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DIFFUSION MODELS OF MULTICOMPONENT MIXTURES IN THE LUNG ∗

L. Boudin1, 2, D. Götz3 and B. Grec4, 5

Abstract. In this work, we are interested in two different diffusion models for multicomponent mix-

tures. We numerically recover experimental results underlining the inadequacy of the usual Fick diffu-

sion model, and the importance of using the Maxwell-Stefan model in various situations. This model

nonlinearly couples the mole fractions and the fluxes of each component of the mixture. We then

consider a subregion of the lower part of the lung, in which we compare the two different models. We

first recover the fact that the Fick model is enough to model usual air breathing. In the case of chronic

obstructive bronchopneumopathies, a mixture of helium and oxygen is often used to improve a patient’s

situation. The Maxwell-Stefan model is then necessary to recover the experimental behaviour, and to

observe the benefit for the patient, namely an oxygen peak.

Introduction

The bronchial tree, which has a dyadic structure, can be schematically divided into two parts [15]. In the
upper part of the airways (generations 0 to 14), the main phenomenon putting the air in motion is the convection,
and the air can be described by the Navier-Stokes or the Stokes equations. In the lower part of the airways
(generations 15 to 23), the gas behaviour is mainly diffusive, since the global velocity of the air is almost zero.
We here consider this second distal part of the respiratory system, where the gaseous exchanges between the
air and the blood take place.

For the sake of simplicity, we neglect the convection in the distal part of the bronchial tree, and only focus
on the diffusive effects. Diffusion can be defined in a general way as the physical process that brings matter
from one region of a system to another using random motions at a molecular level, see [4], for instance. The
macroscopic diffusion model which is most commonly used is the Fick model (see, among many references, [6]
in the framework of the lung), where the flux of a given species is directly proportional to the concentration
gradient of this species. At this level, the relevant unknowns appear to be the concentrations of each species
(or any other proportional quantities).

There are several modelling issues in the diffusion phenomenon in the lung, which can be investigated: the
diffusion model itself, which we tackle here, but also the geometry of interest, which cannot be determined by
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4 MAP5, CNRS UMR 8145, Université Paris Descartes, F-75006 Paris, France;
e-mail: berenice.grec@parisdescartes.fr
5 Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
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biological imaging, and has a great importance for the space and time scales, or the mechanism of gas exchange
between the alveoli and the blood vessels through the alveolar membrane.

As far as the geometry is concerned, Kitaoka et al. [9] proposed a three-dimensional model of the human
pulmonary acinus as a gas exchange unit built with a labyrinthine algorithm generating branching ducts, that
completely fill a given space. Alveoli are attached to the inner walls of the space on study. They obtain
physically relevant values for the total alveolar surface and the numbers of alveolar ducts, alveolar sacs, and
alveoli. Mauroy also used the Kitaoka model of acinus in his PhD thesis [11].

Sapoval et al. [12] found out that efficient acini should be space-filling surfaces and should remain quite
small. The efficiency depends on both the acini design and the values of physical factors like diffusivities of the
gaseous components of the air in the airways and permeability of the membrane between the blood vessels and
the alveoli.

In this work, we aim to check the relevance of two different diffusion models. The first one is the Fick model,
which we already briefly presented. The main ideas of the second one were developed following independent
pioneering works of Maxwell and Stefan, and we shall then refer to the Maxwell-Stefan model, as in [10]. This
model takes into account the friction effects between different species.

We here show the shortcomings of the Fick model in some specific, but still realistic, situations in the lung.
We provide numerical comparisons between Fick and Maxwell-Stefan’s laws for the diffusion processes of various
mixtures in the lower airways. In the case when the respiratory system is healthy, we recover the facts that
both Fick and Maxwell-Stefan models are relevant, and that they provide results which are very close to each
other. On the other hand, when one deals with patients who suffer from a severe airway obstruction, in the
cases of chronic obstructive bronchopneumopathies (COBP), the ventilation has to happen faster. Thiriet et

al. [14] lead in vivo experiments and used a binary mixture of helium (79 %) and oxygen (21 %), which is usually
called heliox, to speed up the oxygen transport towards the lower airways, so that the diffusion and the gaseous
exchanges can more rapidly happen. We here point out, as suggested in [14], that when heliox is involved, the
Fick law does not apply anymore. In [1], Chang obtains the same kind of result using some considerations on
the model.

In our first section, we present the two diffusion processes of a multicomponent mixture, using the definition
of the fluxes by Fick’s and Maxwell-Stefan’s laws. Then, in Section 2, we recall and numerically repeat the
Duncan and Toor experiment that brought to light in the first place the interest of this more intricate model
than Fick’s. Eventually, we go back to the framework of the lung in Section 3 to compare the Fick and Maxwell-
Stefan laws for the air in a two-dimensional branch, and point out some cases when the Fick law does not hold
anymore.

1. Maxwell-Stefan vs. Fick’s laws

Consider a gaseous mixture with M components, and assume they constitute an ideal gas mixture. The
concentration ci of species i, 1 ≤ i ≤ M , depends on time t ≥ 0 and space location X ∈ R

N , 1 ≤ N ≤ 3. If
we denote ctot =

∑

cj the total concentration, the mole fraction xi of species i is defined by xi = ci/ctot. It
satisfies the following mass conservation equation:

∂txi + ∇X · Ni = 0, (1)

where Ni ∈ R
N is the molar flux of species i. The expression of Ni with respect to the mole fractions (xj)1≤j≤M

depends on the diffusion model one chooses. Both cases are detailed in Subsection 1.2. We first present a brief
physical derivation of Maxwell-Stefan’s law in a one-dimensional setting.

1.1. Derivation of the Maxwell-Stefan law in one dimension

For the sake of simplicity, we momentarily assume N = 1 and consider a one-dimensional diffusion following
the axis X := X1. The force acting on species i in a control volume is given by − dpi/ dX , where pi is the
partial pressure of species i in the mixture.
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Taking into account the ideal gas law pi = RTci, where R is the ideal gas constant and T the absolute
temperature, yields (RT/ci)(− dci/ dX) for the force per mole of species i. At the equilibrium, this force is
balanced by the drag (or friction) forces exerted by the other species in the mixture. It is standard to assume that
the drag force is proportional to the relative velocity as well as to the mole fraction of the other components.
The friction force between species i and j acting on species i then writes (RT/Dij)xj(ui − uj). Here, ui,
respectively uj, denote the molar velocity of species i, respectively j, and Dij is the Maxwell-Stefan diffusivity
(or binary diffusion coefficient) between the two components. The constant RT/Dij may then be seen as a drag
coefficient. Altogether, this gives the force balance for species i

−
1

ci

dci

dX
=
∑

j 6=i

1

Dij

xj(ui − uj).

If we multiply both sides of the previous equation by xi, and use Ni = ciui, we obtain

−
dxi

dX
=

1

ctot

∑

j 6=i

xjNi − xiNj

Dij

. (2)

Eventually, the reader is invited to check [10] for a better understanding of the physics in this kind of situation.

1.2. Flux models

The classical Fick law, which is mostly used for binary mixtures, writes, for any i,

Ni = −ctotFi∇Xxi, (3)

where Fi is the so-called effective diffusion coefficient of species i in the mixture. Since Fick’s law only holds
for binary mixtures, it means that, for a given species, one only considers the interaction of this species with
the whole mixture, and not with each species of the mixture. When Fi is constant, i.e. when the mixture keeps
the same conditions of temperature and pressure, and the components do not change a lot, the mole fraction
xi satisfies a linear heat equation, and is not related to the other mole fractions: the system is linear and fully
uncoupled.

In the multidimensional version of (2), the Maxwell-Stefan law writes, for any i,

−∇Xxi =
1

ctot

∑

j 6=i

xjNi − xiNj

Dij

. (4)

As already stated in 1.1, the coefficients Dij , i 6= j, in (4), are the binary diffusion coefficients between species
i and j, and happen to satisfy the symmetry property Dij = Dji.

We must emphasize that there is a linear dependence between the Maxwell-Stefan laws (4) of all the species.
Indeed, it is straightforward that summing (4) over i gives

M
∑

i=1

∇Xxi =
1

ctot





∑

i

∑

j 6=i

xjNi

Dij

−
∑

j

∑

i6=j

xiNj

Dij



 = 0, (5)

because of the symmetry property of the binary diffusion coefficients. Due to this dependence, we must add
another equation to our system. This equation must take into account the fact that the behaviour of the mixture
is purely diffusive, since we neglect the convection. That implies that there is no global pressure gradient in the
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domain, which means that, at each point, the total sum of the fluxes is zero, i.e.

M
∑

i=1

Ni = 0. (6)

Because of (1), we can then write that

∂t

(

M
∑

i=1

xi

)

= 0,

which corresponds to the total mass conservation:

M
∑

i=1

xi = 1. (7)

Thanks to (7), equation (6) is consistent with (5), and does not linearly depend on (4).

When one chooses the Maxwell-Stefan model, the PDEs satisfied by the mole fractions are not uncoupled
and linear anymore, as it was for Fick’s law. Because of (4), each flux is strongly related to the others and to
all the mole fractions.

Maxwell-Stefan’s law happens to be more relevant in numerous situations, which mainly rise in chemical
engineering, see [10]. We first point out its behaviour in the Duncan and Toor experiment, and then investigate
its relevance in the framework of the lower airways, as in [1–3,14]. We find out that the presence of the heliox
mixture implies that Fick’s law does not hold anymore.

2. Duncan and Toor’s experiment

In this section, we study the situation of the Duncan and Toor experiment [5], which provides a simple
example of a ternary gas mixture in which the classical Fick law does not hold. Let us first describe the setting
of this experiment. We consider two bulbs linked by a capillary tube, see Figure 1. The dimensions of the
device, which are recalled below, are given in detail in [5, 13].

l

d
1 R2

R

Figure 1. Setting of the Duncan and Toor experiment

The left bulb (bulb 1) has a volume of 77.99 cm3, and the right one (bulb 2) 78.63 cm3, which gives numerical
values for both bulb radii R1 = 26.49 mm and R2 = 26.58 mm. The length of the capillary tube joining the
bulbs is l = 85.9 mm and its diameter is d = 2.08 mm.

Duncan and Toor study an ideal gas mixture composed of hydrogen, nitrogen and carbon dioxide inside the
device. The initial values of the mole fractions of hydrogen (x1), nitrogen (x2) and carbon dioxide (x3) are
given by

Bulb 1: xin
1 = 0.000, xin

2 = 0.501, xin
3 = 0.499,

Bulb 2: xin

1 = 0.501, xin
2 = 0.499, xin

3 = 0.000.
(8)

For this mixture, the binary diffusion coefficients are the following:

D12 = 83.3 mm2 s−1, D13 = 68.0 mm2 s−1, D23 = 16.8 mm2 s−1. (9)
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After opening the stopcock separating the two bulbs, the diffusion of the three species is allowed to happen.
Asymptotically in time, the mole fractions reach an equilibrium, i.e. in that case, xeq

1
= 0.250, xeq

2
= 0.500 and

xeq

3
= 0.250 everywhere in the device. Note that species 2, i.e. nitrogen, is initially very close to the equilibrium.

We want to compare the behaviour given by our two flux laws defined in Subsection 1.2, for each component.
The effective diffusion coefficients can be computed thanks to the Wilke formula, see [16]. For any species i, we
have

Fi = (1 − xeq

i )

/





∑

j 6=i

xeq

j

Dij



 , (10)

which ensures, using (9),

F1 = 77.5 mm2 s−1, F2 = 28.0 mm2 s−1, F3 = 22.4 mm2 s−1. (11)

Note that (10) is often used to compute the effective diffusion coefficients, even though it should be limited to
the situation when species i is the only one which diffuses, the other components of the mixture being almost
stagnant, i.e. Nj ≃ 0 for any j 6= i. This means that the values of the effective diffusion coefficients given by
the Wilke formula are realistic and close to the real ones.

We want to numerically repeat the Duncan and Toor experiment, using the two-dimensional version of the
Freefem++ software [8]. It is possible because the device is axisymmetric. We can limit ourselves to consider
the upper part of a cutaway view of the device. The mole fractions and the fluxes do not depend on the angle
variable, and the angular component of the flux vectors are nil.

With Maxwell-Stefan’s laws, we solve the system given by the relation on the fluxes (6)–(7), the second being
a consequence of the first, and (1) and (4) for two of the three involved species, with initial data (8) and binary
diffusion coefficients given by (9). Using Fick’s laws, we solve the system given by (1) and (3) for any i, with
initial data (8) and effective diffusion coefficients given by (11).

Figure 2. Mole fractions x3 in the left bulb for a Maxwell-Stefan computation (t = 10 h)

We first check that, in both Fick and Maxwell-Stefan computations, the values of the mole fractions only
depend a little on the location in each bulb. Figure 2 shows, for instance in the Maxwell-Stefan case, that x3

is almost uniform in the left bulb after ten hours of the experiment, very close to 0.3317. That means that we
can equally consider the value of the mole fractions at (almost) every point inside each bulb.

We stick to the situation of the left bulb. On the right side, the situation is of course symmetric because
the system is closed. The behaviours of x1 and x3 obtained by Fick and Maxwell-Stefan computations are very
similar, as one can see on Figure 3. Nevertheless, we can note that there are some significant variations on the
values of x3. These variations can be explained by the nitrogen behaviour.

As we already stated, nitrogen has almost its equilibrium values in both bulbs, close to 0.5. If the Fick
computation brings the awaited behaviour, i.e. x2 ≃ constant, the Maxwell-Stefan one leads to an a priori

curious behaviour. One can check the plots on Figure 4.
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Figure 3. Comparison of the mole fractions (a) x1 and (b) x3
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Figure 4. Comparison of the mole fractions x2

In the original experiment by Duncan and Toor [5], they show that x2 behaves as predicted by the Maxwell-
Stefan law. The Fick law is not relevant anymore in this ternary mixture. We can here confirm that fact by
observing that the total mass conservation x1 + x2 + x3 = 1 for the Fickian mole fractions is not satisfied (the
difference goes up 11 % of the value of the sum), as it is shown on Figure 5.

Note that we used the Wilke formula (10) to compute the binary diffusion coefficients. We already emphasized
that this use of (10) can be discussed. Nevertheless, we believe that, in this situation, it is not the only reason
why mass is not numerically conserved. Indeed, we can see on Figure 5 that the plot is very similar to the one
of −x2, where x2 is plotted on Figure 4. Indeed, they share the same monotonicity at each time. We think that
the variations of the Fickian plot of x1 + x2 + x3 − 1 is mainly due to the fact that Fick’s law cannot generate
the behaviour of species 2, which is almost at the equilibrium. Maxwell-Stefan’s law accounts for the nitrogen
concentration variation, whereas the Fick model gives a constant concentration of this species.
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Figure 5. Plot of Fick computed x1 + x2 + x3 − 1

The physical behaviour of the three species involved in Duncan and Toor’s experiment is explained thanks to
the different friction properties of the diffusion pairs. The high concentration gradients of carbon dioxide and
hydrogen generate strong fluxes for these species. Due to the larger friction force between carbon dioxide and
nitrogen (with respect to the pair hydrogen-nitrogen), carbon dioxide drags nitrogen from the left bulb into the
right one, even though its concentration gradient is almost nil. This effect is called the uphill diffusion. This
leads to a concentration gradient for nitrogen from the less concentrated bulb to the more concentrated one.
Together with the decreasing fluxes of species 1 and 2, the mixture eventually reaches a point, called diffusion

barrier, where this concentration gradient cancels out with the uphill diffusion effect. Beyond this point, the
concentration gradient has a stronger effect than the friction forces and hence, the diffusion direction changes.
The mixture comes back to the equilibrium, as it would happen for a binary mixture where Fick’s law holds.
Therefore, the error made by Fick’s model is maximal when the uphill diffusion is maximal, and decreases with
this phenomenon, and we recover our previous explanation about Figure 5.

3. Oxygen diffusion in the lower airways

3.1. Medical motivation and chemical setting

In the following subsections, we study various experimental settings and discuss the behaviours of our two
models in the lower airways. If, in 3.4, we only deal with the air (humidified and alveolar), Subsections 3.3 and
3.5 involve a specific mixture of helium and oxygen: heliox.

The interest of such a mixture can be explained in the following way. Let us consider a patient who suffers
from a chronic obstructive bronchopneumopathy (COPB), such as asthma. Bronchoconstriction, inflammatory
rearrangements of the bronchial mucosa, and mucus hypersecretion imply an increasing resistance of the upper
airways to the airflow. This induces an additional respiratory effort for the patient to keep the inspiratory and
expiratory rates constant. The effort then results in more fatigue of the lung muscles, e.g. the diaphragm.

To make it simple, the convection of the breathed fresh air towards the acini is more and more difficult, and
the patient may eventually need some respiratory support to allow the oxygen to be transported through the
proximal bronchial tree and then diffused in the distal one. It consists, for example, in the following procedure.
A mixture of oxygen and helium, the so-called heliox, is inhaled by the patient to make the gaseous flow easier.
Heliox is composed of about 20% of oxygen, and the rest of helium. Helium is a biologically inactive gaseous
species which does not directly act on the inflammation or the bronchocontraction themselves. Since it has no
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interaction with the airways, and because it lowers the density of the gaseous mixture, it can drive more easily
the oxygen towards the acini.

Species Humidified air Alveolar air Humidified heliox Alveolar heliox
Nitrogen (1) 0.7409 0.7490 0.0000 0.0000
Oxygen (2) 0.1967 0.1360 0.1970 0.1360
Carbon dioxide (3) 0.0004 0.0530 0.0000 0.0530
Water (4) 0.0620 0.0620 0.0620 0.0620
Helium (5) 0.0000 0.0000 0.7410 0.7490

Table 1. Composition (mole fractions) of humidified and alveolar air and heliox

Before our comparison between Fick’s and Maxwell-Stefan’s models in the lung in Subsections 3.4 and 3.5,
we try to numerically reproduce in Subsection 3.3 the experiment described in [14], in which the authors let
patients alternatively inhale heliox and fresh air to improve their respiratory situation. Let us recall that the air
itself is a gaseous mixture which we keep on assuming to be ideal. It is composed of several species: nitrogen,
oxygen, carbon dioxide, water and other species whose concentrations are neglected. The first four species are
respectively numbered from 1 to 4. We can find in [7] the various compositions of the air, depending on the
lung region where it is located. In this work, we only use two kinds of air: the humidified and alveolar airs, for
which the compositions are detailed in Table 1. The humidified air corresponds to the air transported in the
upper airways, and we assume that its composition does not change a lot in the proximal tree. The alveolar
air is the air coming from the alveoli after the gas exchange with the blood, containing about 5% of carbon
dioxide. Helium is then the fifth species. The composition of the heliox binary mixture varies with respect to
the patient situation. In this work, we pick up the values proposed in [14] (0.79 for helium, 0.21 for oxygen)
and modify them accordingly for both humidified and alveolar situations. In what follows, we shall refer to
each state defined in Table 1 by their names, implying that we impose the corresponding values to each mole
fraction.

For the Maxwell-Stefan model, we also need the binary diffusion coefficients for the involved species. Their
values are given in Table 2. We once more emphasize that Dij = Dji for any i 6= j.

Species O2 (j = 2) CO2 (j = 3) H2O (j = 4) He (j = 5)
N2 (i = 1) 21.87 16.63 23.15 74.07
O2 (i = 2) 16.40 22.85 79.07
CO2 (i = 3) 16.02 63.45
H2O (i = 4) 90.59

Table 2. Binary diffusion coefficients Dij (in mm2 s−1) from [6]

We note that the binary diffusion coefficients involving helium are 3 to 4 times bigger than the other ones,
which are all of the same order of magnitude. That implies that the Maxwell-Stefan diffusion process with
helium in the mixture will be different. When needed, the effective diffusion coefficients, used for the Fick
model, will be given from a reference or estimated thanks to the Wilke formula (10).

3.2. Computational domain

We are interested in this paper in the lower part of the lung, where the main phenomenon is the diffusion.
As already stated, a popular lung model [15] consists in considering a dyadic tree structure with 23 generations.
The lower airways approximately correspond to the 15th generation and further. The convection is the main
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Figure 6. Computational domain: two-dimensional branch with alveoli

phenomenon happening in the upper airways, and the diffusion is the major one in the lower part. The
convection effect decreases with respect to the increasing number of generations. We focus on a computational
domain which has the geometry of a two-branch structure, as a subpart of the dyadic tree, as seen on Figure 6.
We choose the typical sizes of the 17th generation, i.e. 1.41 mm for the length of the main branch, 0.54 mm for
its diameter, whereas the two smaller parts of the branch have a length of 1.17 mm, and a diameter of 0.50 mm.

As a first approximation, we study a two-dimensional setting. This implies that the values of the time
scales we shall obtain are not relevant, since the real amount of diffusing matter cannot be conserved in two-
dimensional simulations. However, according to comparisons we performed in the Duncan and Toor case, even
if the values are not the right ones, the relative order of each phenomenon respectively (i.e. the time evolution
of the system) is relevant. This means that the real three-dimensional diffusion time scales are (significantly)
larger than the ones we get in the two-dimensional computations, but the distribution of the phenomena in
time is conserved.

The boundary of this domain is divided into several parts: the wall Γ2, the “entrance” Γ1, the “exits” Γ3 and
the alveoli Γk, 4 ≤ k ≤ 7. We consider a geometry with four alveoli boundaries. This number 4 is not really
significant here, and we could have chosen other values. Note that the alveoli themselves are not geometrically
included in the domain, and we do not model the gas exchange. The numerical results presented below are the
mole fractions of the involved species at some point P of the domain, near the junction of the branch, as in
Figure 6.

In the following subsections, the Maxwell-Stefan solving uses equations (1) and (4) for species 2 to 4 (or
5, when helium is involved), and equations (6)–(7) for species 1. When comparing with Fick’s law, we solve
equations (1) and (3) for all the involved species. The initial data as well as the boundary conditions are given
in each subsection. Note that, unlike in Section 2, we need boundary conditions, because the system we study
is not closed anymore. There are no condition on the fluxes, and we choose mixed boundary conditions on
the mole fractions, i.e. we impose a homogeneous Neumann boundary condition on Γ2 (nothing goes in or out
through the walls) and fitted Dirichlet boundary conditions on the remaining boundary. We could have taken
Dirichlet boundary conditions for the fluxes on the alveoli, but we chose to have the same kind of boundary
conditions everywhere. Imposing the values of the mole fractions on Γk, k 6= 2, means that we consider the
rest of the respiratory system and the alveoli to be long-time suppliers of the gaseous mixture imposed on the
corresponding boundary.
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3.3. Heliox and air alternate inhaling

The first numerical experiment aims to repeat the in vivo experiment described in [14] (see also [1]). Thiriet
et al. consider a set of patients suffering from COBP. They make them inhale heliox during twenty minutes,
and then fresh air for fifteen to twenty minutes, then again heliox and fresh air for the same periods. They
eventually observe an improvement of the respiratory situation of the patients.

We here use the Maxwell-Stefan model, because we have reliably the associated binary diffusion coefficients
at our disposal. At the beginning of our computation, the domain is filled with alveolar air. Since the rest of the
airways is not integrated in our computational domain, we impose relevant values of the mole fractions on the
boundaries. These boundary conditions correspond to having some large volume (with respect to the volume of
the branch) persistently supplying each component of the mixture with its corresponding mole fraction. At the
entrance Γ1, we have incoming humidified air, and, at the exits Γ3 and the alveoli, we have alveolar air. Then,
after reaching some equilibrium between the humidified and alveolar airs at each point, the experiment begins,
and the boundary condition on Γ1 is set to humidified heliox: the heliox binary mixture gains water during the
convection in the upper airways. The other boundary conditions are unchanged for the moment. When the
oxygen mole fraction reaches 90 % of its equilibrium value, the boundary conditions are again modified. We
set humidified air at Γ1, and alveolar heliox at Γ3 and the alveoli. Of course, there is a jump of the boundary
conditions. In fact, we should consider time-continuous data, but we eventually get the same kind of behaviours.
Anyway, the boundary conditions changes iteratively, and this process (inhaling heliox, then fresh air) happens
twice. We obtain Figures 8–7.

0 0.2 0.4 0.6 0.8
Time (s)

0

0.2

0.4

0.6

0.8

N
itr

og
en

 m
ol

e 
fr

ac
tio

n

0 0.2 0.4 0.6 0.8
Time (s)

0

0.2

0.4

0.6

0.8

H
el

iu
m

 m
ol

e 
fr

ac
tio

n

Figure 7. Alternate experiment: behaviour of the mole fractions of (a) N2 and (b) He

Let us give some details about the sequence of events. The experiment starts at 0.2 s (at the equilibrium),
the heliox inhaling happens between 0.2 and 0.4 s, humidified air boundary conditions are imposed between
0.4 and 0.55 s, and the whole process repeats between 0.55 and 0.9 s. We can see on Figure 7 that the heliox
inhaling stage allows to fill the lower airways with (humidified) heliox, and almost all of the nitrogen is replaced
by helium. On Figure 8(b), we can see that the outgoing carbon dioxide is favoured. On the contrary, at the
same stage, we see, on Figure 8(a), an inconvenient peak of oxygen mole fraction. At first sight, this would
lead us not to use heliox anymore. Nevertheless, let us recall that heliox is more easily transported than the air
itself, in the inflamed upper airways. Hence, this bad variation of x2 seems to be widely balanced by the time
gain and the non-aggressive properties of helium during the convection. After fifteen minutes, we can hope that
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Figure 8. Alternate experiment: behaviour of the mole fractions of (a) O2 and (b) CO2

the inflammation is a little bit calmed down. The patient then inhales fresh air, which also becomes humidified
when it goes down to the 17th generation. Then, this time, we obtain on Figure 8(a) a much better behaviour
of the oxygen mole fraction, with a significant increasing. Note that we eventually obtain the same amount of
diffused oxygen as if we kept incoming humidified air, but this behaviour is still beneficial from a medical point
of view.

As we already pointed out, the time scales are not good in the two-dimensional setting, and we also miss
many properties of the transport and diffusion of the air in the lung. The branch we consider is very small with
respect to the actual size of the airways. The twenty minutes Thiriet et al. speak about in [14] concern the
full respiratory system and not the small part we here study. Nevertheless, we were able to recover the main
behaviour of heliox and air in the lung.

3.4. Diffusion models for the air

This subsection and the next one are dedicated to the comparison between Fick’s and Maxwell-Stefan’s
diffusion laws. In this first test, the initial datum in the domain is the alveolar air. Humidified air goes in
through Γ1, and the exits and alveoli have an alveolar air boundary condition. For the Fick computation, we
use the effective diffusion coefficients given in [6] as binary coefficients for a species with regard to the air, i.e.
(in mm2 s−1)

F1 = 21.71, F2 = 21.95, F3 = 16.60, F4 = 23.13. (12)

We can see in (12) that the effective diffusion coefficients are of the same order. In fact, they also share the
same order of magnitude as the binary diffusion coefficients of each pair of species, and in this case, we can
compare the Fick and the Maxwell-Stefan equations (3) and (4). For the sake of simplicity, let us a consider a
constant F such that Dij ≃ F for any species i 6= j. We can write, from (4),

−∇Xxi ≃
1

ctotF

∑

j 6=i

(xjNi − xiNj) =
1

ctotF
(Ni(1 − xi) + xiNi),

because of (6)–(7). We eventually recover Fick’s law (3) with Fi ≃ F for any i. Hence the behaviours of the
mole fractions following each model are very similar, see Figure 9. Thanks to Table 2, we know that the binary
diffusion coefficients involving helium are not of the same order of magnitude as the other ones. The previous
considerations imply that Fick’s and Maxwell-Stefan’s laws do not behave in the same way when there is helium
in the mixture (see Subsection 3.5).
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Figure 9. Air alone: comparison of the mole fractions of (a) O2 and (b) CO2

On Figure 9, we can note that there are two different equilibrium values for the mole fractions corresponding
to each model. This seems to be only an effect of the choice of the effective diffusion coefficients (12). These
ones may be effective coefficients in a dry air. Eventually, we do not show any plot for nitrogen, because both
models give almost constant behaviours.

3.5. Diffusion models for the air/heliox mixture
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Figure 10. Air-heliox: comparison of the mole fractions of (a) O2 and (b) CO2

In the second test, the initial datum in the domain is the alveolar heliox. The boundary conditions are the
following ones: humidified air on Γ1, alveolar heliox on the exits and the alveoli. This time, since helium is
involved, we have to use Wilke’s formula (10) to compute the effective diffusion coefficients. The problem is
that the equilibrium values are not uniform anymore in space, as in Section 2, they depend on the location of
the measurement point P. Nevertheless, asymptotically in time, since there is eventually no helium going in the
branch, we chose the alveolar air as the asymptotic state, which does not depend on the location. Note that
these asymptotic values are not compatible with the alveolar heliox boundary conditions, but they correspond
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to the fact that eventually, all of the helium leaves the lung. We then obtain the following values of the effective
diffusion coefficients (in mm2 s−1):

F1 = 20.78, F2 = 21.50, F3 = 16.55, F4 = 22.54, F5 = 74.90.

In Figure 10, one can check that both oxygen and carbon dioxide have very different and numerically significant
behaviours. The uphill diffusion occurs for both species, and it is clear that Fick’s law does not hold in this
situation. Of course, as we can see on Figure 11, the two involved carriers, nitrogen and helium, give very
similar behaviours using both models. The helium mole fraction plots are even almost exactly superimposed,
probably because of the higher values of the diffusion coefficients.
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Figure 11. Air-heliox: comparison of the mole fractions of (a) N2 and (b) He

Prospects

As the results obtained in 3.4 show it, the air diffusion can be modelled using Fick’s law in most situations.
We proved that it is mainly due to the fact that the binary diffusion coefficients of all species involved in the air
mixture approximately have the same order of magnitude, around 20 mm2 s−1. When we add a species whose
binary diffusion coefficients are not of the same order, such as helium, Fick’s law must be replaced by Maxwell-
Stefan’s law. The heliox mixture, whose composition can vary accordingly to the patient’s needs, happens to
be a really good solution in case of BCOP. Moreover, heliox can also be used as an aerosol carrier, instead of
the air. If we intend to study an aerosol behaviour in the lower airways, we may need to couple the aerosol
equations with either Fick’s or Maxwell-Stefan’s model.

Nevertheless, we must also try to improve the boundary conditions on our domain. We assumed that the
open boundaries, where we impose Dirichlet boundary conditions, can be seen as some kind of infinite bulbs, as
in the Duncan and Toor experiment, providing an infinite amount of the present species to our domain. For our
time scales, it does not seem so wrong, but eventually, for a permanent breathing process, it cannot be relevant.
In particular, the boundary condition at the entrance should be driven by what comes from the upper airways,
so it is clearly at least time-dependent and continuous.

Eventually, of course, to obtain more realistic time scales, we should work in a three-dimensional setting.
And we bump again into the fact that there is no possible medical imaging of the lower airways. That means
that we may need to work in an adapted geometry, such as Kitaoka et al.’s acinus.
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