (4). It is also shown uniformly in θ ∈ Θ that

∂ℓn(θ,Σe)

∂θ
=

∂ℓ̃n(θ,Σe)

∂θ
+ o(1) a.s.

The same equality holds for the second-order derivatives of ℓ̃n(θ,Σe). In view

of Theorem 1 in BMF and A5, we have almost surely θ̂n → θ0 ∈
◦

Θ. Thus
∂ℓ̃n(θ̂n, Σ̂e)/∂θ = 0 for sufficiently large n, and a standard Taylor expansion
of the derivative of ℓ̃n about (θ0,Σe0), taken at (θ̂n, Σ̂e), yields

0 =
√
n
∂ℓ̃n(θ̂n, Σ̂e)

∂θ
=

√
n
∂ℓ̃n(θ0,Σe0)

∂θ
+

∂2ℓ̃n(θ
∗,Σ∗

e)

∂θ∂θ′
√
n
(

θ̂n − θ0

)

=
√
n
∂ℓn(θ0,Σe0)

∂θ
+

∂2ℓn(θ0,Σe0)

∂θ∂θ′
√
n
(

θ̂n − θ0

)

+ oP (1), (14)
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using arguments given in FZ (proof of Theorem 2), where θ∗ is between θ0
and θ̂n, and Σ∗

e is between Σe0 and Σ̂e, with Σ̂e = n−1
∑n

t=1 ẽt(θ̂n)ẽ
′
t(θ̂n).

Thus, by standard arguments, we have from (14):

√
n
(

θ̂n − θ0

)

= −J−1
√
n
∂ℓn(θ0,Σe0)

∂θ
+ oP (1)

= J−1
√
nYn + oP (1)

where

Yn = −∂ℓn(θ0,Σe0)

∂θ
= −1

n

n
∑

t=1

∂

∂θ

{

d log(2π) + log det Σe0 + e′t(θ0)Σ
−1
e0 et(θ0)

}

.(15)

Showing that the initial values are asymptotically negligible, and using well-
known results on matrix derivatives (see (5) of Appendix A.13 in Lütkepohl,
2005), we have

Yn = −2

n

n
∑

t=1

∂e′t(θ0)

∂θ
Σ−1

e0 et(θ0).

Using the elementary relation vec(ABC) = (C ′ ⊗ A) vec(B) (see (4) of Ap-
pendix A.12 in Lütkepohl, 2005), we have vec γ(ℓ) = n−1

∑n
t=ℓ+1 et−ℓ ⊗ et. It

is easily shown that for ℓ, ℓ′ ≥ 1,

Cov(
√
n vec γ(ℓ),

√
n vec γ(ℓ′)) =

1

n

n
∑

t=ℓ+1

n
∑

t′=ℓ′+1

E
(

{et−ℓ ⊗ et} {et′−ℓ′ ⊗ et′}′
)

→ Γ(ℓ, ℓ′) as n → ∞.

Then, we have

Σγm = {Γ(ℓ, ℓ′)}1≤ℓ,ℓ′≤m

By stationarity of (et) and (Yt), we have

Cov(
√
nJ−1Yn,

√
n vec γ(ℓ)) = −2

n

n
∑

t=1

n
∑

t=ℓ+1

J−1Cov

(

∂e′t(θ0)

∂θ
Σ−1

e0 et, et−ℓ ⊗ et

)

= −2

n

n−1
∑

h=−n+1

(n− |h|)J−1Cov

(

∂e′t(θ0)

∂θ
Σ−1

e0 et, et−h−ℓ ⊗ et−h

)

.
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By the dominated convergence Theorem, it follows that

Cov(
√
nJ−1Yn,

√
n vec γ(ℓ)) → −

+∞
∑

h=−∞

2J−1Cov

(

∂e′t(θ0)

∂θ
Σ−1

e0 et, et−h−ℓ ⊗ et−h

)

= −
+∞
∑

h=−∞

2J−1E

(

∂e′t(θ0)

∂θ
Σ−1

e0 et {et−ℓ−h ⊗ et−h}′
)

.

Then we have

Σ′

γm,θ̂n
= −2J−1

+∞
∑

h=−∞

E







∂e′t(θ0)

∂θ
Σ−1

e0 et

















et−1−h
...

et−m−h






⊗ et−h











′




.

Applying the central limit Theorem (CLT) for mixing processes (see Herrn-
dorf, 1984) we directly obtain

lim
n→∞

Var(
√
nJ−1Yn) = J−1IJ−1

= Σθ̂n

which gives the asymptotic covariance matrix of Theorem 4.1. It is clear
that the existence of these matrices is ensured by the Davydov (1968)
inequality. The proof is then complete. 2

Proof of Theorem 5.1. Recall that

et(θ) = Xt −
∞
∑

i=1

Ci(θ)Xt−i = B
−1
θ (L)Aθ(L)Xt

where Aθ(L) = Id −
∑p

i=1AiL
i and Bθ(L) = Id −

∑q
i=1BiL

i with Ai =
A−1

0 Ai and Bi = A−1
0 BiB

−1
0 A0. For ℓ = 1, . . . , p and ℓ′ = 1, . . . , q, let

Aℓ = (aij,ℓ) and Bℓ′ = (bij,ℓ′). We define the matrices A
∗
ij,h and B

∗
ij,h by

B
−1
θ (z)Eij =

∞
∑

h=0

A
∗
ij,hz

h, B
−1
θ (z)EijB

−1
θ (z)Aθ(z) =

∞
∑

h=0

B
∗
ij,hz

h, |z| ≤ 1

for h ≥ 0, where Eij = ∂Aℓ/∂aij,ℓ = ∂Bℓ′/∂bij,ℓ′ is the d × d matrix with 1
at position (i, j) and 0 elsewhere. Take A

∗
ij,h = B

∗
ij,h = 0 when h < 0. For
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any aij,ℓ and bij,ℓ′, we respectively write the multivariate residual derivatives

∂et
∂aij,ℓ

= −B
−1
θ (L)EijXt−ℓ = −

∞
∑

h=0

A
∗
ij,hXt−h−ℓ (16)

and
∂et
∂bij,ℓ′

= B
−1
θ (L)EijB

−1
θ (L)Aθ(L)Xt−ℓ′ =

∞
∑

h=0

B
∗
ij,hXt−h−ℓ′. (17)

On the other hand, considering Γ̂(h) and γ(h) as values of the same function
at the points θ̂n and θ0, a Taylor expansion about θ0 gives

vec Γ̂e(h) = vec γ(h) +
1

n

n
∑

t=h+1

{

et−h(θ)⊗
∂et(θ)

∂θ′

+
∂et−h(θ)

∂θ′
⊗ et(θ)

}

θ=θ∗
n

(θ̂n − θ0) +OP (1/n)

= vec γ(h) + E

(

et−h(θ0)⊗
∂et(θ0)

∂θ′

)

(θ̂n − θ0) +OP (1/n),

where θ∗n is between θ̂n and θ0. The last equality follows from the consistency
of θ̂n and the fact that (∂et−h/∂θ

′) (θ0) is not correlated with et when h ≥ 0.
Then for h = 1, . . . , m,

Γ̂m :=

(

{

vecΓ̂e(1)
}′

, . . . ,
{

vecΓ̂e(m)
}′
)′

= γm + Φm(θ̂n − θ0) +OP (1/n),

where

Φm = E

















et−1
...

et−m






⊗ ∂et(θ0)

∂θ′











. (18)

In Φm, one can express (∂et/∂θ
′) (θ0) in terms of the multivariate derivatives

(16) and (17). From Theorem 4.1, we have obtained the asymptotic joint
distribution of γm and θ̂n− θ0, which shows that the asymptotic distribution
of

√
nΓ̂m, is normal, with mean zero and covariance matrix

lim
n→∞

Var(
√
nΓ̂m) = lim

n→∞
Var(

√
nγm) + Φm lim

n→∞
Var(

√
n(θ̂n − θ0))Φ

′
m

+Φm lim
n→∞

Cov(
√
n(θ̂n − θ0),

√
nγm)

+ lim
n→∞

Cov(
√
nγm,

√
n(θ̂n − θ0))Φ

′
m

= Σγm + ΦmΣθ̂n
Φ′

m + ΦmΣθ̂n,γm
+ Σ′

θ̂n,γm
Φ′

m.
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From a Taylor expansion about θ0 of vec Γ̂e(0) we have, vec Γ̂e(0) = vec γ(0)+
OP (n

−1/2). Moreover,
√
n(vec γ(0) − E vec γ(0)) = OP (1) by the CLT for

mixing processes. Thus
√
n(Ŝe ⊗ Ŝe − Se ⊗ Se) = OP (1) and, using (5) and

the ergodic Theorem, we obtain

n
{

vec(Ŝ−1
e Γ̂e(h)Ŝ

−1
e )− vec(S−1

e Γ̂e(h)S
−1
e )
}

= n
{

(Ŝ−1
e ⊗ Ŝ−1

e ) vec Γ̂e(h)− (S−1
e ⊗ S−1

e ) vec Γ̂e(h)
}

= n
{

(Ŝe ⊗ Ŝe)
−1 vec Γ̂e(h)− (Se ⊗ Se)

−1 vec Γ̂e(h)
}

= (Ŝe ⊗ Ŝe)
−1
√
n(Se ⊗ Se − Ŝe ⊗ Ŝe)(Se ⊗ Se)

−1
√
n vec Γ̂e(h)

= OP (1).

In the previous equalities, we also use vec(ABC) = (C ′ ⊗ A) vec(B) and
(A⊗ B)−1 = A−1 ⊗B−1 when A and B are invertible. It follows that

ρ̂m =

(

{

vecR̂e(1)
}′

, . . . ,
{

vecR̂e(m)
}′
)′

=

(

{

(Ŝe ⊗ Ŝe)
−1vecΓ̂e(1)

}′

, . . . ,
{

(Ŝe ⊗ Ŝe)
−1vecΓ̂e(m)

}′
)′

=
{

Im ⊗ (Ŝe ⊗ Ŝe)
−1
}

Γ̂m =
{

Im ⊗ (Se ⊗ Se)
−1
}

Γ̂m +OP (n
−1).

We now obtain (6) from (5). Hence, we have

Var(
√
nρ̂m) =

{

Im ⊗ (Se ⊗ Se)
−1
}

ΣΓ̂m

{

Im ⊗ (Se ⊗ Se)
−1
}

.

This completes the proof. 2

Proof of Theorem 6.2. The proof is similar to that given by Francq, Roy
and Zakoïan (2003) for Theorem 5.2. 2
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