

Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms

Yacouba Boubacar Mainassara

▶ To cite this version:

Yacouba Boubacar Mainassara. Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms. 2009. hal-00455672v1

HAL Id: hal-00455672 https://hal.science/hal-00455672v1

Preprint submitted on 11 Feb 2010 (v1), last revised 21 Dec 2010 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms

By Yacouba Boubacar Mainassara

Université Lille III, GREMARS-EQUIPPE, BP 60 149, 59653 Villeneuve d'Ascq cedex, France. E-mail: yacouba.boubacarmainassara@univ-lille3.fr

Abstract

We consider portmanteau tests for testing the adequacy of vector autoregressive moving-average (VARMA) models under the assumption that the errors are uncorrelated but not necessarily independent. We relax the standard independence assumption to extend the range of application of the VARMA models, and allow to cover linear representations of general nonlinear processes. We first study the joint distribution of the quasi-maximum likelihood estimator (QMLE) or the least squared estimator (LSE) and the noise empirical autocovariances. We then derive the asymptotic distribution of residual empirical autocovariances and autocorrelations under weak assumptions on the noise. We deduce the asymptotic distribution of the Ljung-Box (or Box-Pierce) portmanteau statistics for VARMA models with nonindependent innovations. Under iid assumptions on the noise, it is known that the asymptotic distribution of the portmanteau tests is that of a weighted sum of independent chi-squared random variables. The asymptotic distribution can be quite different when the independence assumption is relaxed. Consequently, the usual chi-squared distribution does not provide an adequate approximation to the distribution of the Box-Pierce goodness-of fit portmanteau test. Hence we propose a method to adjust the critical values of the portmanteau tests. Monte carlo experiments illustrate the finite sample performance of the modified portmanteau test.

Keywords: Goodness-of-fit test, QMLE/LSE, Box-Pierce and Ljung-Box portmanteau tests, residual autocorrelation, Structural representation, weak VARMA models.

1 Introduction

The vector autoregressive moving-average (VARMA) models are used in time series analysis and econometrics to represent multivariate time series (see Reinsel, 1997, Lütkepohl, 2005). These VARMA models are a natural extension of the univariate ARMA models, which constitute the most widely used class of univariate time series models (see *e.g.* Brockwell and Davis, 1991). The sub-class of vector autoregressive (VAR) models has been studied in the econometric literature (see also Lütkepohl, 1993).

The validity of the different steps of the traditional methodology of Box and Jenkins, identification, estimation and validation, depends on the noises properties. After identification and estimation of the vector autoregressive moving-average processes, the next important step in the VARMA modeling consists in checking if the estimated model fits satisfactory the data. This adequacy checking step allows to validate or invalidate the choice of the orders p and q. In VARMA(p,q) models, the choice of p and q is particularly important because the number of parameters, $(p+q+2)d^2$, quickly increases with p and q, which entails statistical difficulties.

In particular, the selection of too large orders p and q has the effect of introducing terms that are not necessarily relevant in the model, which generates statistical difficulties leads to a loss of precision in parameter estimation. Conversely, the selection of too small orders p and q causes loss some of information that can be detected by a correlation of residuals.

Thus it is important to check the validity of a VARMA(p, q) model, for a given order p and q. This paper is devoted to the problem of the validation step of VARMA representations of multivariate processes. This validation stage is not only based on portmanteau tests, but also on the examination of the autocorrelation function of the residuals. Based on the residual empirical autocorrelations, Box and Pierce (1970) (**BP** hereafter) derived a goodnessof-fit test, the portmanteau test, for univariate strong ARMA models. Ljung and Box (1978) (LB hereafter) proposed a modified portmanteau test which is nowadays one of the most popular diagnostic checking tool in ARMA modeling of time series. The multivariate version of the **BP** portmanteau statistic was introduced by Chitturi (1974). We use this so-called portmanteau tests considered by Chitturi (1974) and Hosking (1980) for checking the overall significance of the residual autocorrelations of a VARMA(p,q) model (see also Hosking, 1981a,b; Li and McLeod, 1981; Ahn, 1988). Hosking (1981a) gave several equivalent forms of this statistic. Arbués (2008) proposed an extended portmanteau test for VARMA models with mixing nonlinear constraints.

The papers on the multivariate version of the portmanteau statistic are generally under the assumption that the errors ϵ_t are independent. This independence assumption is restrictive because it precludes conditional heteroscedasticity and/ or other forms of nonlinearity (see Francq and Zakoïan, 2005, for a review on weak univariate ARMA models). Relaxing this independence assumption allows to cover linear representations of general nonlinear processes and to extend the range of application of the VARMA models. VARMA models with nonindependent innovations (*i.e.* weak VARMA models) have been less studied than VARMA models with iid errors (*i.e.* strong VARMA models).

The asymptotic theory of weak ARMA model validation is mainly limited to the univariate framework (see Francq and Zakoïan, 2005).

In the multivariate analysis, notable exceptions are Dufour and Pelletier (2005) who study the choice of the order p and q of VARMA models under weak assumptions on the innovation process, Francq and Raïssi (2007) who study portmanteau tests for weak VAR models, Chabot-Hallé and Duchesne (2008) who study the asymptotic distribution of LSE and portmanteau test for periodic VAR in which the error term is a martingale difference sequence, and Boubacar Mainassara and Francq (2009) who study the consistency and the asymptotic normality of the QMLE for weak VARMA model. The main goal of the present article is to complete the available results concerning the statistical analysis of weak VARMA models by considering the adequacy problem under a general error terms, which have not been studied in the above-mentioned papers. We proceed to study the behaviour of the goodness-of fit portmanteau tests when the ϵ_t are not independent. We will see that the standard portmanteau tests can be quite misleading in the framework of non independent errors. A modified version of these tests is thus proposed.

The paper is organized as follows. Section 2 presents the structural weak VARMA models that we consider here. Structural forms are employed in econometrics in order to introduce instantaneous relationships between economic variables. Section 3 presents the results on the QMLE/LSE asymptotic distribution obtained by Boubacar Mainassara and Francq (2009) when (ϵ_t) satisfies mild mixing assumptions. Section 4 is devoted to the joint distribution of the QMLE/LSE and the noise empirical autocovariances. In Section 5 we derive the asymptotic distribution of residual empirical autocovariances and autocorrelations under weak assumptions on the noise. In Section 6 it is shown how the standard Ljung-Box (or Box-Pierce) portmanteau tests must be adapted in the case of VARMA models with nonindependent innovations. Numerical experiments are presented in Section 8. The proofs of the main results are collected in the appendix.

We denote by $A \otimes B$ the Kronecker product of two matrices A and B, and by vecA the vector obtained by stacking the columns of A. The reader is refereed to Magnus and Neudecker (1988) for the properties of these operators. Let 0_r be the null vector of \mathbb{R}^r , and let I_r be the $r \times r$ identity matrix.

2 Model and assumptions

Consider a *d*-dimensional stationary process (X_t) satisfying a structural VARMA(p, q) representation of the form

$$A_{00}X_t - \sum_{i=1}^p A_{0i}X_{t-i} = B_{00}\epsilon_t - \sum_{i=1}^q B_{0i}\epsilon_{t-i}, \quad \forall t \in \mathbb{Z} = \{0, \pm 1, \dots\}, \quad (1)$$

where ϵ_t is a white noise, namely a stationary sequence of centered and uncorrelated random variables with a non singular variance Σ_0 . It is customary to say that (X_t) is a strong VARMA(p, q) model if (ϵ_t) is a strong white noise, that is, if it satisfies

A1: (ϵ_t) is a sequence of independent and identically distributed (iid) random vectors, $E\epsilon_t = 0$ and $Var(\epsilon_t) = \Sigma_0$.

We say that (1) is a weak VARMA(p, q) model if (ϵ_t) is a weak white noise, that is, if it satisfies

A1': $E\epsilon_t = 0$, $Var(\epsilon_t) = \Sigma_0$, and $Cov(\epsilon_t, \epsilon_{t-h}) = 0$ for all $t \in \mathbb{Z}$ and all $h \neq 0$.

Assumption A1 is clearly stronger than A1'. The class of strong VARMA models is often considered too restrictive by practitioners. The standard VARMA(p,q) form, which is sometimes called the reduced form, is obtained for $A_{00} = B_{00} = I_d$. Let $[A_{00} \ldots A_{0p}B_{00} \ldots B_{0q}]$ be the $d \times (p+q+2)d$ matrix of VAR and MA coefficients. The parameter $\theta_0 = \text{vec} [A_{00} \ldots A_{0p}B_{00} \ldots B_{0q}]$ belongs to the compact parameter space $\Theta \subset \mathbb{R}^{k_0}$, where $k_0 = (p+q+2)d^2$ is the number of unknown parameters in VAR and MA parts.

It is important to note that, we cannot work with the structural representation (1) because it is not identified. The following assumption ensure the identification of the structural VARMA models.

A2: For all $\theta \in \Theta$, $\theta \neq \theta_0$, we have $A_0^{-1}B_0B_{\theta}^{-1}(L)A_{\theta}(L)X_t \neq A_{00}^{-1}B_{00}\epsilon_t$ with non zero probability, or $A_0^{-1}B_0\Sigma B'_0A_0^{-1'} \neq A_{00}^{-1}B_{00}\Sigma_0B'_{00}A_{00}^{-1'}$.

The previous identifiability assumption is satisfied when the parameter space Θ is sufficiently constrained.

For $\theta \in \Theta$, such that $\theta = \text{vec} [A_0 \dots A_p B_0 \dots B_q]$, write $A_{\theta}(z) = A_0 - \sum_{i=1}^p A_i z^i$ and $B_{\theta}(z) = B_0 - \sum_{i=1}^q B_i z^i$. We assume that Θ corresponds to stable and invertible representations, namely

- **A3:** for all $\theta \in \Theta$, we have det $A_{\theta}(z)$ det $B_{\theta}(z) \neq 0$ for all $|z| \leq 1$.
- A4: Matrix Σ_0 is positive definite.

To show the strong consistency, we will use the following assumptions.

A5: The process (ϵ_t) is stationary and ergodic.

Note that **A5** is entailed by **A1**, but not by **A1'**. Note that (ϵ_t) can be replaced by (X_t) in **A5**, because $X_t = A_{\theta_0}^{-1}(L)B_{\theta_0}(L)\epsilon_t$ and $\epsilon_t = B_{\theta_0}^{-1}(L)A_{\theta_0}(L)X_t$, where L stands for the backward operator.

3 Least Squares Estimation under non-iid innovations

Let X_1, \ldots, X_n be observations of a process satisfying the VARMA representation (1). Let $\theta \in \Theta$ and $A_0 = A_0(\theta), \ldots, A_p = A_p(\theta), B_0 = B_0(\theta), \ldots, B_q = B_q(\theta), \Sigma = \Sigma(\theta)$ such that $\theta = \text{vec} [A_0 \ldots A_p \ B_0 \ldots B_q]$. Note that from **A3** the matrices A_0 and B_0 are invertible. Introducing the innovation process $e_t = A_{00}^{-1} B_{00} \epsilon_t$, the structural representation $A_{\theta_0}(L) X_t = B_{\theta_0}(L) \epsilon_t$ can be rewritten as the reduced VARMA representation

$$X_t - \sum_{i=1}^p A_{00}^{-1} A_{0i} X_{t-i} = e_t - \sum_{i=1}^q A_{00}^{-1} B_{0i} B_{00}^{-1} A_{00} e_{t-i}.$$
 (2)

Note that $e_t(\theta_0) = e_t$. For simplicity, we will omit the notation θ in all quantities taken at the true value, θ_0 . Given a realization X_1, X_2, \ldots, X_n , the variable $e_t(\theta)$ can be approximated, for $0 < t \leq n$, by $\tilde{e}_t(\theta)$ defined recursively by

$$\tilde{e}_t(\theta) = X_t - \sum_{i=1}^p A_0^{-1} A_i X_{t-i} + \sum_{i=1}^q A_0^{-1} B_i B_0^{-1} A_0 \tilde{e}_{t-i}(\theta),$$

where the unknown initial values are set to zero: $\tilde{e}_0(\theta) = \cdots = \tilde{e}_{1-q}(\theta) = X_0 = \cdots = X_{1-p} = 0$. The gaussian quasi-likelihood is given by

$$\mathcal{L}_{n}(\theta, \Sigma_{e}) = \prod_{t=1}^{n} \frac{1}{(2\pi)^{d/2} \sqrt{\det \Sigma_{e}}} \exp\left\{-\frac{1}{2}\tilde{e}_{t}'(\theta)\Sigma_{e}^{-1}\tilde{e}_{t}(\theta)\right\}, \quad \Sigma_{e} = A_{0}^{-1}B_{0}\Sigma B_{0}'A_{0}^{-1'}$$

A quasi-maximum likelihood (QML) of θ and Σ_e are a measurable solution $(\hat{\theta}_n, \hat{\Sigma}_e)$ of

$$(\hat{\theta}_n, \hat{\Sigma}_e) = \arg\min_{\theta, \Sigma_e} \left\{ \log(\det \Sigma_e) + \frac{1}{n} \sum_{t=1}^n \tilde{e}_t(\theta) \Sigma_e^{-1} \tilde{e}'_t(\theta) \right\}.$$

Under the following additional assumptions, Boubacar Mainassara and Francq (2009) showed respectively in Theorem 1 and Theorem 2 the consistency and the asymptotic normality of the QML estimator of weak multivariate ARMA model.

Assume that θ_0 is not on the boundary of the parameter space Θ .

A6: We have $\theta_0 \in \overset{\circ}{\Theta}$, where $\overset{\circ}{\Theta}$ denotes the interior of Θ .

We denote by $\alpha_{\epsilon}(k)$, $k = 0, 1, \ldots$, the strong mixing coefficients of the process (ϵ_t) . The mixing coefficients of a stationary process $\epsilon = (\epsilon_t)$ are denoted by

$$\alpha_{\epsilon}(k) = \sup_{A \in \sigma(\epsilon_u, u \le t), B \in \sigma(\epsilon_u, u \ge t+h)} |P(A \cap B) - P(A)P(B)|.$$

The reader is referred to Davidson (1994) for details about mixing assumptions.

A7: We have $E \|\epsilon_t\|^{4+2\nu} < \infty$ and $\sum_{k=0}^{\infty} \{\alpha_{\epsilon}(k)\}^{\frac{\nu}{2+\nu}} < \infty$ for some $\nu > 0$.

One of the most popular estimation procedure is that of the least squares estimator (LSE) minimizing

$$\log \det \hat{\Sigma}_e = \log \det \left\{ \frac{1}{n} \sum_{t=1}^n \tilde{e}_t(\hat{\theta}) \tilde{e}'_t(\hat{\theta}) \right\},\,$$

or equivalently

$$\det \hat{\Sigma}_e = \det \left\{ \frac{1}{n} \sum_{t=1}^n \tilde{e}_t(\hat{\theta}) \tilde{e}'_t(\hat{\theta}) \right\}.$$

For the processes of the form (2), under A1', A2-A7, it can be shown (see *e.g.* Boubacar Mainassara and Francq 2009), that the LS estimator of θ coincides with the gaussian quasi-maximum likelihood estimator (QMLE). More precisely, $\hat{\theta}_n$ satisfies, almost surely,

$$Q_n(\hat{\theta}_n) = \min_{\theta \in \Theta} Q_n(\theta),$$

where

$$Q_n(\theta) = \log \det \left\{ \frac{1}{n} \sum_{t=1}^n \tilde{e}_t(\theta) \tilde{e}'_t(\theta) \right\} \quad \text{or} \quad Q_n(\theta) = \det \left\{ \frac{1}{n} \sum_{t=1}^n \tilde{e}_t(\theta) \tilde{e}'_t(\theta) \right\}.$$

To obtain the consistency and asymptotic normality of the QMLE/LSE, it will be convenient to consider the functions

$$O_n(\theta) = \log \det \Sigma_n \quad \text{or} \quad O_n(\theta) = \det \Sigma_n$$

where $\Sigma_n = \Sigma_n(\theta) = n^{-1} \sum_{t=1}^n e_t(\theta) e'_t(\theta)$. Under A1', A2-A7 or A1-A4 and A6, let $\hat{\theta}_n$ be the LS estimate of θ_0 by maximizing

$$O_n(\theta) = \log \det \left\{ \frac{1}{n} \sum_{t=1}^n e_t(\theta) e'_t(\theta) \right\}.$$

In the univariate case, Francq and Zakoïan (1998) showed the asymptotic normality of the LS estimator under mixing assumptions. This remains valid of the multivariate LS estimator. Then under the assumptions A1', A2-A7, $\sqrt{n} \left(\hat{\theta}_n - \theta_0\right)$ is asymptotically normal with mean 0 and covariance matrix $\Sigma_{\hat{\theta}_n} := J^{-1}IJ^{-1}$, where $J = J(\theta_0)$ and $I = I(\theta_0)$, with

$$J(\theta) = \lim_{n \to \infty} \frac{1}{n} \frac{\partial^2}{\partial \theta \partial \theta'} Q_n(\theta) \quad a.s. \text{ and } I(\theta) = \lim_{n \to \infty} \operatorname{Var} \frac{1}{\sqrt{n}} \frac{\partial}{\partial \theta} Q_n(\theta)$$

In the standard strong VARMA case, *i.e.* when **A5** is replaced by the assumption **A1** that (ϵ_t) is iid, we have I = J, so that $\Sigma_{\hat{\theta}_n} = J^{-1}$.

4 Joint distribution of $\hat{\theta}_n$ and the noise empirical autocovariances

Let $\hat{e}_t = \tilde{e}_t(\hat{\theta}_n)$ be the LS residuals when p > 0 or q > 0, and let $\hat{e}_t = e_t = X_t$ when p = q = 0. When $p + q \neq 0$, we have $\hat{e}_t = 0$ for $t \leq 0$ and t > n and

$$\hat{e}_t = X_t - \sum_{i=1}^p A_0^{-1}(\hat{\theta}_n) A_i(\hat{\theta}_n) \hat{X}_{t-i} + \sum_{i=1}^q A_0^{-1}(\hat{\theta}_n) B_i(\hat{\theta}_n) B_0^{-1}(\hat{\theta}_n) A_0(\hat{\theta}_n) \hat{e}_{t-i},$$

for t = 1, ..., n, with $\hat{X}_t = 0$ for $t \leq 0$ and $\hat{X}_t = X_t$ for $t \geq 1$. Let, $\hat{\Sigma}_{e0} = \hat{\Gamma}_e(0) = n^{-1} \sum_{t=1}^n \hat{e}_t \hat{e}'_t$. We denote by

$$\gamma(h) = \frac{1}{n} \sum_{t=h+1}^{n} e_t e'_{t-h}$$
 and $\hat{\Gamma}_e(h) = \frac{1}{n} \sum_{t=h+1}^{n} \hat{e}_t \hat{e}'_{t-h}$

the white noise "empirical" autocovariances and residual autocovariances. It should be noted that $\gamma(h)$ is not a statistic (unless if p = q = 0) because it depends on the unobserved innovations $e_t = e_t(\theta_0)$. For a fixed integer $m \ge 1$, let

$$\gamma_m = \left(\{ \operatorname{vec} \gamma(1) \}', \dots, \{ \operatorname{vec} \gamma(m) \}' \right)'$$

and

$$\hat{\Gamma}_m = \left(\left\{ \operatorname{vec} \hat{\Gamma}_e(1) \right\}', \dots, \left\{ \operatorname{vec} \hat{\Gamma}_e(m) \right\}' \right)',$$

and let

$$\Gamma(\ell,\ell') = \sum_{h=-\infty}^{\infty} E\left(\left\{e_{t-\ell} \otimes e_t\right\} \left\{e_{t-h-\ell'} \otimes e_{t-h}\right\}'\right),\,$$

for $(\ell, \ell') \neq (0, 0)$. For the univariate ARMA model, Francq, Roy and Zakoïan (2005) have showed in Lemma A.1 that $|\Gamma(\ell, \ell')| \leq K \max(\ell, \ell')$ for some constant K, which is sufficient to ensure the existence of these matrices. We can generalize this result for the multivariate ARMA model. Then we obtain $\|\Gamma(\ell, \ell')\| \leq K \max(\ell, \ell')$ for some constant K. The proof is similar to the univariate case.

We are now able to state the following theorem, which is an extension of a result given in Francq, Roy and Zakoïan (2005).

Theorem 4.1 Assume p > 0 or q > 0. Under Assumptions A1'-A2-A7 or A1-A4, and A6, as $n \to \infty$, $\sqrt{n}(\gamma_m, \hat{\theta}_n - \theta_0)' \stackrel{d}{\Rightarrow} \mathcal{N}(0, \Xi)$ where

$$\Xi = \begin{pmatrix} \Sigma_{\gamma_m} & \Sigma_{\gamma_m,\hat{\theta}_n} \\ \Sigma'_{\gamma_m,\hat{\theta}_n} & \Sigma_{\hat{\theta}_n} \end{pmatrix},$$

with $\Sigma_{\gamma_m} = \{\Gamma(\ell, \ell')\}_{1 \le \ell, \ell' \le m}$, $\Sigma'_{\gamma_m, \hat{\theta}_n} = Cov(\sqrt{n}J^{-1}Y_n, \sqrt{n}\gamma_m)$ and $\Sigma_{\hat{\theta}_n} = Var_{as}(\sqrt{n}J^{-1}Y_n) = J^{-1}IJ^{-1}$.

5 Asymptotic distribution of residual empirical autocovariances and autocorrelations

Let the diagonal matrices

$$S_e = \text{Diag}(\sigma_e(1), \dots, \sigma_e(d))$$
 and $\hat{S}_e = \text{Diag}(\hat{\sigma}_e(1), \dots, \hat{\sigma}_e(d)),$

where $\sigma_e^2(i)$ is the variance of the *i*-th coordinate of e_t and $\hat{\sigma}_e^2(i)$ is its sample estimate, *i.e.* $\sigma_e(i) = \sqrt{Ee_{it}^2}$ and $\hat{\sigma}_e(i) = \sqrt{n^{-1}\sum_{t=1}^n \hat{e}_{it}^2}$. The theoretical and sample autocorrelations at lag ℓ are respectively defined by $R_e(\ell) = S_e^{-1}\Gamma_e(\ell)S_e^{-1}$ and $\hat{R}_e(\ell) = \hat{S}_e^{-1}\hat{\Gamma}_e(\ell)\hat{S}_e^{-1}$, with $\Gamma_e(\ell) := Ee_t e'_{t-\ell} = 0$ for all $\ell \neq 0$. Consider the vector of the first *m* sample autocorrelations

$$\hat{\rho}_m = \left(\left\{ \operatorname{vec} \hat{R}_e(1) \right\}', \dots, \left\{ \operatorname{vec} \hat{R}_e(m) \right\}' \right)'.$$

Theorem 5.1 Under Assumptions A1-A4 and A6 or A1', A2-A7,

$$\sqrt{n}\hat{\Gamma}_m \Rightarrow \mathcal{N}\left(0, \Sigma_{\hat{\Gamma}_m}\right) \quad and \quad \sqrt{n}\hat{\rho}_m \Rightarrow \mathcal{N}\left(0, \Sigma_{\hat{\rho}_m}\right) \quad where$$

$$\Sigma_{\hat{\Gamma}_m} = \Sigma_{\gamma_m} + \Phi_m \Sigma_{\hat{\theta}_n} \Phi'_m + \Phi_m \Sigma_{\hat{\theta}_n, \gamma_m} + \Sigma'_{\hat{\theta}_n, \gamma_m} \Phi'_m \tag{3}$$

$$\Sigma_{\hat{\rho}_m} = \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\} \Sigma_{\hat{\Gamma}_m} \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\}$$
(4)

and Φ_m is given by (19) in the proof of this Theorem.

6 Limiting distribution of the portmanteau statistics

Box and Pierce (1970) (**BP** hereafter) derived a goodness-of-fit test, the portmanteau test, for univariate strong ARMA models. Ljung and Box (1978) (**LB** hereafter) proposed a modified portmanteau test which is nowadays one of the most popular diagnostic checking tool in ARMA modeling of time series. The multivariate version of the **BP** portmanteau statistic was introduced by Chitturi (1974). Hosking (1981a) gave several equivalent forms of this statistic. Basic forms are

$$P_{m} = n \sum_{h=1}^{m} \operatorname{Tr} \left(\hat{\Gamma}'_{e}(h) \hat{\Gamma}_{e}^{-1}(0) \hat{\Gamma}_{e}(h) \hat{\Gamma}_{e}^{-1}(0) \right)$$
$$= n \hat{\rho}'_{m} \left(I_{m} \otimes \left\{ \hat{R}_{e}^{-1}(0) \otimes \hat{R}_{e}^{-1}(0) \right\} \right) \hat{\rho}_{m}.$$

Where the equalities is obtained from the elementary relations $\operatorname{vec}(AB) = (I \otimes A) \operatorname{vec} B$, $(A \otimes B)(C \otimes D) = AC \otimes BD$ and $\operatorname{Tr}(ABC) = \operatorname{vec}(A')'(C' \otimes I) \operatorname{vec} B$. Similarly to the univariate **LB** portmanteau statistic, Hosking (1980) defined the modified portmanteau statistic

$$\tilde{P}_m = n^2 \sum_{h=1}^m (n-h)^{-1} \operatorname{Tr} \left(\hat{\Gamma}'_e(h) \hat{\Gamma}_e^{-1}(0) \hat{\Gamma}_e(h) \hat{\Gamma}_e^{-1}(0) \right).$$

These portmanteau statistics are generally used to test the null hypothesis

 H_0 : (X_t) satisfies a VARMA(p, q) representation

against the alternative

 H_1 : (X_t) does not admit a VARMA representation or admits a VARMA(p', q') representation with p' > p or q' > q.

These portmanteau tests are very useful tools for checking the overall significance of the residual autocorrelations. Under the assumption that the data generating process (**DGP**) follows a strong VARMA(p, q) model, the asymptotic distribution of the statistics P_m and \tilde{P}_m is generally approximated by the $\chi^2_{d^2m-k_0}$ distribution ($d^2m > k_0$) (the degrees of freedom are obtained by subtracting the number of freely estimated VARMA coefficients from d^2m). When the innovations are gaussian, Hosking (1980) found that the finite-sample distribution of \tilde{P}_m is more nearly $\chi^2_{d^2(m-(p+q))}$ than that of P_m . From Theorem 5.1 we deduce the following result, which gives the exact asymptotic distribution of the standard portmanteau statistics P_m . We will see that the distribution may be very different from the $\chi^2_{d^2m-k_0}$ in the case of VARMA(p, q) models.

Theorem 6.1 Under Assumptions A1-A4 and A6 or A1', A2-A7, the statistics P_m and \tilde{P}_m converge in distribution, as $n \to \infty$, to

$$Z_m(\xi_m) = \sum_{i=1}^{d^2m} \xi_{i,d^2m} Z_i^2$$

where $\xi_m = (\xi_{1,d^2m}, \ldots, \xi_{d^2m,d^2m})'$ is the vector of the eigenvalues of the matrix

$$\Omega_m = \left(I_m \otimes \Sigma_e^{-1/2} \otimes \Sigma_e^{-1/2} \right) \Sigma_{\widehat{\Gamma}_m} \left(I_m \otimes \Sigma_e^{-1/2} \otimes \Sigma_e^{-1/2} \right),$$

and Z_1, \ldots, Z_m are independent $\mathcal{N}(0, 1)$ variables.

It is seen in Theorem 6.1, that the asymptotic distribution of the **BP** and **LB** portmanteau tests depends of the nuisance parameters involving Σ_e , the matrix Φ_m and the elements of the matrix Ξ . We need an consistent estimator of the above unknown matrices. The matrix Σ_e can be consistently estimate by its sample estimate $\hat{\Sigma}_e = \hat{\Gamma}_e(0)$. The matrix Φ_m can be easily estimated by its empirical counterpart

$$\hat{\Phi}_m = \frac{1}{n} \sum_{t=1}^n \left\{ \left(\hat{e}'_{t-1}, \dots, \hat{e}'_{t-m} \right)' \otimes \frac{\partial e_t(\theta_0)}{\partial \theta'} \right\}_{\theta_0 = \hat{\theta}_r}$$

In the econometric literature the nonparametric kernel estimator, also called heteroskedastic autocorrelation consistent (HAC) estimator (see Newey and West, 1987, or Andrews, 1991), is widely used to estimate covariance matrices of the form Ξ . An alternative method consists in using a parametric AR estimate of the spectral density of $\Upsilon_t = (\Upsilon'_{1t}, \Upsilon'_{2t})'$, where $\Upsilon_{1t} = (e'_{t-1}, \ldots, e'_{t-m})' \otimes e_t$ and $\Upsilon_{2t} = -2J^{-1} (\partial e'_t(\theta_0)/\partial \theta) \Sigma_{e0}^{-1} e_t(\theta_0)$. Interpreting $(2\pi)^{-1}\Xi$ as the spectral density of the stationary process (Υ_t) evaluated at frequency 0 (see Brockwell and Davis, 1991, p. 459). This approach, which has been studied by Berk (1974) (see also den Hann and Levin, 1997). So we have

$$\Xi = \mathbf{\Phi}^{-1}(1)\Sigma_u \mathbf{\Phi}^{-1}(1)$$

when (Υ_t) satisfies an AR (∞) representation of the form

$$\mathbf{\Phi}(L)\Upsilon_t := \Upsilon_t + \sum_{i=1}^{\infty} \Phi_i\Upsilon_{t-i} = u_t, \tag{5}$$

where u_t is a weak white noise with variance matrix Σ_u . Since Υ_t is not observable, let $\hat{\Upsilon}_t$ be the vector obtained by replacing θ_0 by $\hat{\theta}_n$ in Υ_t . Let $\hat{\Phi}_r(z) = I_{k_0+d^2m} + \sum_{i=1}^r \hat{\Phi}_{r,i} z^i$, where $\hat{\Phi}_{r,1}, \ldots, \hat{\Phi}_{r,r}$ denote the coefficients of the LS regression of $\hat{\Upsilon}_t$ on $\hat{\Upsilon}_{t-1}, \ldots, \hat{\Upsilon}_{t-r}$. Let $\hat{u}_{r,t}$ be the residuals of this regression, and let $\hat{\Sigma}_{\hat{u}_r}$ be the empirical variance of $\hat{u}_{r,1}, \ldots, \hat{u}_{r,n}$.

We are now able to state the following theorem, which is an extension of a result given in Francq, Roy and Zakoïan (2005). **Theorem 6.2** In addition to the assumptions of Theorem 4.1, assume that the process (Υ_t) admits an $AR(\infty)$ representation (5) in which the roots of det $\Phi(z) = 0$ are outside the unit disk, $\|\Phi_i\| = o(i^{-2})$, and $\Sigma_u =$ $Var(u_t)$ is non-singular. Moreover we assume that $\|\epsilon_t\|_{8+4\nu} < \infty$ and $\sum_{k=0}^{\infty} \{\alpha_{X,\epsilon}(k)\}^{\nu/(2+\nu)} < \infty$ for some $\nu > 0$, where $\{\alpha_{X,\epsilon}(k)\}_{k\geq 0}$ denotes the sequence of the strong mixing coefficients of the process $(X'_t, \epsilon'_t)'$. Then the spectral estimator of Ξ

$$\hat{\Xi}^{\mathrm{SP}} := \hat{\mathbf{\Phi}}_r^{-1}(1) \hat{\Sigma}_{\hat{u}_r} \hat{\mathbf{\Phi}}_r^{\prime-1}(1) \to \Xi$$

in probability when $r = r(n) \to \infty$ and $r^3/n \to 0$ as $n \to \infty$.

Let $\hat{\Omega}_m$ be the matrix obtained by replacing Ξ by $\hat{\Xi}$ and Σ_e by $\hat{\Sigma}_e$ in Ω_m . Denote by $\hat{\xi}_m = (\hat{\xi}_{1,d^2m}, \ldots, \hat{\xi}_{d^2m,d^2m})'$ the vector of the eigenvalues of $\hat{\Omega}_m$. At the asymptotic level α , the **LB** test (resp. the **BP** test) consists in rejecting the adequacy of the weak VARMA(p, q) model when

$$\tilde{P}_m > S_m(1-\alpha)$$
 (resp. $P_m > S_m(1-\alpha)$)

where $S_m(1-\alpha)$ is such that $P\left\{Z_m(\hat{\xi}_m) > S_m(1-\alpha)\right\} = \alpha$.

7 Implementation of the goodness-of-fit portmanteau tests

Let X_1, \ldots, X_n , be observations of a *d*-multivariate process. For testing the adequacy of weak VARMA(p, q) model, we use the following steps to implement the modified version of the portmanteau test.

- 1. Compute the estimates $\hat{A}_1, \ldots, \hat{A}_p, \hat{B}_1, \ldots, \hat{B}_q$ by QMLE.
- 2. Compute the QMLE residuals $\hat{e}_t = \tilde{e}_t(\hat{\theta}_n)$ when p > 0 or q > 0, and let $\hat{e}_t = e_t = X_t$ when p = q = 0. When $p + q \neq 0$, we have $\hat{e}_t = 0$ for $t \leq 0$ and t > n and

$$\hat{e}_t = X_t - \sum_{i=1}^p A_0^{-1}(\hat{\theta}_n) A_i(\hat{\theta}_n) \hat{X}_{t-i} + \sum_{i=1}^q A_0^{-1}(\hat{\theta}_n) B_i(\hat{\theta}_n) B_0^{-1}(\hat{\theta}_n) A_0(\hat{\theta}_n) \hat{e}_{t-i},$$

for $t = 1, \ldots, n$, with $\hat{X}_t = 0$ for $t \le 0$ and $\hat{X}_t = X_t$ for $t \ge 1$.

- 3. Compute the residual autocovariances $\hat{\Gamma}_e(0) = \hat{\Sigma}_{e0}$ and $\hat{\Gamma}_e(h)$ for $h = 1, \ldots, m$ and $\hat{\Gamma}_m = \left(\left\{\hat{\Gamma}_e(1)\right\}', \ldots, \left\{\hat{\Gamma}_e(m)\right\}'\right)'$.
- 4. Compute the matrix $\hat{J} = 2n^{-1} \sum_{t=1}^{n} \left(\partial \hat{e}'_t / \partial \theta \right) \hat{\Sigma}_{e0}^{-1} \left(\partial \hat{e}_t / \partial \theta' \right)$.
- 5. Compute $\hat{\Upsilon}_t = \left(\hat{\Upsilon}'_{1t}, \hat{\Upsilon}'_{2t}\right)'$, where $\hat{\Upsilon}_{1t} = \left(\hat{e}'_{t-1}, \dots, \hat{e}'_{t-m}\right)' \otimes \hat{e}_t$ and $\hat{\Upsilon}_{2t} = -2\hat{J}^{-1} \left(\partial \hat{e}'_t / \partial \theta\right) \hat{\Sigma}_{e0}^{-1} \hat{e}_t.$
- 6. Fit the VAR(r) model

$$\hat{\Phi}_r(L)\hat{\Upsilon}_t := \left(I_{d^2m+k_0} + \sum_{i=1}^r \hat{\Phi}_{r,i}(L)\right)\hat{\Upsilon}_t = \hat{u}_{r,t}.$$

The VAR order r can be fixed or selected by AIC information criteria.

7. Define the estimator

$$\hat{\Xi}^{\mathrm{SP}} := \hat{\Phi}_r^{-1}(1)\hat{\Sigma}_{\hat{u}_r}\hat{\Phi}_r^{\prime-1}(1) = \begin{pmatrix} \hat{\Sigma}_{\gamma_m} & \hat{\Sigma}_{\gamma_m,\hat{\theta}_n} \\ \hat{\Sigma}_{\gamma_m,\hat{\theta}_n}^{\prime} & \hat{\Sigma}_{\hat{\theta}_n} \end{pmatrix}, \ \hat{\Sigma}_{\hat{u}_r} = \frac{1}{n}\sum_{t=1}^n \hat{u}_{r,t}\hat{u}_{r,t}^{\prime}.$$

8. Define the estimator

$$\hat{\Phi}_m = \frac{1}{n} \sum_{t=1}^n \left\{ \left(\hat{e}'_{t-1}, \dots, \hat{e}'_{t-m} \right)' \otimes \frac{\partial e_t(\theta_0)}{\partial \theta'} \right\}_{\theta_0 = \hat{\theta}_n}$$

9. Define the estimators

$$\hat{\Sigma}_{\hat{\Gamma}_m} = \hat{\Sigma}_{\gamma_m} + \hat{\Phi}_m \hat{\Sigma}_{\hat{\theta}_n} \hat{\Phi}'_m + \hat{\Phi}_m \hat{\Sigma}_{\hat{\theta}_n, \gamma_m} + \hat{\Sigma}'_{\hat{\theta}_n, \gamma_m} \hat{\Phi}'_m$$
$$\hat{\Sigma}_{\hat{\rho}_m} = \left\{ I_m \otimes (\hat{S}_e \otimes \hat{S}_e)^{-1} \right\} \hat{\Sigma}_{\hat{\Gamma}_m} \left\{ I_m \otimes (\hat{S}_e \otimes \hat{S}_e)^{-1} \right\}$$

10. Compute the eigenvalues $\hat{\xi}_m = (\hat{\xi}_{1,d^2m}, \dots, \hat{\xi}_{d^2m,d^2m})'$ of the matrix

$$\hat{\Omega}_m = \left(I_m \otimes \hat{\Sigma}_{e0}^{-1/2} \otimes \hat{\Sigma}_{e0}^{-1/2} \right) \hat{\Sigma}_{\hat{\Gamma}_m} \left(I_m \otimes \hat{\Sigma}_{e0}^{-1/2} \otimes \hat{\Sigma}_{e0}^{-1/2} \right).$$

11. Compute the portmanteau statistics

$$P_m = n\hat{\rho}'_m \left(I_m \otimes \left\{ \hat{R}_e^{-1}(0) \otimes \hat{R}_e^{-1}(0) \right\} \right) \hat{\rho}_m \quad \text{and}$$
$$\tilde{P}_m = n^2 \sum_{h=1}^m \frac{1}{(n-h)} \operatorname{Tr} \left(\hat{\Gamma}'_e(h) \hat{\Gamma}_e^{-1}(0) \hat{\Gamma}_e(h) \hat{\Gamma}_e^{-1}(0) \right).$$

12. Evaluate the p-values

$$P\left\{Z_m(\hat{\xi}_m) > P_m\right\}$$
 and $P\left\{Z_m(\hat{\xi}_m) > \tilde{P}_m\right\}, \quad Z_m(\hat{\xi}_m) = \sum_{i=1}^{d^2m} \hat{\xi}_{i,d^2m} Z_i^2,$

using the Imhof algorithm (1961). The **BP** test (resp. the **LB** test) rejects the adequacy of the weak VARMA(p, q) model when the first (resp. the second) *p*-value is less than the asymptotic level α .

8 Numerical illustrations

In this section, by means of Monte Carlo experiments, we investigate the finite sample properties of the test introduced in this paper. For illustrative purpose, we only present the results of the modified and standard versions of the **LB** test. The results concerning the **BP** test are not presented here, because they are very close to those of the **LB** test. The numerical illustrations of this section are made with the softwares R (see http://cran.r-project.org/) and FORTRAN (to compute the *p*-values using the Imohf algorithm, 1961).

8.1 Empirical size

To generate the strong and weak VARMA models, we consider the bivariate model of the form

$$\begin{pmatrix} X_{1t} \\ X_{2t} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & a_1(2,2) \end{pmatrix} \begin{pmatrix} X_{1t-1} \\ X_{2t-1} \end{pmatrix} + \begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ b_1(2,1) & b_1(2,2) \end{pmatrix} \begin{pmatrix} \epsilon_{1t-1} \\ \epsilon_{2t-1} \end{pmatrix},$$
(6)

where $(a_1(2,2), b_1(2,1), b_1(2,2)) = (0.225, -0.313, 0.750)$. This model is a VARMA(1,1) model in echelon form.

8.1.1 Strong VARMA case

We first consider the strong VARMA case. To generate this model, we assume that in (6) the innovation process (ϵ_t) is defined by

$$\begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \end{pmatrix} \sim \operatorname{IID} \mathcal{N}(0, I_2).$$
(7)

We simulated N = 1,000 independent trajectories of size n = 500, n = 1,000and n = 2,000 of Model (6) with the strong Gaussian noise (7). For each of these N replications we estimated the coefficients $(a_1(2,2), b_1(2,1), b_1(2,2))$ and we applied portmanteau tests to the residuals for different values of m.

For the standard **LB** test, the VARMA(1,1) model is rejected when the statistic \tilde{P}_m is greater than $\chi^2_{(4m-3)}(0.95)$, where *m* is the number of residual autocorrelations used in the **LB** statistic. This corresponds to a nominal asymptotic level $\alpha = 5\%$ in the standard case. We know that the asymptotic level of the standard **LB** test is indeed $\alpha = 5\%$ when $(a_1(2,2), b_1(2,1), b_1(2,2)) = (0,0,0)$. Note however that, even when the noise is strong, the asymmptotic level is not exactly $\alpha = 5\%$ when $(a_1(2,2), b_1(2,1), b_1(2,2)) \neq (0,0,0)$.

For the modified **LB** test, the model is rejected when the statistic \tilde{P}_m is greater than $S_m(0.95)$ *i.e.* when the *p*-value $\left(P\left\{Z_m(\hat{\xi}_m) > \tilde{P}_m\right\}\right)$ is less than the asymptotic level $\alpha = 0.05$. Let A and B be the (2×2) -matrices with non zero elements $a_1(2,2)$, $b_1(2,1)$ and $b_1(2,2)$. When the roots of det $(I_2 -$ Az) det $(I_2 - Bz) = 0$ are near the unit disk, the asymptotic distribution of \tilde{P}_m is likely to be far from its $\chi^2_{(4m-3)}$ approximation. Table 1 displays the relative rejection frequencies of the null hypothesis H_0 that the **DGP** follows an VARMA(1,1) model, over the N = 1,000 independent replications. As expected the observed relative rejection frequency of the standard LB test is very far from the nominal $\alpha = 5\%$ when the number of autocorrelations used in the LB statistic is $m \leq p+q$. This is in accordance with the results in the literature on the standard VARMA models. In particular, Hosking (1980) showed that the statistic \tilde{P}_m has approximately the chi-squared distribution $\chi^2_{d^2(m-(p+q))}$ without any identifiability contraint. Thus the error of first kind is well controlled by all the tests in the strong case, except for the standard **LB** test when $m \leq p+q$. We draw the somewhat surprising conclusion that, even in the strong VARMA case, the modified version may be preferable to the standard one.

	m = 1				1						
	n		500	0 1,000) 2,0	000	500	1,000	2, 0	000	
	modifi	ed \mathbf{LB}	5.5	5.1	L	3.6	4.1	4.6		4.2	
	standa	ard \mathbf{LB}	22.0) 21.3	3 2	1.7	7.1	7.9		7.5	
			m = 3			m	=4			m = 6	
n		500	1,000	2,000	500	1, 0	000	2,000	500	1,000	2,000
modified	d LB	4.2	4.4	3.6	3.0	ې و	3.9	4.2	3.3	3.9	4.1
standar	d \mathbf{LB}	5.9	5.8	5.3	4.9	ļ	5.2	5.2	5.3	5.0	4.6

Table 1: Empirical size (in %) of the standard and modified versions of the **LB** test in the case of the strong VARMA(1,1) model (6)-(7), with $\theta_0 = (0.225, -0.313, 0.750)$.

8.1.2 Weak VARMA case

We now repeat the same experiments on different weak VARMA(1, 1) models. We first assume that in (6) the innovation process (ϵ_t) is an ARCH(1) (*i.e.* p = 0, q = 1) model

$$\begin{pmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{pmatrix} = \begin{pmatrix} h_{11t} & 0 \\ 0 & h_{22t} \end{pmatrix} \begin{pmatrix} \eta_{1t} \\ \eta_{2t} \end{pmatrix}$$
(8)

where

$$\begin{pmatrix} h_{11t}^2 \\ h_{22t}^2 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \epsilon_{1t-1}^2 \\ \epsilon_{2t-1}^2 \end{pmatrix},$$

with $c_1 = 0.3$, $c_2 = 0.2$, $a_{11} = 0.45$, $a_{21} = 0.4$ and $a_{22} = 0.25$. As expected, Table 2 shows that the standard **LB** test poorly performs to assess the adequacy of this weak VARMA(1, 1) model. In view of the observed relative rejection frequency, the standard **LB** test rejects very often the true VARMA(1, 1). By contrast, the error of first kind is well controlled by the modified version of the **LB** test. We draw the conclusion that, at least for this particular weak VARMA model, the modified version is clearly preferable to the standard one.

In two other sets of experiments, we assume that in (6) the innovation

_									_	
	m = 1				L					
	n		500	1,000	2,00	0 500	1,000	2,00	0	
	modifie	ed \mathbf{LB}	6.7	7.5	8.	5 4.6	4.1	6.	5	
	standar	rd \mathbf{LB}	48.3	50.0	50.	3 33.1	36.5	39.	4	
=										
			m = 3			m = 4			m = 6	
n		500	1,000	2,000	500	1,000	2,000	500	1,000	2,000
modified	LB	4.4	4.4	5.4	2.8	4.1	5.5	4.0	3.3	4.9
standard	LB	28.2	31.3	35.4	24.5	28.1	32.3	22.0	22.9	27.8

Table 2: Empirical size (in %) of the standard and modified versions of the **LB** test in the case of the weak VARMA(1,1) model (6)-(8), with $\theta_0 = (0.225, -0.313, 0.750)$.

process (ϵ_t) is defined by

$$\begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \end{pmatrix} = \begin{pmatrix} \eta_{1,t}\eta_{2,t-1}\eta_{1,t-2} \\ \eta_{2,t}\eta_{1,t-1}\eta_{2,t-2} \end{pmatrix}, \quad \text{with } \begin{pmatrix} \eta_{1,t} \\ \eta_{2,t} \end{pmatrix} \sim \text{IID}\,\mathcal{N}(0,I_2), \quad (9)$$

and then by

$$\begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \end{pmatrix} = \begin{pmatrix} \eta_{1,t}(|\eta_{1,t-1}|+1)^{-1} \\ \eta_{2,t}(|\eta_{2,t-1}|+1)^{-1} \end{pmatrix}, \quad \text{with } \begin{pmatrix} \eta_{1,t} \\ \eta_{2,t} \end{pmatrix} \sim \text{IID}\,\mathcal{N}(0,I_2), \quad (10)$$

These noises are direct extensions of the weak noises defined by Romano and Thombs (1996) in the univariate case. Table 3 shows that, once again, the standard **LB** test poorly performs to assess the adequacy of this weak VARMA(1, 1) model. In view of the observed relative rejection frequency, the standard **LB** test rejects very often the true VARMA(1, 1), as in Table 2. By contrast, the error of first kind is well controlled by the modified version of the **LB** test. We draw again the conclusion that, for this particular weak VARMA model, the modified version is clearly preferable to the standard one.

By contrast, Table 4 shows that the error of first kind is well controlled by all the tests in this particular weak VARMA model, except for the standard **LB** test when m = 1. On this particular example, the two versions of the **LB** test are almost equivalent when m > 1, but the modified version clearly outperforms the standard version when m = 1.

-							
		m = 1		m = 2			
n	500	1,000	2,000	500	1,000	2,000	
modified \mathbf{LB}	2.4	2.4	4.1	4.0	3.3	3.2	
standard ${\bf LB}$	71.8	72.3	72.2	62.9	64.7	64.8	
		m = 3			m = 4		
n	500	1,000	2,000	500	1,000	2,000	
modified \mathbf{LB}	2.6	2.7	2.4	2.6	1.4	1.7	
standard \mathbf{LB}	54.7	54.2	58.5	48.4	50.7	51.0	

Table 3: Empirical size (in %) of the standard and modified versions of the **LB** test in the case of the weak VARMA(1,1) model (6)-(9), with $\theta_0 = (0.225, -0.313, 0.750)$.

8.2 Empirical power

In this part, we simulated N = 1,000 independent trajectories of size n = 500, n = 1,000 and n = 2,000 of a weak VARMA(2,2) defined by

$$\begin{pmatrix} X_{1t} \\ X_{2t} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & a_1(2,2) \end{pmatrix} \begin{pmatrix} X_{1,t-1} \\ X_{2,t-1} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & a_2(2,2) \end{pmatrix} \begin{pmatrix} X_{1,t-2} \\ X_{2,t-2} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ b_1(2,1) & b_1(2,2) \end{pmatrix} \begin{pmatrix} \epsilon_{1,t-1} \\ \epsilon_{2,t-1} \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ b_2(2,1) & b_2(2,2) \end{pmatrix} \begin{pmatrix} \epsilon_{1,t-2} \\ \epsilon_{2,t-2} \end{pmatrix},$$
(11)

where the innovation process (ϵ_t) is an ARCH(1) model given by (8) and where

$$\{a_1(2,2), a_2(2,2), b_1(2,1), b_1(2,2), b_2(2,1), b_2(2,2)\}\$$

= (0.225, 0.061, -0.313, 0.750, -0.140, -0.160).

For each of these N replications we fitted a VARMA(1, 1) model and performed standard and modified **LB** tests based on $m = 1, \ldots, 4$ residual autocorrelations. The adequacy of the VARMA(1, 1) model is rejected when the *p*-value is less than 5%. Table 5 displays the relative rejection frequencies over the N = 1,000 independent replications. In this example, the standard

	m = 1				1					
	n		500	1,000) 2,0	000 50	00 1,00	0 - 2, 0	000	
	modifie	ed \mathbf{LB}	5.0) 4.4	1 ·	4.9 4	.9 3.	6	5.1	
	standa	rd \mathbf{LB}	13.6	5 11.5	3 1	2.5 - 6	.1 4.	3	5.6	
			m = 3			m =	4		m = 6	;
n		500	1,000	2,000	500	1,000	2,000	500	1,000	2,000
modified	l LB	4.5	4.3	5.6	4.3	4.2	5.5	3.7	4.1	4.3
standard	l LB	5.2	4.0	5.8	4.6	4.1	5.1	3.9	4.0	3.8

Table 4: Empirical size (in %) of the standard and modified versions of the **LB** test in the case of the weak VARMA(1,1) model (6)-(10), with $\theta_0 = (0.225, -0.313, 0.750)$.

and modified versions of the **LB** test have similar powers, except for n = 500. One could think that the modified version is slightly less powerful that the standard version. Actually, the comparison made in Table 5 is not fair because the actual level of the standard version is generally very greater than the 5% nominal level for this particular weak VARMA model (see Table 2).

Table 5: Empirical size (in %) of the standard and modified versions of the LB test in the case of the weak VARMA(2,2) model (11)-(8).

		m = 1		m = 2			
n	500	1,000	2,000	500	1,000	2,000	
modified \mathbf{LB}	56.0	85.0	96.7	63.7	89.5	97.3	
standard ${\bf LB}$	98.2	100.0	100.0	97.1	99.9	100.0	
		m = 3			m = 4		
n	500	1,000	2,000	500	1,000	2,000	
modified \mathbf{LB}	59.6	91.1	97.2	51.0	89.3	97.8	
standard ${\bf LB}$	97.5	100.0	100.0	97.0	100.0	100.0	

Table 6 displays the relative rejection frequencies among the N = 1,000 independent replications. In this example, the standard and modified ver-

sions of the LB test have very similar powers.

		m = 1			m = 2	
n	500	1,000	2,000	500	1,000	2,000
modified \mathbf{LB}	93.1	100.0	100.0	96.2	100.0	100.0
standard ${\bf LB}$	99.4	100.0	100.0	97.4	100.0	100.0
		m = 3			m = 4	
n	500	1,000	2,000	500	1,000	2,000
modified \mathbf{LB}	97.1	100.0	100.0	96.3	100.0	100.0
standard ${\bf LB}$	97.7	100.0	100.0	97.4	100.0	100.0

Table 6: Empirical size (in %) of the standard and modified versions of the LB test in the case of the strong VARMA(2,2) model (11)-(7).

As a general conclusion concerning the previous numerical experiments, one can say that the empirical sizes of the two versions are comparable, but the error of first kind is better controlled by the modified version than by the standard one. As expected, this latter feature holds for weak VARMA, but, more surprisingly, it is also true for strong VARMA models when m is small.

9 Appendix

For the proof of Theorem 4.1, we need respectively, the following lemmas on the standard matrices derivatives and on the covariance inequality obtained by Davydov (1968).

Lemma 1 If f(A) is a scalar function of a matrix A whose elements a_{ij} are function of a variable x, then

$$\frac{\partial f(A)}{\partial x} = \sum_{i,j} \frac{\partial f(A)}{\partial a_{ij}} \frac{\partial a_{ij}}{\partial x} = Tr\left\{\frac{\partial f(A)}{\partial A'} \frac{\partial A}{\partial x}\right\}.$$
(12)

When A is invertible, we also have

$$\frac{\partial \log |\det(A)|}{\partial A'} = A^{-1} \tag{13}$$

Lemma 2 (Davydov (1968)) Let p, q and r three positive numbers such that $p^{-1} + q^{-1} + r^{-1} = 1$. Davydov (1968) showed that

$$|Cov(X,Y)| \le K_0 ||X||_p ||Y||_q \left[\alpha \left\{\sigma(X), \sigma(Y)\right\}\right]^{1/r},$$
(14)

where $||X||_p^p = EX^p$, K_0 is an universal constant, and $\alpha \{\sigma(X), \sigma(Y)\}$ denotes the strong mixing coefficient between the σ -fields $\sigma(X)$ and $\sigma(Y)$ generated by the random variables X and Y, respectively.

Proof of Theorem 4.1. Recall that

$$Q_n(\theta) = \log \det \left\{ \frac{1}{n} \sum_{t=1}^n \tilde{e}_t(\theta) \tilde{e}'_t(\theta) \right\} \quad \text{and} \quad O_n(\theta) = \log \det \left\{ \frac{1}{n} \sum_{t=1}^n e_t(\theta) e'_t(\theta) \right\}$$

In view of Theorem 1 in Boubacar Mainassara and Francq (2009) and **A6**, we have almost surely $\hat{\theta}_n \to \theta_0 \in \overset{\circ}{\Theta}$. Thus $\partial Q_n(\hat{\theta}_n)/\partial \theta = 0$ for sufficiently large n, and a standard Taylor expansion of the derivative of Q_n about θ_0 , taken at $\hat{\theta}_n$, yields

$$0 = \sqrt{n} \frac{\partial Q_n(\hat{\theta}_n)}{\partial \theta} = \sqrt{n} \frac{\partial Q_n(\theta_0)}{\partial \theta} + \frac{\partial^2 Q_n(\theta^*)}{\partial \theta \partial \theta'} \sqrt{n} \left(\hat{\theta}_n - \theta_0\right)$$
$$= \sqrt{n} \frac{\partial O_n(\theta_0)}{\partial \theta} + \frac{\partial^2 O_n(\theta_0)}{\partial \theta \partial \theta'} \sqrt{n} \left(\hat{\theta}_n - \theta_0\right) + o_P(1), \tag{15}$$

using arguments given in FZ (proof of Theorem 2), where θ^* is between θ_0 and θ_n . Thus, by standard arguments, we have from (15):

$$\sqrt{n} \left(\hat{\theta}_n - \theta_0 \right) = -J^{-1} \sqrt{n} \frac{\partial O_n(\theta_0)}{\partial \theta} + o_P(1)$$

= $J^{-1} \sqrt{n} Y_n + o_P(1)$

where

$$Y_n = -\frac{\partial O_n(\theta_0)}{\partial \theta} = -\frac{\partial}{\partial \theta} \log \det \left\{ \frac{1}{n} \sum_{t=1}^n e_t(\theta_0) e_t'(\theta_0) \right\}.$$

Showing that the initial values are asymptotically negligible, and using (12) and (13), we have

$$\frac{\partial O_n(\theta)}{\partial \theta_i} = \operatorname{Tr}\left\{\frac{\partial \log |\Sigma_n|}{\partial \Sigma_n} \frac{\partial \Sigma_n}{\partial \theta_i}\right\} = \operatorname{Tr}\left\{\Sigma_n^{-1} \frac{\partial \Sigma_n}{\partial \theta_i}\right\},\tag{16}$$

with

$$\frac{\partial \Sigma_n}{\partial \theta_i} = \frac{2}{n} \sum_{t=1}^n e_t(\theta) \frac{\partial e_t'(\theta)}{\partial \theta_i}.$$

Then, for $1 \le i \le k_0 = (p+q+2)d^2$, the *i*-th coordinate of the vector Y_n is of the form

$$Y_n^{(i)} = -\operatorname{Tr}\left\{\frac{2}{n}\sum_{t=1}^n \Sigma_{e0}^{-1} e_t(\theta_0) \frac{\partial e_t'(\theta_0)}{\partial \theta_i}\right\}, \qquad \Sigma_{e0} = \Sigma_n(\theta_0).$$

It is easily shown that for $\ell, \ell' \ge 1$,

$$\operatorname{Cov}(\sqrt{n}\operatorname{vec}\gamma(\ell),\sqrt{n}\operatorname{vec}\gamma(\ell')) = \frac{1}{n}\sum_{t=\ell+1}^{n}\sum_{t'=\ell'+1}^{n}E\left(\left\{e_{t-\ell}\otimes e_{t}\right\}\left\{e_{t'-\ell'}\otimes e_{t'}\right\}'\right)$$
$$\to \Gamma(\ell,\ell') \quad \text{as} \quad n\to\infty,$$

Then, we have

$$\Sigma_{\gamma_m} = \{\Gamma(\ell, \ell')\}_{1 \le \ell, \ell' \le m}$$

$$\operatorname{Cov}(\sqrt{n}J^{-1}Y_n, \sqrt{n}\operatorname{vec}\gamma(\ell)) = -\sum_{t=\ell+1}^n J^{-1}E\left(\frac{\partial O_n}{\partial \theta} \{e_{t-\ell}\otimes e_t\}'\right)$$

$$\to -\sum_{h=-\infty}^{+\infty} 2J^{-1}E\left(\mathcal{E}_t \{e_{t-h-\ell}\otimes e_{t-h}\}'\right),$$

where $\mathcal{E}_t = \left(\left(\operatorname{Tr} \left\{ \Sigma_{e0}^{-1} e_t(\theta_0) \frac{\partial e'_t(\theta_0)}{\partial \theta_1} \right\} \right)', \dots, \left(\operatorname{Tr} \left\{ \Sigma_{e0}^{-1} e_t(\theta_0) \frac{\partial e'_t(\theta_0)}{\partial \theta_{k_0}} \right\} \right)' \right)'$. Then, we have

$$\operatorname{Cov}(\sqrt{n}J^{-1}Y_n, \sqrt{n}\gamma_m) \rightarrow -\sum_{h=-\infty}^{+\infty} 2J^{-1}E\left\{\mathcal{E}_t\left(\left(\begin{array}{c}e_{t-h-1}\\\vdots\\e_{t-h-m}\end{array}\right)\otimes e_{t-h}\right)'\right\}\right\}$$
$$= \Sigma'_{\gamma_m,\hat{\theta}_n}$$

Applying the central limit theorem (CLT) for mixing processes (see Herrndorf, 1984) we directly obtain

$$\operatorname{Var}_{as}(\sqrt{n}J^{-1}Y_n) = J^{-1}IJ^{-1}$$
$$= \Sigma_{\hat{\theta}_n}$$

which shows the asymptotic covariance matrix of Theorem 4.1. It is clear that the existence of these matrices is ensured by the Davydov (1968) inequality (14) in Lemma 2. The proof is complete. \Box

Proof of Theorem 5.1. Recall that

$$e_t(\theta) = X_t - \sum_{i=1}^{\infty} C_i(\theta) X_{t-i} = \mathbf{B}_{\theta}^{-1}(L) \mathbf{A}_{\theta}(L) X_t$$

where $\mathbf{A}_{\theta}(L) = I_d - \sum_{i=1}^p \mathbf{A}_i L^i$ and $\mathbf{B}_{\theta}(L) = I_d - \sum_{i=1}^q \mathbf{B}_i L^i$ with $\mathbf{A}_i = A_0^{-1} A_i$ and $\mathbf{B}_i = A_0^{-1} B_i B_0^{-1} A_0$. For $\ell = 1, \ldots, p$ and $\ell' = 1, \ldots, q$, let $\mathbf{A}_{\ell} = (\mathbf{a}_{ij,\ell})$ and $\mathbf{B}_{\ell'} = (\mathbf{b}_{ij,\ell'})$.

We define the matrices $\mathbf{A}^*_{ij,h}$ and $\mathbf{B}^*_{ij,h}$ by

$$\mathbf{B}_{\theta}^{-1}(z)E_{ij} = \sum_{h=0}^{\infty} \mathbf{A}_{ij,h}^{*} z^{h}, \quad \mathbf{B}_{\theta}^{-1}(z)E_{ij}\mathbf{B}_{\theta}^{-1}(z)\mathbf{A}_{\theta}(z) = \sum_{h=0}^{\infty} \mathbf{B}_{ij,h}^{*} z^{h}, \quad |z| \le 1$$

for $h \geq 0$, where $E_{ij} = \partial \mathbf{A}_{\ell} / \partial \mathbf{a}_{ij,\ell} = \partial \mathbf{B}_{\ell'} / \partial \mathbf{b}_{ij,\ell'}$ is the $d \times d$ matrix with 1 at position (i, j) and 0 elsewhere. Take $\mathbf{A}_{ij,h}^* = \mathbf{B}_{ij,h}^* = 0$ when h < 0. For any $\mathbf{a}_{ij,\ell}$ and $\mathbf{b}_{ij,\ell'}$ writing respectively the multivariate noise derivatives

$$\frac{\partial e_t}{\partial \mathbf{a}_{ij,\ell}} = -\mathbf{B}_{\theta}^{-1}(L)E_{ij}X_{t-\ell} = -\sum_{h=0}^{\infty}\mathbf{A}_{ij,h}^*X_{t-h-\ell}$$
(17)

and

$$\frac{\partial e_t}{\partial \mathbf{b}_{ij,\ell'}} = \mathbf{B}_{\theta}^{-1}(L) E_{ij} \mathbf{B}_{\theta}^{-1}(L) \mathbf{A}_{\theta}(L) X_{t-\ell'} = \sum_{h=0}^{\infty} \mathbf{B}_{ij,h}^* X_{t-h-\ell'}.$$
 (18)

On the other hand, considering $\hat{\Gamma}(h)$ and $\gamma(h)$ as values of the same function at the points $\hat{\theta}_n$ and θ_0 , a Taylor expansion about θ_0 gives

$$\operatorname{vec} \hat{\Gamma}_{e}(h) = \operatorname{vec} \gamma(h) + \frac{1}{n} \sum_{t=h+1}^{n} \left\{ e_{t-h}(\theta) \otimes \frac{\partial e_{t}(\theta)}{\partial \theta'} + \frac{\partial e_{t-h}(\theta)}{\partial \theta'} \otimes e_{t}(\theta) \right\}_{\theta = \theta_{n}^{*}} (\hat{\theta}_{n} - \theta_{0}) + O_{P}(1/n)$$
$$= \operatorname{vec} \gamma(h) + E \left(e_{t-h}(\theta_{0}) \otimes \frac{\partial e_{t}(\theta_{0})}{\partial \theta'} \right) (\hat{\theta}_{n} - \theta_{0}) + O_{P}(1/n),$$

where θ_n^* is between $\hat{\theta}_n$ and θ_0 . The last equality follows from the consistency of $\hat{\theta}_n$ and the fact that $(\partial e_{t-h}/\partial \theta')(\theta_0)$ is not correlated with e_t when $h \ge 0$. Then for $h = 1, \ldots, m$,

$$\hat{\Gamma}_m := \left(\left\{ \operatorname{vec} \hat{\Gamma}_e(1) \right\}', \dots, \left\{ \operatorname{vec} \hat{\Gamma}_e(m) \right\}' \right)' = \gamma_m + \Phi_m(\hat{\theta}_n - \theta_0) + O_P(1/n),$$

where

$$\Phi_m = E \left\{ \begin{pmatrix} e_{t-1} \\ \vdots \\ e_{t-m} \end{pmatrix} \otimes \frac{\partial e_t(\theta_0)}{\partial \theta'} \right\}.$$
(19)

In Φ_m , one can express $(\partial e_t/\partial \theta')(\theta_0)$ in terms of the multivariate derivatives (17) and (18). From Theorem 4.1, we have obtained the asymptotic joint distribution of γ_m and $\hat{\theta}_n - \theta_0$, which shows that the asymptotic distribution of $\sqrt{n}\hat{\Gamma}_m$, is normal, with mean zero and covariance matrix

$$\begin{aligned} \operatorname{Var}_{as}(\sqrt{n}\hat{\Gamma}_{m}) &= \operatorname{Var}_{as}(\sqrt{n}\gamma_{m}) + \Phi_{m}\operatorname{Var}_{as}(\sqrt{n}(\hat{\theta}_{n} - \theta_{0}))\Phi'_{m} \\ &+ \Phi_{m}\operatorname{Cov}_{as}(\sqrt{n}(\hat{\theta}_{n} - \theta_{0}),\sqrt{n}\gamma_{m}) \\ &+ \operatorname{Cov}_{as}(\sqrt{n}\gamma_{m},\sqrt{n}(\hat{\theta}_{n} - \theta_{0}))\Phi'_{m} \\ &= \Sigma_{\gamma_{m}} + \Phi_{m}\Sigma_{\hat{\theta}_{n}}\Phi'_{m} + \Phi_{m}\Sigma_{\hat{\theta}_{n},\gamma_{m}} + \Sigma'_{\hat{\theta}_{n},\gamma_{m}}\Phi'_{m}.\end{aligned}$$

From a Taylor expansion about θ_0 of vec $\hat{\Gamma}_e(0)$ we have, vec $\hat{\Gamma}_e(0) = \text{vec } \gamma(0) + O_P(n^{-1/2})$. Moreover, $\sqrt{n}(\text{vec } \gamma(0) - E \text{ vec } \gamma(0)) = O_P(1)$ by the CLT for mixing processes. Thus $\sqrt{n}(\hat{S}_e \otimes \hat{S}_e - S_e \otimes S_e) = O_P(1)$ and, using (3) and the ergodic theorem, we obtain

$$n\left\{\operatorname{vec}(\hat{S}_{e}^{-1}\hat{\Gamma}_{e}(h)\hat{S}_{e}^{-1}) - \operatorname{vec}(S_{e}^{-1}\hat{\Gamma}_{e}(h)S_{e}^{-1})\right\}$$

$$= n\left\{(\hat{S}_{e}^{-1}\otimes\hat{S}_{e}^{-1})\operatorname{vec}\hat{\Gamma}_{e}(h) - (S_{e}^{-1}\otimes S_{e}^{-1})\operatorname{vec}\hat{\Gamma}_{e}(h)\right\}$$

$$= n\left\{(\hat{S}_{e}\otimes\hat{S}_{e})^{-1}\operatorname{vec}\hat{\Gamma}_{e}(h) - (S_{e}\otimes S_{e})^{-1}\operatorname{vec}\hat{\Gamma}_{e}(h)\right\}$$

$$= (\hat{S}_{e}\otimes\hat{S}_{e})^{-1}\sqrt{n}(S_{e}\otimes S_{e} - \hat{S}_{e}\otimes\hat{S}_{e})(S_{e}\otimes S_{e})^{-1}\sqrt{n}\operatorname{vec}\hat{\Gamma}_{e}(h)$$

$$= O_{P}(1).$$

In the previous equalities we also use $\operatorname{vec}(ABC) = (C' \otimes A) \operatorname{vec}(B)$ and $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ when A and B are invert-

ible. It follows that

$$\hat{\rho}_m = \left(\left\{ \operatorname{vec} \hat{R}_e(1) \right\}', \dots, \left\{ \operatorname{vec} \hat{R}_e(m) \right\}' \right)' \\ = \left(\left\{ (\hat{S}_e \otimes \hat{S}_e)^{-1} \operatorname{vec} \hat{\Gamma}_e(1) \right\}', \dots, \left\{ (\hat{S}_e \otimes \hat{S}_e)^{-1} \operatorname{vec} \hat{\Gamma}_e(m) \right\}' \right)' \\ = \left\{ I_m \otimes (\hat{S}_e \otimes \hat{S}_e)^{-1} \right\} \hat{\Gamma}_m = \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\} \hat{\Gamma}_m + O_P(n^{-1}).$$

We now obtain (4) from (3). Hence, we have

$$\operatorname{Var}(\sqrt{n}\hat{\rho}_m) = \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\} \Sigma_{\hat{\Gamma}_m} \left\{ I_m \otimes (S_e \otimes S_e)^{-1} \right\}.$$

The proof is complete. \Box

Proof of Theorem 6.2. The proof is similar to that given by Francq, Roy and Zakoïan (2005) for Theorem 5.1. \Box

References

- Ahn, S. K. (1988) Distribution for residual autocovariances in multivariate autoregressive models with structured parameterization. *Biometrika* 75, 590–93.
- Andrews, D.W.K. (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. *Econometrica* 59, 817–858.
- Arbués, I. (2008) An extended portmanteau test for VARMA models with mixing nonlinear constraints, *Journal of Time Series Analysis* 29, 741– 761.
- Bauwens, L., Laurent, S. and Rombouts, J.V.K. (2006) Multivariate GARCH models: a survey. *Journal of Applied Econometrics* 21, 79–109.
- Boubacar Mainassara, Y. and Francq, C. (2009) Estimating structural VARMA models with uncorrelated but non-independent error terms. *Working Papers*, http://perso.univ-lille3.fr/ cfrancq/pub.html.

- Box, G. E. P. and Pierce, D. A. (1970) Distribution of residual autocorrelations in autoregressive integrated moving average time series models. *Journal of the American Statistical Association* 65, 1509–26.
- Brockwell, P. J. and Davis, R. A. (1991) *Time series: theory and methods.* Springer Verlag, New York.
- Chabot-Hallé, D. and Duchesne, P. (2008) Diagnostic checking of multivariate nonlinear time series models with martingale difference errors, *Statistics and Probability Letters* 78, 997–1005.
- Chitturi, R. V. (1974) Distribution of residual autocorrelations in multiple autoregressive schemes. Journal of the American Statistical Association 69, 928–934.
- Davydov, Y. A. (1968) Convergence of Distributions Generated by Stationary Stochastic Processes. Theory of Probability and Applications 13, 691–696.
- den Hann, W.J. and Levin, A. (1997) A Practitioner's Guide to Robust Covariance Matrix Estimation. In Handbook of Statistics 15, Rao, C.R. and G.S. Maddala (eds), 291–341.
- Dufour, J-M., and Pelletier, D. (2005) Practical methods for modelling weak VARMA processes: identification, estimation and specification with a macroeconomic application. Technical report, Département de sciences économiques and CIREQ, Université de Montréal, Montréal, Canada.
- Francq, C. and Raïssi, H. (2006) Multivariate Portmanteau Test for Autoregressive Models with Uncorrelated but Nonindependent Errors, *Journal of Time Series Analysis* 28, 454–470.
- Francq, C., Roy, R. and Zakoïan, J-M. (2005) Diagnostic checking in ARMA Models with Uncorrelated Errors, *Journal of the American Sta*tistical Association 100, 532–544.
- Francq, and Zakoïan, J-M. (1998) Estimating linear representations of nonlinear processes, Journal of Statistical Planning and Inference 68, 145–165.

- Francq, and Zakoïan, J-M. (2005) Recent results for linear time series models with non independent innovations. In *Statistical Modeling and Analysis for Complex Data Problems*, Chap. 12 (eds P. DUCHESNE and B. RÉMILLARD). New York: Springer Verlag, 137–161.
- Herrndorf, N. (1984) A Functional Central Limit Theorem for Weakly Dependent Sequences of Random Variables. *The Annals of Probability* 12, 141–153.
- Hosking, J. R. M. (1980) The multivariate portmanteau statistic, *Journal of the American Statistical Association* 75, 602–608.
- Hosking, J. R. M. (1981a) Equivalent forms of the multivariate portmanteau statistic, *Journal of the Royal Statistical Society* B 43, 261–262.
- Hosking, J. R. M. (1981b) Lagrange-tests of multivariate time series models, *Journal of the Royal Statistical Society* B 43, 219–230.
- Jeantheau, T. (1998) Strong consistency of estimators for multivariate ARCH models, *Econometric Theory* 14, 70–86.
- Li, W. K. and McLeod, A. I. (1981) Distribution of the residual autocorrelations in multivariate ARMA time series models, *Journal of the Royal Statistical Society* B 43, 231–239.
- Lütkepohl, H. (1993) Introduction to multiple time series analysis. Springer Verlag, Berlin.
- Lütkepohl, H. (2005) New introduction to multiple time series analysis. Springer Verlag, Berlin.
- Magnus, J.R. and H. Neudecker (1988) Matrix Differential Calculus with Application in Statistics and Econometrics. New-York, Wiley.
- McLeod, A. I. (1978) On the distribution of residual autocorrelations in Box-Jenkins models, *Journal of the Royal Statistical Society* B 40, 296– 302.
- Newey, W.K., and West, K.D. (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. *Econometrica* 55, 703–708.

- Reinsel, G. C. (1997) Elements of multivariate time series Analysis. Second edition. Springer Verlag, New York.
- Romano, J. L. and Thombs, L. A. (1996) Inference for autocorrelations under weak assumptions, *Journal of the American Statistical As*sociation 91, 590–600.