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Abstract

We consider portmanteau tests for testing the adequacy of vector
autoregressive moving-average (VARMA) models under the assump-
tion that the errors are uncorrelated but not necessarily independent.
We relax the standard independence assumption to extend the range
of application of the VARMA models, and allow to cover linear rep-
resentations of general nonlinear processes. We first study the joint
distribution of the quasi-maximum likelihood estimator (QMLE) or
the least squared estimator (LSE) and the noise empirical autocovari-
ances. We then derive the asymptotic distribution of residual empirical
autocovariances and autocorrelations under weak assumptions on the
noise. We deduce the asymptotic distribution of the Ljung-Box (or
Box-Pierce) portmanteau statistics for VARMA models with noninde-
pendent innovations. Under iid assumptions on the noise, it is known
that the asymptotic distribution of the portmanteau tests is that of
a weighted sum of independent chi-squared random variables. The
asymptotic distribution can be quite different when the independence
assumption is relaxed. Consequently, the usual chi-squared distribu-
tion does not provide an adequate approximation to the distribution
of the Box-Pierce goodness-of fit portmanteau test. Hence we pro-
pose a method to adjust the critical values of the portmanteau tests.
Monte carlo experiments illustrate the finite sample performance of
the modified portmanteau test.

Keywords: Goodness-of-fit test, QMLE/LSE, Box-Pierce and Ljung-Box port-

manteau tests, residual autocorrelation, Structural representation, weak VARMA

models.

1 Introduction

The vector autoregressive moving-average (VARMA) models are used in time
series analysis and econometrics to represent multivariate time series (see
Reinsel, 1997, Lütkepohl, 2005). These VARMA models are a natural exten-
sion of the univariate ARMA models, which constitute the most widely used
class of univariate time series models (see e.g. Brockwell and Davis, 1991).
The sub-class of vector autoregressive (VAR) models has been studied in the
econometric literature (see also Lütkepohl, 1993).

2



The validity of the different steps of the traditional methodology of Box
and Jenkins, identification, estimation and validation, depends on the noises
properties. After identification and estimation of the vector autoregressive
moving-average processes, the next important step in the VARMA modeling
consists in checking if the estimated model fits satisfactory the data. This
adequacy checking step allows to validate or invalidate the choice of the
orders p and q. In VARMA(p, q) models, the choice of p and q is particularly
important because the number of parameters, (p+ q+2)d2, quickly increases
with p and q, which entails statistical difficulties.

In particular, the selection of too large orders p and q has the effect
of introducing terms that are not necessarily relevant in the model, which
generates statistical difficulties leads to a loss of precision in parameter es-
timation. Conversely, the selection of too small orders p and q causes loss
some of information that can be detected by a correlation of residuals.

Thus it is important to check the validity of a VARMA(p, q) model, for a
given order p and q. This paper is devoted to the problem of the validation
step of VARMA representations of multivariate processes. This validation
stage is not only based on portmanteau tests, but also on the examination of
the autocorrelation function of the residuals. Based on the residual empirical
autocorrelations, Box and Pierce (1970) (BP hereafter) derived a goodness-
of-fit test, the portmanteau test, for univariate strong ARMA models. Ljung
and Box (1978) (LB hereafter) proposed a modified portmanteau test which
is nowadays one of the most popular diagnostic checking tool in ARMA mod-
eling of time series. The multivariate version of the BP portmanteau statistic
was introduced by Chitturi (1974). We use this so-called portmanteau tests
considered by Chitturi (1974) and Hosking (1980) for checking the overall
significance of the residual autocorrelations of a VARMA(p, q) model (see
also Hosking, 1981a,b; Li and McLeod, 1981; Ahn, 1988). Hosking (1981a)
gave several equivalent forms of this statistic. Arbués (2008) proposed an
extended portmanteau test for VARMA models with mixing nonlinear con-
straints.

The papers on the multivariate version of the portmanteau statistic are
generally under the assumption that the errors ǫt are independent. This
independence assumption is restrictive because it precludes conditional het-
eroscedasticity and/ or other forms of nonlinearity (see Francq and Zakoïan,
2005, for a review on weak univariate ARMA models). Relaxing this indepen-
dence assumption allows to cover linear representations of general nonlinear
processes and to extend the range of application of the VARMA models.
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VARMA models with nonindependent innovations (i.e. weak VARMA mod-
els) have been less studied than VARMA models with iid errors (i.e. strong
VARMA models).

The asymptotic theory of weak ARMA model validation is mainly limited
to the univariate framework (see Francq and Zakoïan, 2005).

In the multivariate analysis, notable exceptions are Dufour and Pelletier
(2005) who study the choice of the order p and q of VARMA models under
weak assumptions on the innovation process, Francq and Raïssi (2007) who
study portmanteau tests for weak VAR models, Chabot-Hallé and Duchesne
(2008) who study the asymptotic distribution of LSE and portmanteau test
for periodic VAR in which the error term is a martingale difference sequence,
and Boubacar Mainassara and Francq (2009) who study the consistency and
the asymptotic normality of the QMLE for weak VARMA model. The main
goal of the present article is to complete the available results concerning
the statistical analysis of weak VARMA models by considering the adequacy
problem under a general error terms, which have not been studied in the
above-mentioned papers. We proceed to study the behaviour of the goodness-
of fit portmanteau tests when the ǫt are not independent. We will see that
the standard portmanteau tests can be quite misleading in the framework of
non independent errors. A modified version of these tests is thus proposed.

The paper is organized as follows. Section 2 presents the structural weak
VARMA models that we consider here. Structural forms are employed in
econometrics in order to introduce instantaneous relationships between eco-
nomic variables. Section 3 presents the results on the QMLE/LSE asymptotic
distribution obtained by Boubacar Mainassara and Francq (2009) when (ǫt)
satisfies mild mixing assumptions. Section 4 is devoted to the joint distribu-
tion of the QMLE/LSE and the noise empirical autocovariances. In Section
5 we derive the asymptotic distribution of residual empirical autocovariances
and autocorrelations under weak assumptions on the noise. In Section 6 it is
shown how the standard Ljung-Box (or Box-Pierce) portmanteau tests must
be adapted in the case of VARMA models with nonindependent innovations.
Numerical experiments are presented in Section 8. The proofs of the main
results are collected in the appendix.

We denote by A⊗B the Kronecker product of two matrices A and B, and
by vecA the vector obtained by stacking the columns of A. The reader is ref-
ereed to Magnus and Neudecker (1988) for the properties of these operators.
Let 0r be the null vector of Rr, and let Ir be the r × r identity matrix.

4



2 Model and assumptions

Consider a d-dimensional stationary process (Xt) satisfying a structural
VARMA(p, q) representation of the form

A00Xt −
p
∑

i=1

A0iXt−i = B00ǫt −
q
∑

i=1

B0iǫt−i, ∀t ∈ Z = {0,±1, . . . }, (1)

where ǫt is a white noise, namely a stationary sequence of centered and un-
correlated random variables with a non singular variance Σ0. It is customary
to say that (Xt) is a strong VARMA(p, q) model if (ǫt) is a strong white
noise, that is, if it satisfies

A1: (ǫt) is a sequence of independent and identically distributed (iid)
random vectors, Eǫt = 0 and Var (ǫt) = Σ0.

We say that (1) is a weak VARMA(p, q) model if (ǫt) is a weak white noise,
that is, if it satisfies

A1’: Eǫt = 0, Var (ǫt) = Σ0, and Cov (ǫt, ǫt−h) = 0 for all t ∈ Z and all
h 6= 0.

Assumption A1 is clearly stronger than A1’. The class of strong VARMA
models is often considered too restrictive by practitioners. The standard
VARMA(p, q) form, which is sometimes called the reduced form, is obtained
for A00 = B00 = Id. Let [A00 . . . A0pB00 . . . B0q] be the d× (p+ q+2)d matrix
of VAR and MA coefficients. The parameter θ0 = vec [A00 . . . A0pB00 . . . B0q]
belongs to the compact parameter space Θ ⊂ R

k0 , where k0 = (p + q + 2)d2

is the number of unknown parameters in VAR and MA parts.
It is important to note that, we cannot work with the structural repre-

sentation (1) because it is not identified. The following assumption ensure
the identification of the structural VARMA models.

A2: For all θ ∈ Θ, θ 6= θ0, we have A−1
0 B0B

−1
θ (L)Aθ(L)Xt 6= A−1

00 B00ǫt
with non zero probability, or A−1

0 B0ΣB
′
0A

−1′

0 6= A−1
00 B00Σ0B

′
00A

−1′

00 .

The previous identifiability assumption is satisfied when the parameter space
Θ is sufficiently constrained.

For θ ∈ Θ, such that θ = vec [A0 . . . ApB0 . . . Bq], write Aθ(z) = A0 −
∑p

i=1Aiz
i and Bθ(z) = B0 −

∑q
i=1Biz

i. We assume that Θ corresponds to
stable and invertible representations, namely
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A3: for all θ ∈ Θ, we have detAθ(z) detBθ(z) 6= 0 for all |z| ≤ 1.

A4: Matrix Σ0 is positive definite.

To show the strong consistency, we will use the following assumptions.

A5: The process (ǫt) is stationary and ergodic.

Note that A5 is entailed by A1, but not by A1
′. Note that (ǫt) can

be replaced by (Xt) in A5, because Xt = A−1
θ0
(L)Bθ0(L)ǫt and ǫt =

B−1
θ0
(L)Aθ0(L)Xt, where L stands for the backward operator.

3 Least Squares Estimation under non-iid in-

novations

Let X1, . . . , Xn be observations of a process satisfying the VARMA represen-
tation (1). Let θ ∈ Θ and A0 = A0(θ), . . . , Ap = Ap(θ), B0 = B0(θ), . . . , Bq =
Bq(θ),Σ = Σ(θ) such that θ = vec [A0 . . . Ap B0 . . . Bq]. Note that from A3
the matrices A0 and B0 are invertible. Introducing the innovation process
et = A−1

00 B00ǫt, the structural representation Aθ0(L)Xt = Bθ0(L)ǫt can be
rewritten as the reduced VARMA representation

Xt −
p
∑

i=1

A−1
00 A0iXt−i = et −

q
∑

i=1

A−1
00 B0iB

−1
00 A00et−i. (2)

Note that et(θ0) = et. For simplicity, we will omit the notation θ in all
quantities taken at the true value, θ0. Given a realization X1, X2, . . . , Xn,
the variable et(θ) can be approximated, for 0 < t ≤ n, by ẽt(θ) defined
recursively by

ẽt(θ) = Xt −
p
∑

i=1

A−1
0 AiXt−i +

q
∑

i=1

A−1
0 BiB

−1
0 A0ẽt−i(θ),

where the unknown initial values are set to zero: ẽ0(θ) = · · · = ẽ1−q(θ) =
X0 = · · · = X1−p = 0. The gaussian quasi-likelihood is given by

Ln(θ,Σe) =
n
∏

t=1

1

(2π)d/2
√
det Σe

exp

{

−1

2
ẽ′t(θ)Σ

−1
e ẽt(θ)

}

, Σe = A−1
0 B0ΣB

′
0A

−1′

0 .
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A quasi-maximum likelihood (QML) of θ and Σe are a measurable solution
(θ̂n, Σ̂e) of

(θ̂n, Σ̂e) = argmin
θ,Σe

{

log(det Σe) +
1

n

n
∑

t=1

ẽt(θ)Σ
−1
e ẽ′t(θ)

}

.

Under the following additional assumptions, Boubacar Mainassara and
Francq (2009) showed respectively in Theorem 1 and Theorem 2 the con-
sistency and the asymptotic normality of the QML estimator of weak multi-
variate ARMA model.

Assume that θ0 is not on the boundary of the parameter space Θ.

A6: We have θ0 ∈
◦

Θ, where
◦

Θ denotes the interior of Θ.

We denote by αǫ(k), k = 0, 1, . . . , the strong mixing coefficients of the process
(ǫt). The mixing coefficients of a stationary process ǫ = (ǫt) are denoted by

αǫ(k) = sup
A∈σ(ǫu,u≤t),B∈σ(ǫu,u≥t+h)

|P (A ∩B)− P (A)P (B)| .

The reader is referred to Davidson (1994) for details about mixing assump-
tions.

A7: We have E‖ǫt‖4+2ν < ∞ and
∑∞

k=0 {αǫ(k)}
ν

2+ν < ∞ for some ν > 0.

One of the most popular estimation procedure is that of the least squares
estimator (LSE) minimizing

log det Σ̂e = log det

{

1

n

n
∑

t=1

ẽt(θ̂)ẽ
′
t(θ̂)

}

,

or equivalently

det Σ̂e = det

{

1

n

n
∑

t=1

ẽt(θ̂)ẽ
′
t(θ̂)

}

.

For the processes of the form (2), under A1’, A2-A7, it can be shown (see
e.g. Boubacar Mainassara and Francq 2009), that the LS estimator of θ
coincides with the gaussian quasi-maximum likelihood estimator (QMLE).
More precisely, θ̂n satisfies, almost surely,

Qn(θ̂n) = min
θ∈Θ

Qn(θ),
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where

Qn(θ) = log det

{

1

n

n
∑

t=1

ẽt(θ)ẽ
′
t(θ)

}

or Qn(θ) = det

{

1

n

n
∑

t=1

ẽt(θ)ẽ
′
t(θ)

}

.

To obtain the consistency and asymptotic normality of the QMLE/LSE, it
will be convenient to consider the functions

On(θ) = log det Σn or On(θ) = det Σn,

where Σn = Σn(θ) = n−1
∑n

t=1 et(θ)e
′
t(θ). Under A1’, A2-A7 or A1-A4 and

A6, let θ̂n be the LS estimate of θ0 by maximizing

On(θ) = log det

{

1

n

n
∑

t=1

et(θ)e
′
t(θ)

}

.

In the univariate case, Francq and Zakoïan (1998) showed the asymptotic
normality of the LS estimator under mixing assumptions. This remains valid
of the multivariate LS estimator. Then under the assumptions A1’, A2-A7,√
n
(

θ̂n − θ0

)

is asymptotically normal with mean 0 and covariance matrix

Σθ̂n
:= J−1IJ−1, where J = J(θ0) and I = I(θ0), with

J(θ) = lim
n→∞

1

n

∂2

∂θ∂θ′
Qn(θ) a.s. and I(θ) = lim

n→∞
Var

1√
n

∂

∂θ
Qn(θ).

In the standard strong VARMA case, i.e. when A5 is replaced by the
assumption A1 that (ǫt) is iid, we have I = J , so that Σθ̂n

= J−1.

4 Joint distribution of θ̂n and the noise empir-

ical autocovariances

Let êt = ẽt(θ̂n) be the LS residuals when p > 0 or q > 0, and let êt = et = Xt

when p = q = 0. When p+ q 6= 0, we have êt = 0 for t ≤ 0 and t > n and

êt = Xt −
p
∑

i=1

A−1
0 (θ̂n)Ai(θ̂n)X̂t−i +

q
∑

i=1

A−1
0 (θ̂n)Bi(θ̂n)B

−1
0 (θ̂n)A0(θ̂n)êt−i,
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for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1. Let,
Σ̂e0 = Γ̂e(0) = n−1

∑n
t=1 êtê

′
t. We denote by

γ(h) =
1

n

n
∑

t=h+1

ete
′
t−h and Γ̂e(h) =

1

n

n
∑

t=h+1

êtê
′
t−h

the white noise "empirical" autocovariances and residual autocovariances. It
should be noted that γ(h) is not a statistic (unless if p = q = 0) because it
depends on the unobserved innovations et = et(θ0). For a fixed integer m ≥ 1,
let

γm =
(

{vecγ(1)}′ , . . . , {vecγ(m)}′
)′

and

Γ̂m =

(

{

vecΓ̂e(1)
}′

, . . . ,
{

vecΓ̂e(m)
}′
)′

,

and let

Γ(ℓ, ℓ′) =

∞
∑

h=−∞

E
(

{et−ℓ ⊗ et} {et−h−ℓ′ ⊗ et−h}′
)

,

for (ℓ, ℓ′) 6= (0, 0). For the univariate ARMA model, Francq, Roy and Zakoïan
(2005) have showed in Lemma A.1 that |Γ(ℓ, ℓ′)| ≤ Kmax(ℓ, ℓ′) for some
constant K, which is sufficient to ensure the existence of these matrices. We
can generalize this result for the multivariate ARMA model. Then we obtain
‖Γ(ℓ, ℓ′)‖ ≤ Kmax(ℓ, ℓ′) for some constant K. The proof is similar to the
univariate case.

We are now able to state the following theorem, which is an extension of
a result given in Francq, Roy and Zakoïan (2005).

Theorem 4.1 Assume p > 0 or q > 0. Under Assumptions A1’-A2-A7 or

A1-A4, and A6, as n → ∞,
√
n(γm, θ̂n − θ0)

′ d⇒ N (0,Ξ) where

Ξ =

(

Σγm Σγm,θ̂n

Σ′

γm,θ̂n
Σθ̂n

)

,

with Σγm = {Γ(ℓ, ℓ′)}1≤ℓ,ℓ′≤m , Σ′

γm,θ̂n
= Cov(

√
nJ−1Yn,

√
nγm) and Σθ̂n

=

Varas(
√
nJ−1Yn) = J−1IJ−1.
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5 Asymptotic distribution of residual empirical

autocovariances and autocorrelations

Let the diagonal matrices

Se = Diag (σe(1), . . . , σe(d)) and Ŝe = Diag (σ̂e(1), . . . , σ̂e(d)) ,

where σ2
e(i) is the variance of the i-th coordinate of et and σ̂2

e(i) is its sample
estimate, i.e. σe(i) =

√

Ee2it and σ̂e(i) =
√

n−1
∑n

t=1 ê
2
it. The theoretical

and sample autocorrelations at lag ℓ are respectively defined by Re(ℓ) =
S−1
e Γe(ℓ)S

−1
e and R̂e(ℓ) = Ŝ−1

e Γ̂e(ℓ)Ŝ
−1
e , with Γe(ℓ) := Eete

′
t−ℓ = 0 for all

ℓ 6= 0. Consider the vector of the first m sample autocorrelations

ρ̂m =

(

{

vecR̂e(1)
}′

, . . . ,
{

vecR̂e(m)
}′
)′

.

Theorem 5.1 Under Assumptions A1-A4 and A6 or A1’, A2-A7,

√
nΓ̂m ⇒ N

(

0,ΣΓ̂m

)

and
√
nρ̂m ⇒ N (0,Σρ̂m) where,

ΣΓ̂m
= Σγm + ΦmΣθ̂n

Φ′
m + ΦmΣθ̂n,γm

+ Σ′

θ̂n,γm
Φ′

m (3)

Σρ̂m =
{

Im ⊗ (Se ⊗ Se)
−1
}

ΣΓ̂m

{

Im ⊗ (Se ⊗ Se)
−1
}

(4)

and Φm is given by (19) in the proof of this Theorem.

6 Limiting distribution of the portmanteau

statistics

Box and Pierce (1970) (BP hereafter) derived a goodness-of-fit test, the port-
manteau test, for univariate strong ARMA models. Ljung and Box (1978)
(LB hereafter) proposed a modified portmanteau test which is nowadays one
of the most popular diagnostic checking tool in ARMA modeling of time
series. The multivariate version of the BP portmanteau statistic was intro-
duced by Chitturi (1974). Hosking (1981a) gave several equivalent forms of
this statistic. Basic forms are
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Pm = n
m
∑

h=1

Tr
(

Γ̂′
e(h)Γ̂

−1
e (0)Γ̂e(h)Γ̂

−1
e (0)

)

= nρ̂′m

(

Im ⊗
{

R̂−1
e (0)⊗ R̂−1

e (0)
})

ρ̂m.

Where the equalities is obtained from the elementary relations vec(AB) =
(I ⊗ A) vecB, (A⊗ B)(C ⊗D) = AC ⊗ BD and Tr(ABC) = vec(A′)′(C ′ ⊗
I) vecB. Similarly to the univariate LB portmanteau statistic, Hosking
(1980) defined the modified portmanteau statistic

P̃m = n2

m
∑

h=1

(n− h)−1Tr
(

Γ̂′
e(h)Γ̂

−1
e (0)Γ̂e(h)Γ̂

−1
e (0)

)

.

These portmanteau statistics are generally used to test the null hypothesis

H0 : (Xt) satisfies a VARMA(p, q) represntation

against the alternative

H1 : (Xt) does not admit a VARMA represntation or admits a

VARMA(p′, q′) represntation with p′ > p or q′ > q.

These portmanteau tests are very useful tools for checking the overall sig-
nificance of the residual autocorrelations. Under the assumption that the
data generating process (DGP) follows a strong VARMA(p, q) model, the
asymptotic distribution of the statistics Pm and P̃m is generally approxi-
mated by the χ2

d2m−k0
distribution (d2m > k0) (the degrees of freedom are

obtained by subtracting the number of freely estimated VARMA coefficients
from d2m). When the innovations are gaussian, Hosking (1980) found that
the finite-sample distribution of P̃m is more nearly χ2

d2(m−(p+q)) than that of
Pm. From Theorem 5.1 we deduce the following result, which gives the exact
asymptotic distribution of the standard portmanteau statistics Pm. We will
see that the distribution may be very different from the χ2

d2m−k0
in the case

of VARMA(p, q) models.

Theorem 6.1 Under Assumptions A1-A4 and A6 or A1’, A2-A7, the
statistics Pm and P̃m converge in distribution, as n → ∞, to

Zm(ξm) =

d2m
∑

i=1

ξi,d2mZ
2
i

11



where ξm = (ξ1,d2m, . . . , ξd2m,d2m)
′ is the vector of the eigenvalues of the matrix

Ωm =
(

Im ⊗ Σ−1/2
e ⊗ Σ−1/2

e

)

ΣΓ̂m

(

Im ⊗ Σ−1/2
e ⊗ Σ−1/2

e

)

,

and Z1, . . . , Zm are independent N (0, 1) variables.

It is seen in Theorem 6.1, that the asymptotic distribution of the BP
and LB portmanteau tests depends of the nuisance parameters involving
Σe, the matrix Φm and the elements of the matrix Ξ. We need an consistent
estimator of the above unknown matrices. The matrix Σe can be consistently
estimate by its sample estimate Σ̂e = Γ̂e(0). The matrix Φm can be easily
estimated by its empirical counterpart

Φ̂m =
1

n

n
∑

t=1

{

(

ê′t−1, . . . , ê
′
t−m

)′ ⊗ ∂et(θ0)

∂θ′

}

θ0=θ̂n

.

In the econometric literature the nonparametric kernel estimator, also called
heteroskedastic autocorrelation consistent (HAC) estimator (see Newey and
West, 1987, or Andrews, 1991), is widely used to estimate covariance ma-
trices of the form Ξ. An alternative method consists in using a para-
metric AR estimate of the spectral density of Υt = (Υ′

1 t,Υ
′
2 t)

′, where
Υ1 t =

(

e′t−1, . . . , e
′
t−m

)′ ⊗ et and Υ2 t = −2J−1 (∂e′t(θ0)/∂θ) Σ
−1
e0 et(θ0). In-

terpreting (2π)−1Ξ as the spectral density of the stationary process (Υt)
evaluated at frequency 0 (see Brockwell and Davis, 1991, p. 459). This ap-
proach, which has been studied by Berk (1974) (see also den Hann and Levin,
1997). So we have

Ξ = Φ
−1(1)ΣuΦ

−1(1)

when (Υt) satisfies an AR(∞) representation of the form

Φ(L)Υt := Υt +
∞
∑

i=1

ΦiΥt−i = ut, (5)

where ut is a weak white noise with variance matrix Σu. Since Υt is not
observable, let Υ̂t be the vector obtained by replacing θ0 by θ̂n in Υt. Let
Φ̂r(z) = Ik0+d2m +

∑r
i=1 Φ̂r,iz

i, where Φ̂r,1, . . . , Φ̂r,r denote the coefficients of

the LS regression of Υ̂t on Υ̂t−1, . . . , Υ̂t−r. Let ûr,t be the residuals of this

regression, and let Σ̂ûr
be the empirical variance of ûr,1, . . . , ûr,n.

We are now able to state the following theorem, which is an extension of
a result given in Francq, Roy and Zakoïan (2005).
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Theorem 6.2 In addition to the assumptions of Theorem 4.1, assume that
the process (Υt) admits an AR(∞) representation (5) in which the roots
of detΦ(z) = 0 are outside the unit disk, ‖Φi‖ = o(i−2), and Σu =
Var(ut) is non-singular. Moreover we assume that ‖ǫt‖8+4ν < ∞ and
∑∞

k=0{αX,ǫ(k)}ν/(2+ν) < ∞ for some ν > 0, where {αX,ǫ(k)}k≥0 denotes the
sequence of the strong mixing coefficients of the process (X ′

t, ǫ
′
t)

′. Then the
spectral estimator of Ξ

Ξ̂SP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) → Ξ

in probability when r = r(n) → ∞ and r3/n → 0 as n → ∞.

Let Ω̂m be the matrix obtained by replacing Ξ by Ξ̂ and Σe by Σ̂e in Ωm.
Denote by ξ̂m = (ξ̂1,d2m, . . . , ξ̂d2m,d2m)

′ the vector of the eigenvalues of Ω̂m. At
the asymptotic level α, the LB test (resp. the BP test) consists in rejecting
the adequacy of the weak VARMA(p, q) model when

P̃m > Sm(1− α) (resp. Pm > Sm(1− α))

where Sm(1− α) is such that P
{

Zm(ξ̂m) > Sm(1− α)
}

= α.

7 Implementation of the goodness-of-fit port-

manteau tests

Let X1, . . . , Xn, be observations of a d-multivariate process. For testing the
adequacy of weak VARMA(p, q) model, we use the following steps to imple-
ment the modified version of the portmanteau test.

1. Compute the estimates Â1, . . . , Âp, B̂1, . . . , B̂q by QMLE.

2. Compute the QMLE residuals êt = ẽt(θ̂n) when p > 0 or q > 0, and
let êt = et = Xt when p = q = 0. When p + q 6= 0, we have êt = 0 for
t ≤ 0 and t > n and

êt = Xt−
p
∑

i=1

A−1
0 (θ̂n)Ai(θ̂n)X̂t−i+

q
∑

i=1

A−1
0 (θ̂n)Bi(θ̂n)B

−1
0 (θ̂n)A0(θ̂n)êt−i,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
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3. Compute the residual autocovariances Γ̂e(0) = Σ̂e0 and Γ̂e(h) for h =

1, . . . , m and Γ̂m =

(

{

Γ̂e(1)
}′

, . . . ,
{

Γ̂e(m)
}′
)′

.

4. Compute the matrix Ĵ = 2n−1
∑n

t=1 (∂ê
′
t/∂θ) Σ̂

−1
e0 (∂êt/∂θ

′) .

5. Compute Υ̂t =
(

Υ̂′
1 t, Υ̂

′
2 t

)′

, where Υ̂1 t =
(

ê′t−1, . . . , ê
′
t−m

)′ ⊗ êt and

Υ̂2 t = −2Ĵ−1 (∂ê′t/∂θ) Σ̂
−1
e0 êt.

6. Fit the VAR(r) model

Φ̂r(L)Υ̂t :=

(

Id2m+k0 +
r
∑

i=1

Φ̂r,i(L)

)

Υ̂t = ûr,t.

The VAR order r can be fixed or selected by AIC information criteria.

7. Define the estimator

Ξ̂SP := Φ̂
−1
r (1)Σ̂ûr

Φ̂
′−1
r (1) =

(

Σ̂γm Σ̂γm,θ̂n

Σ̂′

γm,θ̂n
Σ̂θ̂n

)

, Σ̂ûr
=

1

n

n
∑

t=1

ûr,tû
′
r,t.

8. Define the estimator

Φ̂m =
1

n

n
∑

t=1

{

(

ê′t−1, . . . , ê
′
t−m

)′ ⊗ ∂et(θ0)

∂θ′

}

θ0=θ̂n

.

9. Define the estimators

Σ̂Γ̂m
= Σ̂γm + Φ̂mΣ̂θ̂n

Φ̂′
m + Φ̂mΣ̂θ̂n,γm

+ Σ̂′

θ̂n,γm
Φ̂′

m

Σ̂ρ̂m =
{

Im ⊗ (Ŝe ⊗ Ŝe)
−1
}

Σ̂Γ̂m

{

Im ⊗ (Ŝe ⊗ Ŝe)
−1
}

10. Compute the eigenvalues ξ̂m = (ξ̂1,d2m, . . . , ξ̂d2m,d2m)
′ of the matrix

Ω̂m =
(

Im ⊗ Σ̂
−1/2
e0 ⊗ Σ̂

−1/2
e0

)

Σ̂Γ̂m

(

Im ⊗ Σ̂
−1/2
e0 ⊗ Σ̂

−1/2
e0

)

.
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11. Compute the portmanteau statistics

Pm = nρ̂′m

(

Im ⊗
{

R̂−1
e (0)⊗ R̂−1

e (0)
})

ρ̂m and

P̃m = n2
m
∑

h=1

1

(n− h)
Tr
(

Γ̂′
e(h)Γ̂

−1
e (0)Γ̂e(h)Γ̂

−1
e (0)

)

.

12. Evaluate the p-values

P
{

Zm(ξ̂m) > Pm

}

and P
{

Zm(ξ̂m) > P̃m

}

, Zm(ξ̂m) =
d2m
∑

i=1

ξ̂i,d2mZ
2
i ,

using the Imhof algorithm (1961). The BP test (resp. the LB test)
rejects the adequacy of the weak VARMA(p, q) model when the first
(resp. the second) p-value is less than the asymptotic level α.

8 Numerical illustrations

In this section, by means of Monte Carlo experiments, we investigate the
finite sample properties of the test introduced in this paper. For illustrative
purpose, we only present the results of the modified and standard versions of
the LB test. The results concerning the BP test are not presented here, be-
cause they are very close to those of the LB test. The numerical illustrations
of this section are made with the softwares R (see http://cran.r-project.org/)
and FORTRAN (to compute the p-values using the Imohf algorithm, 1961).

8.1 Empirical size

To generate the strong and weak VARMA models, we consider the bivariate
model of the form

(

X1t

X2t

)

=

(

0 0
0 a1(2, 2)

)(

X1t−1

X2t−1

)

+

(

ǫ1t
ǫ2t

)

−
(

0 0
b1(2, 1) b1(2, 2)

)(

ǫ1t−1

ǫ2t−1

)

, (6)

where (a1(2, 2), b1(2, 1), b1(2, 2)) = (0.225,−0.313, 0.750). This model is a
VARMA(1,1) model in echelon form.
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8.1.1 Strong VARMA case

We first consider the strong VARMA case. To generate this model, we assume
that in (6) the innovation process (ǫt) is defined by

(

ǫ1,t
ǫ2,t

)

∼ IIDN (0, I2). (7)

We simulated N = 1, 000 independent trajectories of size n = 500, n = 1, 000
and n = 2, 000 of Model (6) with the strong Gaussian noise (7). For each of
these N replications we estimated the coefficients (a1(2, 2), b1(2, 1), b1(2, 2))
and we applied portmanteau tests to the residuals for different values of m.

For the standard LB test, the VARMA(1,1) model is rejected when
the statistic P̃m is greater than χ2

(4m−3)(0.95), where m is the number of
residual autocorrelations used in the LB statistic. This corresponds to
a nominal asymptotic level α = 5% in the standard case. We know
that the asymptotic level of the standard LB test is indeed α = 5%
when (a1(2, 2), b1(2, 1), b1(2, 2)) = (0, 0, 0). Note however that, even when
the noise is strong, the asymmptotic level is not exactly α = 5% when
(a1(2, 2), b1(2, 1), b1(2, 2)) 6= (0, 0, 0)).

For the modified LB test, the model is rejected when the statistic P̃m

is greater than Sm(0.95) i.e. when the p-value
(

P
{

Zm(ξ̂m) > P̃m

})

is less

than the asymptotic level α = 0.05. Let A and B be the (2×2)-matrices with
non zero elements a1(2, 2), b1(2, 1) and b1(2, 2). When the roots of det(I2 −
Az) det(I2 − Bz) = 0 are near the unit disk, the asymptotic distribution of
P̃m is likely to be far from its χ2

(4m−3) approximation. Table 1 displays the
relative rejection frequencies of the null hypothesis H0 that the DGP follows
an VARMA(1, 1) model, over the N = 1, 000 independent replications. As
expected the observed relative rejection frequency of the standard LB test is
very far from the nominal α = 5% when the number of autocorrelations used
in the LB statistic is m ≤ p+ q. This is in accordance with the results in the
literature on the standard VARMA models. In particular, Hosking (1980)
showed that the statistic P̃m has approximately the chi-squared distribution
χ2
d2(m−(p+q)) without any identifiability contraint. Thus the error of first kind

is well controlled by all the tests in the strong case, except for the standard
LB test when m ≤ p+ q. We draw the somewhat surprising conclusion that,
even in the strong VARMA case, the modified version may be preferable to
the standard one.
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Table 1: Empirical size (in %) of the standard and modified versions of the
LB test in the case of the strong VARMA(1, 1) model (6)-(7), with θ0 =
(0.225,−0.313, 0.750).

m = 1 m = 2
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 5.5 5.1 3.6 4.1 4.6 4.2
standard LB 22.0 21.3 21.7 7.1 7.9 7.5

m = 3 m = 4 m = 6
n 500 1, 000 2, 000 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 4.2 4.4 3.6 3.0 3.9 4.2 3.3 3.9 4.1
standard LB 5.9 5.8 5.3 4.9 5.2 5.2 5.3 5.0 4.6

8.1.2 Weak VARMA case

We now repeat the same experiments on different weak VARMA(1, 1) models.
We first assume that in (6) the innovation process (ǫt) is an ARCH(1) (i.e.
p = 0, q = 1) model

(

ǫ1 t

ǫ2 t

)

=

(

h11 t 0
0 h22 t

)(

η1 t

η2 t

)

(8)

where
(

h2
11 t

h2
22 t

)

=

(

c1
c2

)

+

(

a11 0
a21 a22

)(

ǫ21 t−1

ǫ22 t−1

)

,

with c1 = 0.3, c2 = 0.2, a11 = 0.45, a21 = 0.4 and a22 = 0.25. As ex-
pected, Table 2 shows that the standard LB test poorly performs to assess
the adequacy of this weak VARMA(1, 1) model. In view of the observed
relative rejection frequency, the standard LB test rejects very often the true
VARMA(1, 1). By contrast, the error of first kind is well controlled by the
modified version of the LB test. We draw the conclusion that, at least for this
particular weak VARMA model, the modified version is clearly preferable to
the standard one.

In two other sets of experiments, we assume that in (6) the innovation
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Table 2: Empirical size (in %) of the standard and modified versions of
the LB test in the case of the weak VARMA(1, 1) model (6)-(8), with θ0 =
(0.225,−0.313, 0.750).

m = 1 m = 2
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 6.7 7.5 8.5 4.6 4.1 6.5
standard LB 48.3 50.0 50.3 33.1 36.5 39.4

m = 3 m = 4 m = 6
n 500 1, 000 2, 000 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 4.4 4.4 5.4 2.8 4.1 5.5 4.0 3.3 4.9
standard LB 28.2 31.3 35.4 24.5 28.1 32.3 22.0 22.9 27.8

process (ǫt) is defined by
(

ǫ1,t
ǫ2,t

)

=

(

η1,tη2,t−1η1,t−2

η2,tη1,t−1η2,t−2

)

, with

(

η1,t
η2,t

)

∼ IIDN (0, I2), (9)

and then by
(

ǫ1,t
ǫ2,t

)

=

(

η1,t(|η1,t−1|+ 1)−1

η2,t(|η2,t−1|+ 1)−1

)

, with

(

η1,t
η2,t

)

∼ IIDN (0, I2), (10)

These noises are direct extensions of the weak noises defined by Romano
and Thombs (1996) in the univariate case. Table 3 shows that, once again,
the standard LB test poorly performs to assess the adequacy of this weak
VARMA(1, 1) model. In view of the observed relative rejection frequency, the
standard LB test rejects very often the true VARMA(1, 1), as in Table 2.
By contrast, the error of first kind is well controlled by the modified version
of the LB test. We draw again the conclusion that, for this particular weak
VARMA model, the modified version is clearly preferable to the standard
one.

By contrast, Table 4 shows that the error of first kind is well controlled by
all the tests in this particular weak VARMA model, except for the standard
LB test when m = 1. On this particular example, the two versions of the
LB test are almost equivalent when m > 1, but the modified version clearly
outperforms the standard version when m = 1.
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Table 3: Empirical size (in %) of the standard and modified versions of
the LB test in the case of the weak VARMA(1, 1) model (6)-(9), with θ0 =
(0.225,−0.313, 0.750).

m = 1 m = 2
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 2.4 2.4 4.1 4.0 3.3 3.2
standard LB 71.8 72.3 72.2 62.9 64.7 64.8

m = 3 m = 4
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 2.6 2.7 2.4 2.6 1.4 1.7
standard LB 54.7 54.2 58.5 48.4 50.7 51.0

8.2 Empirical power

In this part, we simulated N = 1, 000 independent trajectories of size n =
500, n = 1, 000 and n = 2, 000 of a weak VARMA(2, 2) defined by

(

X1t

X2t

)

=

(

0 0
0 a1(2, 2)

)(

X1,t−1

X2,t−1

)

+

(

0 0
0 a2(2, 2)

)(

X1,t−2

X2,t−2

)

+

(

ǫ1,t
ǫ2,t

)

−
(

0 0
b1(2, 1) b1(2, 2)

)(

ǫ1,t−1

ǫ2,t−1

)

−
(

0 0
b2(2, 1) b2(2, 2)

)(

ǫ1,t−2

ǫ2,t−2

)

, (11)

where the innovation process (ǫt) is an ARCH(1) model given by (8) and
where

{a1(2, 2), a2(2, 2), b1(2, 1), b1(2, 2), b2(2, 1), b2(2, 2)}
= (0.225, 0.061,−0.313, 0.750,−0.140,−0.160) .

For each of these N replications we fitted a VARMA(1, 1) model and per-
formed standard and modified LB tests based on m = 1, . . . , 4 residual auto-
correlations. The adequacy of the VARMA(1, 1) model is rejected when the
p-value is less than 5%. Table 5 displays the relative rejection frequencies
over the N = 1, 000 independent replications. In this example, the standard
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Table 4: Empirical size (in %) of the standard and modified versions of the
LB test in the case of the weak VARMA(1, 1) model (6)-(10), with θ0 =
(0.225,−0.313, 0.750).

m = 1 m = 2
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 5.0 4.4 4.9 4.9 3.6 5.1
standard LB 13.6 11.3 12.5 6.1 4.3 5.6

m = 3 m = 4 m = 6
n 500 1, 000 2, 000 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 4.5 4.3 5.6 4.3 4.2 5.5 3.7 4.1 4.3
standard LB 5.2 4.0 5.8 4.6 4.1 5.1 3.9 4.0 3.8

and modified versions of the LB test have similar powers, except for n = 500.
One could think that the modified version is slightly less powerful that the
standard version. Actually, the comparison made in Table 5 is not fair be-
cause the actual level of the standard version is generally very greater than
the 5% nominal level for this particular weak VARMA model (see Table 2).

Table 5: Empirical size (in %) of the standard and modified versions of the LB

test in the case of the weak VARMA(2, 2) model (11)-(8).

m = 1 m = 2
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 56.0 85.0 96.7 63.7 89.5 97.3
standard LB 98.2 100.0 100.0 97.1 99.9 100.0

m = 3 m = 4
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 59.6 91.1 97.2 51.0 89.3 97.8
standard LB 97.5 100.0 100.0 97.0 100.0 100.0

Table 6 displays the relative rejection frequencies among the N = 1, 000
independent replications. In this example, the standard and modified ver-
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sions of the LB test have very similar powers.

Table 6: Empirical size (in %) of the standard and modified versions of the LB

test in the case of the strong VARMA(2, 2) model (11)-(7).

m = 1 m = 2
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 93.1 100.0 100.0 96.2 100.0 100.0
standard LB 99.4 100.0 100.0 97.4 100.0 100.0

m = 3 m = 4
n 500 1, 000 2, 000 500 1, 000 2, 000

modified LB 97.1 100.0 100.0 96.3 100.0 100.0
standard LB 97.7 100.0 100.0 97.4 100.0 100.0

As a general conclusion concerning the previous numerical experiments,
one can say that the empirical sizes of the two versions are comparable, but
the error of first kind is better controlled by the modified version than by
the standard one. As expected, this latter feature holds for weak VARMA,
but, more surprisingly, it is also true for strong VARMA models when m is
small.

9 Appendix

For the proof of Theorem 4.1, we need respectively, the following lemmas on
the standard matrices derivatives and on the covariance inequality obtained
by Davydov (1968).

Lemma 1 If f(A) is a scalar function of a matrix A whose elements aij are
function of a variable x, then

∂f(A)

∂x
=
∑

i,j

∂f(A)

∂aij

∂aij
∂x

= Tr

{

∂f(A)

∂A′

∂A

∂x

}

. (12)

When A is invertible, we also have

∂ log |det(A)|
∂A′

= A−1 (13)
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Lemma 2 (Davydov (1968)) Let p, q and r three positive numbers such
that p−1 + q−1 + r−1 = 1. Davydov (1968) showed that

|Cov(X, Y )| ≤ K0‖X‖p‖Y ‖q [α {σ(X), σ(Y )}]1/r , (14)

where ‖X‖pp = EXp, K0 is an universal constant, and α {σ(X), σ(Y )} de-
notes the strong mixing coefficient between the σ-fields σ(X) and σ(Y ) gen-
erated by the random variables X and Y , respectively.

Proof of Theorem 4.1. Recall that

Qn(θ) = log det

{

1

n

n
∑

t=1

ẽt(θ)ẽ
′
t(θ)

}

and On(θ) = log det

{

1

n

n
∑

t=1

et(θ)e
′
t(θ)

}

.

In view of Theorem 1 in Boubacar Mainassara and Francq (2009) and A6,

we have almost surely θ̂n → θ0 ∈
◦

Θ. Thus ∂Qn(θ̂n)/∂θ = 0 for sufficiently
large n, and a standard Taylor expansion of the derivative of Qn about θ0,
taken at θ̂n, yields

0 =
√
n
∂Qn(θ̂n)

∂θ
=

√
n
∂Qn(θ0)

∂θ
+

∂2Qn(θ
∗)

∂θ∂θ′
√
n
(

θ̂n − θ0

)

=
√
n
∂On(θ0)

∂θ
+

∂2On(θ0)

∂θ∂θ′
√
n
(

θ̂n − θ0

)

+ oP (1), (15)

using arguments given in FZ (proof of Theorem 2), where θ∗ is between θ0
and θn. Thus, by standard arguments, we have from (15):

√
n
(

θ̂n − θ0

)

= −J−1
√
n
∂On(θ0)

∂θ
+ oP (1)

= J−1
√
nYn + oP (1)

where

Yn = −∂On(θ0)

∂θ
= − ∂

∂θ
log det

{

1

n

n
∑

t=1

et(θ0)e
′
t(θ0)

}

.

Showing that the initial values are asymptotically negligible, and using
(12) and (13), we have

∂On(θ)

∂θi
= Tr

{

∂ log |Σn|
∂Σn

∂Σn

∂θi

}

= Tr

{

Σ−1
n

∂Σn

∂θi

}

, (16)
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with
∂Σn

∂θi
=

2

n

n
∑

t=1

et(θ)
∂e′t(θ)

∂θi
.

Then, for 1 ≤ i ≤ k0 = (p+ q+2)d2, the i-th coordinate of the vector Yn

is of the form

Y (i)
n = −Tr

{

2

n

n
∑

t=1

Σ−1
e0 et(θ0)

∂e′t(θ0)

∂θi

}

, Σe0 = Σn(θ0).

It is easily shown that for ℓ, ℓ′ ≥ 1,

Cov(
√
n vec γ(ℓ),

√
n vec γ(ℓ′)) =

1

n

n
∑

t=ℓ+1

n
∑

t′=ℓ′+1

E
(

{et−ℓ ⊗ et} {et′−ℓ′ ⊗ et′}′
)

→ Γ(ℓ, ℓ′) as n → ∞,

Then, we have

Σγm = {Γ(ℓ, ℓ′)}1≤ℓ,ℓ′≤m

Cov(
√
nJ−1Yn,

√
n vec γ(ℓ)) = −

n
∑

t=ℓ+1

J−1E

(

∂On

∂θ
{et−ℓ ⊗ et}′

)

→ −
+∞
∑

h=−∞

2J−1E
(

Et {et−h−ℓ ⊗ et−h}′
)

,

where Et =

(

(

Tr
{

Σ−1
e0 et(θ0)

∂e′
t
(θ0)

∂θ1

})′

, . . . ,
(

Tr
{

Σ−1
e0 et(θ0)

∂e′
t
(θ0)

∂θk0

})′
)′

.

Then, we have

Cov(
√
nJ−1Yn,

√
nγm) → −

+∞
∑

h=−∞

2J−1E











Et













et−h−1
...

et−h−m






⊗ et−h







′









= Σ′

γm,θ̂n

Applying the central limit theorem (CLT) for mixing processes (see Her-
rndorf, 1984) we directly obtain
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Varas(
√
nJ−1Yn) = J−1IJ−1

= Σθ̂n

which shows the asymptotic covariance matrix of Theorem 4.1. It is clear
that the existence of these matrices is ensured by the Davydov (1968)
inequality (14) in Lemma 2. The proof is complete. 2

Proof of Theorem 5.1. Recall that

et(θ) = Xt −
∞
∑

i=1

Ci(θ)Xt−i = B
−1
θ (L)Aθ(L)Xt

where Aθ(L) = Id −
∑p

i=1AiL
i and Bθ(L) = Id −

∑q
i=1BiL

i with Ai =
A−1

0 Ai and Bi = A−1
0 BiB

−1
0 A0. For ℓ = 1, . . . , p and ℓ′ = 1, . . . , q, let

Aℓ = (aij,ℓ) and Bℓ′ = (bij,ℓ′).
We define the matrices A

∗
ij,h and B

∗
ij,h by

B
−1
θ (z)Eij =

∞
∑

h=0

A
∗
ij,hz

h, B
−1
θ (z)EijB

−1
θ (z)Aθ(z) =

∞
∑

h=0

B
∗
ij,hz

h, |z| ≤ 1

for h ≥ 0, where Eij = ∂Aℓ/∂aij,ℓ = ∂Bℓ′/∂bij,ℓ′ is the d × d matrix with 1
at position (i, j) and 0 elsewhere. Take A

∗
ij,h = B

∗
ij,h = 0 when h < 0. For

any aij,ℓ and bij,ℓ′ writing respectively the multivariate noise derivatives

∂et
∂aij,ℓ

= −B
−1
θ (L)EijXt−ℓ = −

∞
∑

h=0

A
∗
ij,hXt−h−ℓ (17)

and
∂et

∂bij,ℓ′
= B

−1
θ (L)EijB

−1
θ (L)Aθ(L)Xt−ℓ′ =

∞
∑

h=0

B
∗
ij,hXt−h−ℓ′. (18)

On the other hand, considering Γ̂(h) and γ(h) as values of the same function
at the points θ̂n and θ0, a Taylor expansion about θ0 gives

vec Γ̂e(h) = vec γ(h) +
1

n

n
∑

t=h+1

{

et−h(θ)⊗
∂et(θ)

∂θ′

+
∂et−h(θ)

∂θ′
⊗ et(θ)

}

θ=θ∗n

(θ̂n − θ0) +OP (1/n)

= vec γ(h) + E

(

et−h(θ0)⊗
∂et(θ0)

∂θ′

)

(θ̂n − θ0) +OP (1/n),
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where θ∗n is between θ̂n and θ0. The last equality follows from the consistency
of θ̂n and the fact that (∂et−h/∂θ

′) (θ0) is not correlated with et when h ≥ 0.
Then for h = 1, . . . , m,

Γ̂m :=

(

{

vecΓ̂e(1)
}′

, . . . ,
{

vecΓ̂e(m)
}′
)′

= γm + Φm(θ̂n − θ0) +OP (1/n),

where

Φm = E

















et−1
...

et−m






⊗ ∂et(θ0)

∂θ′











. (19)

In Φm, one can express (∂et/∂θ
′) (θ0) in terms of the multivariate derivatives

(17) and (18). From Theorem 4.1, we have obtained the asymptotic joint
distribution of γm and θ̂n− θ0, which shows that the asymptotic distribution
of

√
nΓ̂m, is normal, with mean zero and covariance matrix

Varas(
√
nΓ̂m) = Varas(

√
nγm) + ΦmVaras(

√
n(θ̂n − θ0))Φ

′
m

+ΦmCovas(
√
n(θ̂n − θ0),

√
nγm)

+Covas(
√
nγm,

√
n(θ̂n − θ0))Φ

′
m

= Σγm + ΦmΣθ̂n
Φ′

m + ΦmΣθ̂n,γm
+ Σ′

θ̂n,γm
Φ′

m.

From a Taylor expansion about θ0 of vec Γ̂e(0) we have, vec Γ̂e(0) = vec γ(0)+
OP (n

−1/2). Moreover,
√
n(vec γ(0) − E vec γ(0)) = OP (1) by the CLT for

mixing processes. Thus
√
n(Ŝe ⊗ Ŝe − Se ⊗ Se) = OP (1) and, using (3) and

the ergodic theorem, we obtain

n
{

vec(Ŝ−1
e Γ̂e(h)Ŝ

−1
e )− vec(S−1

e Γ̂e(h)S
−1
e )
}

= n
{

(Ŝ−1
e ⊗ Ŝ−1

e ) vec Γ̂e(h)− (S−1
e ⊗ S−1

e ) vec Γ̂e(h)
}

= n
{

(Ŝe ⊗ Ŝe)
−1 vec Γ̂e(h)− (Se ⊗ Se)

−1 vec Γ̂e(h)
}

= (Ŝe ⊗ Ŝe)
−1
√
n(Se ⊗ Se − Ŝe ⊗ Ŝe)(Se ⊗ Se)

−1
√
n vec Γ̂e(h)

= OP (1).

In the previous equalities we also use vec(ABC) = (C ′ ⊗
A) vec(B) and (A ⊗ B)−1 = A−1 ⊗ B−1 when A and B are invert-
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ible. It follows that

ρ̂m =

(

{

vecR̂e(1)
}′

, . . . ,
{

vecR̂e(m)
}′
)′

=

(

{

(Ŝe ⊗ Ŝe)
−1vecΓ̂e(1)

}′

, . . . ,
{

(Ŝe ⊗ Ŝe)
−1vecΓ̂e(m)

}′
)′

=
{

Im ⊗ (Ŝe ⊗ Ŝe)
−1
}

Γ̂m =
{

Im ⊗ (Se ⊗ Se)
−1
}

Γ̂m +OP (n
−1).

We now obtain (4) from (3). Hence, we have

Var(
√
nρ̂m) =

{

Im ⊗ (Se ⊗ Se)
−1
}

ΣΓ̂m

{

Im ⊗ (Se ⊗ Se)
−1
}

.

The proof is complete. 2

Proof of Theorem 6.2. The proof is similar to that given by Francq, Roy
and Zakoïan (2005) for Theorem 5.1. 2
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