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SUMMARY

An eXtended Stochastic Finite Element Method has been recently proposed for the numerical solution
of partial di�erential equations de�ned on random domains. This method is based on a mariage
between the eXtended Finite Element Method and spectral stochastic methods. In this paper, we
propose an extension of this method for the numerical simulation of random multi-phased materials.
The random geometry of material interfaces is described implicitly by using random level-set functions.
A �xed deterministic �nite element mesh, which is not conforming the random interfaces, is then
introduced in order to approximate the geometry and the solution. Classical spectral stochastic �nite
element approximation spaces are not able to capture the irregularities of the solution �eld with respect
to spatial and stochastic variables, which leads to a deterioration of the accuracy and convergence
properties of the approximate solution. In order to recover optimal convergence properties of the
approximation, we propose an extension of the partition of unity method to the spectral stochastic
framework. This technique allows the enrichment of approximation spaces with suitable functions
based on an a priori knowledge of the irregularities in the solution. Numerical examples illustrate the
e�ciency of the proposed method and demonstrate the relevance of the enrichment procedure.

key words: Stochastic partial di�erential equations; Random geometry; Random Level-sets; X-

FEM; Spectral Stochastic Methods; Partition of Unity Method

1. INTRODUCTION

In the last two decades, a growing interest has been devoted to spectral stochastic methods
[1, 2, 3, 4] for the propagation of uncertainties through physical models governed by stochastic
partial di�erential equations (SPDEs) involving a �nite dimensional noise. These methods are
now relatively well mastered for the numerical solution of SPDEs with random operators or
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2 A. NOUY AND A. CLEMENT

right-hand sides [5, 6, 7]. However, only a few methods have been proposed for the propagation
of geometrical uncertainties, which requires the solution of partial di�erential equations de�ned
on random domains.

A �rst way to solve a PDE de�ned on a random domain consists in using direct spectral
stochastic approaches (interpolation [8, 9, 10, 11, 12], projection [13, 14, 15], regression [16]),
or any other direct stochastic method such as Monte-Carlo or quasi Monte-Carlo simulations
[17], coupled with a deterministic �nite element method with remeshings. This requires the
numerical solution of a set of uncoupled deterministic PDEs, each solution requiring the
generation of a new mesh conforming the geometry sample. These methods are quite easy
to implement. However, they do not allow a complete description of the solution. Moreover,
they may require to perform numerous deterministic computations, which leads to prohibitive
computational costs.

Recently, spectral stochastic methods have been proposed in order to circumvent the above
drawbacks. They are based on a reformulation of the problem on a deterministic reference
domain. In [18], the authors introduce a random mapping between the random domain and
a reference (non physical) domain. The initial PDE de�ned on a random domain is then
transformed into a SPDE de�ned on a deterministic domain, where the random operator and
right-hand side depend on the random mapping. Another method, based on the extension
to the stochastic framework of the �ctitious domain method, has been proposed in [19]. The
main limitation of the above methods lies in the handling of complex geometries. In [20, 21], an
eXtended Stochastic Finite Element Method (X-SFEM) has been proposed, which is based on
the mariage between the deterministic X-FEMmethod [22, 23] and Galerkin spectral stochastic
methods [6, 5]. This method also starts with a reformulation of the problem on a �ctitious
deterministic domain and uses an implicit description of the random geometry with the level-
set technique. This method allows the handling of complex geometries (eventually with changes
in topology) and uses a �xed deterministic mesh for the de�nition of approximation spaces. Let
us note that spectral stochastic methods provide an explicit description of the solution in terms
of random parameters describing the geometrical uncertainties. In that sense, they can be seen
as alternative methods for the construction of response surfaces, allowing di�erent a posteriori
analysis: sensitivity analysis with respect to shape parameters, shape optimization. . .

In this paper, we propose an extension of the X-SFEM method for the numerical solution
of a PDE where the operator's parameters are discontinuous through a random interface. The
random interface is described implicitly using the level-set technique. Then, the problem can
be interpreted as a classical SPDE on a deterministic domain where the operator's parameters
depend on a random level-set function. A �xed deterministic �nite element mesh, which is
not conforming the random interface, can then be introduced in order to approximate the
geometry and the solution. However, classical spectral stochastic �nite element approximation
spaces (�nite element approximation at the space level and generalized polynomial chaos at the
stochastic level) are not able to capture the irregularities of the solution with respect to spatial
and stochastic variables, which leads to very poor accuracy and convergence properties of the
approximate solution. In the deterministic X-FEM framework, this drawback is circumvented
by enriching the approximation spaces with the Partition of Unity Method (PUM) [24].
Approximation spaces are enriched with suitable additional functions whose selection is based
on an a priori knowledge of the irregularities to be captured. In this article, we propose to
extend the PUM to the spectral stochastic framework in order to de�ne suitable approximation
spaces which are able to capture the irregularities of the solution. This enrichment procedure is
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quite general and could lead to the developments of enriched spectral stochastic approximation
techniques for other applications. Let us note that this kind of procedure has been used at the
stochastic level in [25] for the solution of a random eigenvalue problem with spectral stochastic
methods.
The remainder of the paper is organized as follows: in Section 2, we consider as a model

problem a stationary di�usion equation for which the di�usion parameter is discontinuous
through random interfaces separating phases of a material. In Section 3, we describe the
implicit representation of the random geometry by the level-set technique. In Section 4, we
brie�y recall the basis of classical spectral stochastic methods and introduce two possible
de�nitions of the approximate solution, respectively based on Galerkin and L2 projections.
In Section 5, we recall the basis of the partition of unity method for the construction of
enriched approximation spaces and extend it to the spectral stochastic framework. Di�erent
enrichment strategies are introduced in Section 6 for the particular case of problems with
random material interfaces. Finally, in Section 7, four numerical examples illustrate the
accuracy of the approximate solutions obtained with di�erent choices of approximation spaces
and di�erent projection techniques.

2. FORMULATION OF THE PROBLEM

2.1. Strong formulation of the problem

For clarity, the method is presented for a simple scalar stationary elliptic di�usion equation
de�ned on a domain Ω ⊂ Rd, where the di�usion parameter is discontinuous through a random
interface which separates two random subdomains, representing two phases of a material†. This
simple model problem highlights the essential features of the proposed methodology, which can
be extended to a larger class of problems (e.g. elasticity problems in section 7). The extension
of the method to more general elliptic boundary value problems, where the parameters of the
di�erential operator are discontinuous through a random interface, is also straightforward. We
suppose that the uncertainties on the geometry can be modeled with a �nite set of random
variables ξ, with probability law Pξ. We introduce the associated probability space (Ξ,BΞ, Pξ),
where Ξ ⊂ Rm is the set of elementary events and BΞ is a σ-algebra on Ξ. The strong
formulation of the problem writes: �nd the solution �eld u such that it veri�es almost surely

−∇ · (κ∇u) = f on Ω
κ∇u · n = g on Γ2

u = 0 on Γ1

(1)

where κ is the di�usion parameter, f is a body source, g is a normal �ux imposed on a
part Γ2 of the boundary ∂Ω (n is the unit outward normal to the boundary). We consider
that the domain Ω is the union of two random subdomains Ω1(ξ) and Ω2(ξ), where the
Ωk : ξ ∈ Ξ 7→ Ωk(ξ) ⊂ Rd are random variables modeling the geometrical uncertainties. We
denote by Γ(ξ) = ∂Ω1(ξ)∩∂Ω2(ξ) the random interface which separates the two phases of the
material. We consider that the di�usion parameter is discontinuous through Γ(ξ) and is such

†The extension of the formulation and of the proposed method to the case of multiple phases is straightforward.
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that

κ(x, ξ) =

{
κ1 if x ∈ Ω1(ξ)
κ2 if x ∈ Ω2(ξ)

(2)

where κ1 and κ2 are di�usion parameters associated with subdomains Ω1 and Ω2 respectively.
Let us note that uncertainties on material parameters and sources may be classically introduced
by considering f , g, κ1 and κ2 as random quantities (random variables or �elds). For simplicity,
we will consider in this paper that these quantities are deterministic and that the only source
of uncertainty is the geometrical uncertainty.

2.2. Weak formulation of the problem

Let us introduce the deterministic function space V = {v ∈ H1(Ω); v|Γ1
= 0}. The random

solution u is then searched in function space

W = L2(Ξ, dPξ;V) := {u : ξ ∈ Ξ 7→ u(·, ξ) ∈ V;E(∥u(·, ξ)∥2V) <∞}, (3)

where E denotes the mathematical expectation, de�ned by E(f(ξ)) =
∫
Ξ
f(y)dPξ(y). Function

space W is isomorphic to the following tensor product space

W ≃ V ⊗ S, S = L2(Ξ, dPξ),

where S is the space of second-order real-valued random variables de�ned on (Ξ,BΞ, Pξ). The
weak formulation of (1) writes:

u ∈ W, A(u, v) = B(v) ∀v ∈ W (4)

where

A(u, v) =

2∑
k=1

∫
Ξ

∫
Ωk(y)

∇v · κk · ∇u dx dPξ(y) (5)

B(v) =

∫
Ξ

∫
Ω

v f dx dPξ +

∫
Ξ

∫
Γ2

v g ds dPξ(y) (6)

Under classical regularity assumptions on sources f , g and on di�usion parameters κi, bilinear
form A is continuous and coercive on W and linear form B is continuous on W, such that
problem (4) is well posed (see e.g. [5]).

3. MODELING RANDOM INTERFACES WITH THE LEVEL-SET TECHNIQUE

In this section, we present a �rst important ingredient of the X-SFEM method: the implicit
representation of the random geometry with the level-set technique [26].

3.1. Random level-sets

The geometry is implicitly represented by using the level-set technique. It consists in
representing a hyper-surface contained in the domain Ω by the iso-zero of a function ϕ, called
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a level-set function. A random hyper-surface Γ(ξ) is here represented by a random level-set
ϕ(x, ξ) : Ω×Ξ → R such that

Γ(ξ) = {x ∈ Ω;ϕ(x, ξ) = 0}. (7)

By convention, we consider that the level-set function ϕ(·, ξ) takes negative values in Ω1(ξ)
and positive values in Ω2(ξ). Then, the two random subdomains Ω1(ξ) and Ω2(ξ) can be
characterized by:

Ω1(ξ) = {x ∈ Ω;ϕ(x, ξ) < 0}, Ω2(ξ) = {x ∈ Ω;ϕ(x, ξ) > 0} (8)

Bilinear form A in problem (4) can then be rewritten:

A(u, v) =

∫
Ξ

∫
Ω

∇v ·
(
κ1H(−ϕ(x,y)) + κ2H(ϕ(x,y))

)
· ∇u dx dPξ(y) (9)

where H : R → {0, 1} is the Heaviside function de�ned by:

H(y) =

{
1 if y > 0
0 if y 6 0

(10)

Let us note that this level-set representation allows to handle complex topologies of phases
(non-simply connected phases).

3.2. Discretization of level-sets

In practise, the level-set is discretized at the space level by introducing a �nite element mesh
Th of the domain Ω. We denote by {φi}i∈I the set of �nite element interpolation functions
associated with Th. The discretized level-set writes

ϕ(x, ξ) =
∑
i∈I

φi(x)ϕi(ξ) (11)

where the ϕi(ξ) are the nodal values of the random level-set, which are random variables.
In this article, we consider linear �nite element interpolation functions, thus resulting in a
piecewise linear approximation of the interface.

Remark 1. In this article, we consider that the probabilistic model of the geometry is given.
Let us note that in [27], a method has been introduced for the identi�cation of a random
geometry from sample images. It is based on the identi�cation of a polynomial chaos expansion
of the random level-set function ϕ whose samples are obtained from image recovery techniques.
This identi�ed random level-set could then be considered as the input of the method proposed
in this article.

4. CLASSICAL STOCHASTIC FINITE ELEMENT APPROXIMATION

4.1. Approximation spaces

An approximation space Wh,P ⊂ W = V ⊗ S is classically obtained by tensorization of
approximation spaces Vh ⊂ V and SP ⊂ S, i.e.

Wh,P = Vh ⊗ SP .
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Here, we choose for Vh a �nite element approximation space associated with a mesh Th of Ω:

Vh = {v(x) =
N∑
i=1

φi(x)vi, vi ∈ R},

where the φi(x) ∈ V are the �nite element basis functions. For SP , classical choices consists
of polynomial spaces [28, 29, 9], piecewise polynomial spaces [30, 31, 32] or more general
orthogonal bases [33]. Let {Hα}Pα=1 denote a basis of SP :

SP =
{
v(ξ) =

P∑
α=1

vαHα(ξ), vα ∈ R
}

(12)

Finally, the tensor product approximation space Wh,P ⊂ W is simply de�ned by:

Wh,P = {v(x, ξ) =
N∑
i=1

φi(x)vi(ξ), vi ∈ SP } (13)

= {v(x, ξ) =
N∑
i=1

P∑
α=1

φi(x)Hα(ξ)vi,α, vi,α ∈ R} (14)

4.2. Galerkin approximation (X-SFEM-G)

4.2.1. De�nition The Galerkin approximation uh,P ∈ Wh,P of problem (4) is de�ned by

A(uh,P , vh,P ) = B(vh,P ) ∀vh,P ∈ Wh,P (15)

A function u ∈ Wh,P is assimilated with a random vector u : Ξ → RN , such that u(x, ξ) =∑N
i=1 φi(x)(u(ξ))i. Equation (15) can then be reformulated as follows: �nd u ∈ RN ⊗SP such

that

E(vTAu) = E(vTb) ∀v ∈ RN ⊗ SP , (16)

where the components of random matrix A and vector b are de�ned by

(A(ξ))ij =

∫
Ω

∇φj ·
(
κ1H(−ϕ(x, ξ)) + κ2H(ϕ(x, ξ))

)
· ∇φi dx (17)

(b(ξ))i =

∫
Ω

φi f dx+

∫
Γ2

φi g ds (18)

4.2.2. Computational aspects for the Galerkin projection The solution u of (16) is written

u(ξ) =
∑P

α=1 uαHα(ξ), where the set of coe�cients uα is solution of the following system of
P ×N equations:

P∑
α=1

E(AHαHβ)uα = E(bHβ) ∀β ∈ {1 . . . P}. (19)

In practise, matrices E(AHαHβ) and vectors E(bHβ) are obtained by assembling elementary
quantities E(AKHαHβ) and E(bKHβ) associated with �nite elements K ⊂ Th. When
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considering deterministic sources f and g, element vector bK is deterministic. An
approximation of E(AKHαHβ) is obtained by introducing a quadrature rule (ωq,yq)

Q
q=1 on

(Ξ,BΞ, Pξ):

E(AKHαHβ) ≈
Q∑

q=1

ωqAK(yq)Hα(yq)Hβ(yq) (20)

whereAK(yq) corresponds to the element matrix associated with a particular outcome ξ = yq.
For a given outcome, element matrix AK(yq) is easily computed by using classical spatial
integration (Gaussian quadrature on K or on a partition of K if the element is cut by the
interface). However, a particular care must be taken for the choice of the stochastic quadrature
rule. Indeed, element matrix AK(ξ) appears to be a non-smooth function of ξ, de�ned by

(AK(ξ))ij =


∫
K
∇φj · κ1 · ∇φi for ξ ∈ ΞK

1∫
K
∇φj · κ2 · ∇φi for ξ ∈ ΞK

2∫
K
∇φj ·

(
κ1H(−ϕ(x, ξ)) + κ2H(ϕ(x, ξ))

)
· ∇φi dx for ξ ∈ ΞK

c

(21)

where ΞK
1 = {ξ ∈ Ξ;∀x ∈ K,ϕ(x, ξ) < 0} is the set of elementary events ξ such that

K ⊂ Ω1(ξ), ΞK
2 = {ξ ∈ Ξ;∀x ∈ K,ϕ(x, ξ) > 0} is the set of elementary events ξ such that

K ⊂ Ω2(ξ) and ΞK
c = {ξ ∈ Ξ;∃x ∈ K;ϕ(x, ξ) = 0} is the set of elementary events ξ for which

the element K is cut by the interface Γ(ξ). AK(ξ) is constant on ΞK
1 and ΞK

2 , and is a smooth
function of ξ on ΞK

c (more precisely, the smoothness of AK(ξ) depends on the smoothness
of ϕ with respect to ξ). In order to accurately compute E(AKHαHβ), a suitable integration
technique has been proposed in [21], which consists in introducing a Gaussian quadrature
de�ned on a partition of Ξ which approximates the partition {ΞK

1 ,Ξ
K
2 ,Ξ

K
c }. Let us note that

the calculation of E(AKHαHβ) can be performed independently on each �nite element K.
Therefore, this calculation step can be completely parallelized.
Finally, system (16) is a system of P ×N which can be solved by using classical Krylov-type

iterative solvers [1, 34] or alternative solution techniques such as the Generalized Spectral
Decomposition method [35, 36, 37]. In this article, we do not focus on these numerical aspects
and consider that an accurate solution of (16) is obtained with a traditional Krylov-type solver
(preconditioned conjugate gradient).

4.3. L2 projection (X-SFEM-P)

An alternative de�nition of the approximation consists in using a L2 projection method at the
stochastic level [13, 14, 15]. The approximation uh,P ∈ Wh,P is de�ned by the L2 projection
of the semi-discretized solution u ∈ RN ⊗ S onto the subspace RN ⊗ SP . The projection is
de�ned with respect to the usual inner product on RN ⊗ L2(Ξ, dPξ):

< u,v >L2= E(u(ξ)Tv(ξ)) =

∫
Ξ

u(y)Tv(y)dPξ(y) (22)

When considering an orthonormal basis {Hα}Pα=1 of SP , the coe�cients uα ∈ RN of the

approximate solution u(ξ) =
∑P

α=1 uαHα(ξ) are then de�ned by

uα =< u,Hα >L2= E(u(ξ)Hα(ξ)) (23)
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which are approximated by using a quadrature rule (ωq,yq)
Q
q=1 on (Ξ,BΞ, Pξ):

uα ≈
Q∑

q=1

ωqu(yq)Hα(yq) (24)

where the u(yq) are the solutions of Q independent deterministic equations:

A(yq)u(yq) = b(yq) (25)

Remark 2. Let us note that in the case of problems with random shapes, this L2 projection
method leads to a very poor accuracy. This has been illustrated and explained in [21].

4.4. Limitations of classical approximation spaces

In a deterministic framework, it is well known that the accuracy and convergence properties
of a �nite element approximation deteriorate if the mesh is not conforming the material
interface. Indeed, the gradient of the solution �eld is discontinuous through the interface.
This discontinuity is naturally captured by a �nite element approximation associated with a
mesh conforming the interface. However, it is not captured if the material interface crosses
the �nite elements. Moreover, this lack of regularity in the solution is also observed at the
stochastic level, where function ξ 7→ u(x, ξ) appears as a non-smooth function of ξ for points
x such that Pξ(x ∈ Ω1(ξ)) > 0 and Pξ(x ∈ Ω2(ξ)) > 0. This also leads to a deterioration
of accuracy and convergence properties of the approximation when using classical spectral
approximations (e.g. polynomial chaos) at the stochastic level.
In the deterministic eXtended Finite Element Method, this drawback is circumvented by

enriching the approximation space with suitable functions which capture the discontinuities in
the solution [23, 38]. This enrichment procedure is based on the partition of unity method [24].
In the following section, we propose to extend this methodology to the stochastic framework,
in order to capture irregularities in the solution with respect to both spatial variable x and
stochastic variable ξ.

5. THE PARTITION OF UNITY METHOD FOR THE CONSTRUCTION OF
APPROXIMATION SPACES

The partition of unity method (PUM) [24] provides a general framework for the construction
of approximation spaces. In this section, we introduce a natural extension of the PUM for
the construction of approximation spaces in tensor product space W = V ⊗ S. It provides a
general methodology for the enrichment of classical stochastic �nite element approximation
spaces. Speci�c enrichment procedures will be introduced in the Section 6 for the case of
random material interfaces.

5.1. Construction of approximation space in H1(Ω)

We �rst recall the construction of an approximation space of H1(Ω) based on the partition of
unity method. The �rst point consists in introducing a cover {Ωi}i∈I of Ω. We then introduce
a set of functions {φi}i∈I de�ned on Ω and verifying the following properties (partition of
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unity):

supp(φi) ⊂ Ωi,
∑
i∈I

φi = 1 on Ω (26)

An approximation space V of H1(Ω) can then be de�ned by

V =
∑
i∈I

φiVi

where the Vi ⊂ H1(Ωi ∩ Ω) are function spaces to be de�ned. The linear �nite element
interpolation functions {φi}i∈I associated with the nodes {xi}i∈I of a mesh Th of Ω form
a partition of unity associated with the cover {Ωi}i∈I composed by the supports of functions
φi. Ωi is composed by the union of elements K ∈ Th containing the node xi of the mesh. If one
chooses for Vi the space of constant functions, the space V coincides with the space spanned
by the interpolation functions φi, i.e. the classical �nite element space. If one chooses for Vi
the space Qq(Ωi) of polynomial functions of degree q, the space V is a (spectral) �nite element
space with degree q + 1. With this general approach, standard �nite element approximation
spaces can be enriched with the introduction of additional functions in spaces Vi. The choice
of these functions is based on an a priori knowledge of the solution or on numerical/analytical
solutions of auxiliary problems. Several extension of the �nite element method based on this
construction have been proposed: X-FEM [22, 39, 38], GFEM [40].

5.2. Construction of approximation space in H1(Ω)⊗ L2(Ξ, dPξ)

We now focus on the construction of an approximation space in H1(Ω)⊗L2(Ξ, dPξ). Following
the previous section, we de�ne a partition of unity on L2(Ξ, dPξ)by introducing an open cover
{Ξj}j∈J of Ξ and introduce a set of functions {χj}j∈J verifying the following properties
(partition of unity):

supp(χj) ⊂ Ξj ,
∑
j∈J

χj = 1 on Ξ (27)

Let M = {(i, j), i ∈ I, j ∈ J} and let us de�ne the cover {Υm}m∈M of Ω × Ξ, with
Υ(i,j) = Ωi ×Ξj . Functions {Φm}m∈M , de�ned by Φ(i,j)(x, ξ) = φi(x)χj(ξ), form a partition
of unity associated with the cover {Υm}m∈M :

supp(Φm) ⊂ Υm,
∑
m∈M

Φm = 1 on Υ (28)

An approximation space W of H1(Ω)⊗ L2(Ξ, dPξ) can then be de�ned by

W =
∑
m∈M

ΦmWm =
∑

i∈I,j∈J

φiχjW(i,j) (29)

where the W(i,j) ⊂ H1(Ωi ∩ Ω)⊗ L2(Ξ ∩Ξj , dPξ) are function spaces to be chosen. A simple

choice for the χj consists in taking the (weighted) indicator functions of open subsets Ξj .
Let Qp(Ξ

j) = span{ξα =
∏m

k=1 ξ
αk

k ;α ∈ Nm, ∥α∥∞ 6 p} (resp. Pp(Ξ
j) = span{ξα =∏m

k=1 ξ
αk

k ;α ∈ Nm, ∥α∥1 6 p}) be the spaces of multidimensional polynomial functions on

Ξj with partial (resp. total) degree p. Classical spectral stochastic approximation spaces can
then be obtained for di�erent choices of covers {Ξj}j∈J and spaces W(i,j):
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- Non-overlapping cover {Ξj}j∈J and W(i,j) = Qq(Ωi) ⊗ Qp(Ξ
j) (or W(i,j) = Qq(Ωi) ⊗

Pp(Ξ
j)). W corresponds to the tensorization of a �nite element approximation space of

degree q + 1 in H1(Ω) and of a �nite element space of partial (or total) degree p in
L2(Ξ, dPξ) [30, 32]. The case q = 0 corresponds to a classical linear �nite element space
in H1(Ω).

- Overlapping cover {Ξj}j∈J composed of the union of hierarchical binary partitions of Ξ
and W(i,j) = Q0(Ωi) ⊗ Pp(Ξ

j). W corresponds to the tensorization of a classical linear
�nite element space in H1(Ω) and of a space of multi-wavelets of degree p in L2(Ξ, dPξ)
[41].

- Trivial cover {Ξ} and Wi = Q0(Ωi) ⊗ Pp(Ξ). W corresponds to the tensorization of a
classical linear �nite element space in H1(Ω) and of a polynomial space of total degree
p in L2(Ξ, dPξ) (generalized polynomial chaos).

Non classical (enriched) approximation spaces can then be de�ned by introducing in function
spaces W(i,j) suitable additional functions. These functions are usually chosen in order to
capture irregularities in the solution which are not captured by classical polynomial spaces.

6. ENRICHED SPECTRAL STOCHASTIC FINITE ELEMENT APPROXIMATION FOR
THE CASE OF A RANDOM MATERIAL INTERFACE

In this section, we detail the enrichment procedure of approximation spaces for the case of
random material interfaces. Di�erent types of enrichment are then introduced and discussed.

6.1. Enriched approximation space

An approximation space W ⊂ H1(Ω)⊗ L2(Ξ, dPξ) is here constructed by using the partition
of unity method. In the following, we use a trivial partition {Ξ} at stochastic level and we
identify the set M with I. A function u ∈W will then be written

u(x, ξ) =
∑
i∈I

φi(x)ui(x, ξ), ui ∈Wi (30)

For the problem with a random material interface, the idea is to introduce in some particular
spaces Wi additional functions allowing to capture the irregularity of the solution u(x, ξ) with
respect to x and ξ. By drawing inspiration of enrichment procedures in the deterministic
framework [23, 38], we propose the following de�nition of function spaces Wi:

Wi = Pp(Ξ), i ∈ I\I+ (31)

Wi = Pp(Ξ) + ψ(x, ξ)Pp(Ξ), i ∈ I+ (32)

where I+ denotes a subset of enriched supports Ωi and where ψ is an enrichment function for
which we will discuss di�erent choices in section 6.4. In the following, we denote SP := Pp(Ξ)
the space of polynomial functions with total degree p. An approximation u ∈ W can then be
written in the following form

u =
∑
i∈I

φi(x)ai(ξ) +
∑
i∈I+

φi(x)ψ(x, ξ)a
+
i (ξ), ai, a

+
i ∈ SP (33)
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Let us note that for a given outcome ξ, equation (33) corresponds to the enrichment proposed
in the deterministic X-FEM framework [23, 38]. Let us now introduce an orthonormal basis
{Hα}Pα=1 of SP (generalized polynomial chaos basis). An approximation u ∈W is then written

u =
∑
i∈I

P∑
α=1

φi(x)Hα(ξ)ai,α +
∑
i∈I+

P∑
α=1

φi(x)ψ(x, ξ)Hα(ξ)a
+
i,α, ai,α, a

+
i,α ∈ R (34)

The corresponding enriched approximation space in W = V ⊗ S is then de�ned by

W+
h,P = {v ∈W ; v|Γ1

= 0}

where + indicates that the approximation space is enriched.

Remark 3. Let us note that the enriched approximation space W+
h,P does not have a tensor

product structure. Degrees of freedom ai and a
+
i must then be manipulated with caution. For

example, the expectation of the solution �eld u(xi, ξ) at a given node xi is not obtained by
E(u(xi, ξ)) = E(ai(ξ)) + E(a+i (ξ)ϕ(xi, ξ)), which is not directly related to the expectation of
the degrees of freedom.

6.2. Galerkin approximation (X-SFEM-G+)

The galerkin approximation uh,P ∈ W+
h,P is simply de�ned by

A(uh,P , vh,P ) = B(vh,P ) ∀vh,P ∈ W+
h,P (35)

We introduce the following notation for a function u ∈ W+
h,P :

u(x, ξ) =

N1∑
i=1

φσ1(i)(x)ai(ξ) +

N2∑
i=1

φσ2(i)(x)ψ(x, ξ)a
+
i (ξ), ai, a

+
i ∈ SP (36)

where degrees of freedom are ordered using suitable mappings σ1 : {1...N1} → I and
σ2 : {1...N2} → I. Let a ∈ RN1 ⊗SP and a+ ∈ RN2 ⊗SP be the random vectors gathering the
degrees of freedom {ai} and {a+i }. Let u = (a a+) ∈ RN ⊗ SP , with N = N1 +N2. Equation
(35) then corresponds to the equation (16) for the random vector u ∈ RN ⊗ SP , where the
random matrix A and random vector b are de�ned by

A =

(
Aaa Aaa+

Aa+a Aa+a+

)
, b =

(
ba

ba+

)
(37)

with

(Aaa)ij =

∫
Ω

∇φσ1(i) ·
(
κ1H(−ϕ) + κ2H(ϕ)

)
· ∇φσ1(j) dx (38)

(Aaa+)ij = (Aa+a)ji =

∫
Ω

∇φσ1(i) ·
(
κ1H(−ϕ) + κ2H(ϕ)

)
· ∇(φσ2(j)ψ) dx (39)

(Aa+a+)ij =

∫
Ω

∇(φσ2(i)ψ) ·
(
κ1H(−ϕ) + κ2H(ϕ)

)
· ∇(φσ2(j)ψ) dx (40)

(ba)i =

∫
Ω

φσ1(i) f dx+

∫
Γ2

φσ1(i) g dx (41)

(ba+)i =

∫
Ω

φσ2(i)ψ f dx+

∫
Γ2

φσ2(i)ψ g dx (42)
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From a computational point of view, the solution of equation (16) requires the same
ingredients as the one described in section 4.2.2: suitable stochastic integration of �nite element
contributions E(AKHαHβ) and E(bKHα) and assembly of these element quantities. Let us
note that even if sources f and g are deterministic, ba+ can be random due to the presence of
function ψ.

6.3. L2 projection (X-SFEM-P+)

The approximate solution uh,P ∈ W+
h,P can also be de�ned by using a L2 projection at

stochastic level. The proposed L2 projection method consists in de�ning the approximation
uh,P ∈ W+

h,P by computing the L2 projection of the random vector u ∈ RN ⊗ S (semi-

discretized solution) onto the subspace RN ⊗ SP . Computational aspects are the same as

in section 4.3: computing the coe�cients of the decomposition u =
∑P

α=1 uαHα requires the
solution of independent deterministic problems (25), which correspond to systems of equations
obtained with a deterministic eXtended Finite Element Method (for di�erent outcomes ξ = yq

of the geometry).

6.4. Choices of enrichment functions

The question is now: how to choose the enrichment function ψ and the set I+ of enriched
supports? In this section, we discuss di�erent choices. We illustrate these choices on a simple
example. We consider a domain Ω = (0, 1) × (0, 1) and a random material interface de�ned
by the iso-zero of the level-set ϕ(x, ξ) = x − ξ, where ξ ∈ U(0.3, 0.7) is a uniform random
variable‡ (see �gure 1).

Figure 1. Illustration : mesh of Ω = [0, 1] × [0, 1], vertical material interface given by ϕ = x − ξ = 0
with ξ ∈ U(0.3, 0.7)

For each choice of enrichment, we de�ne the set of enriched elements T +
h ⊂ Th, which have

a non-zero contribution in the blocks of matrix A and vector b which are associated with
the enriched degrees of freedom. T +

h is composed by the elements contained in the enriched
supports {Ωi}i∈I+ and which are possibly intersecting the spatial support of function ψ(·, ξ):

T +
h = {K ∈ Th;K ⊂ ∪i∈I+Ωi, Pξ(K ∩ supp(ψ(·, ξ)) ̸= ∅) > 0}

Choice 0

‡ξ ∈ U(a, b) denotes a uniform random variable with values in (a, b)
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The �rst choice consists in taking for the function ψ the absolute value of the level-set, i.e.
ψ = |ϕ|. This function has the desired irregularities at space level (for a given ξ, discontinuity
of the gradients across Γ(ξ)) and stochastic level (for a given x, irregularity with respect to
ξ). This function can be written:

ψ(x, ξ) = |ϕ(x, ξ)| =
{

−
∑

i∈I φi(x)ϕi(ξ) if x ∈ Ω1(ξ)∑
i∈I φi(x)ϕi(ξ) if x ∈ Ω2(ξ)

The set of the enriched supports can be chosen as:

I+ = {i ∈ I;Pξ(Ωi ∩ Γ(ξ) ̸= ∅) > 0} (43)

which is the set of supports Ωi which have a non-zero probability to be cut by the interface
(Figure 2). Figure 3 illustrates several outcomes of the function ψ. In the deterministic
framework, it has been numerically proved [38] that this enrichment function does not allow
to obtain an optimal convergence of the approximation (O(h2) convergence rate with respect
to the L2 norm). This choice will not be considered in the numerical examples.

Figure 2. Illustration of choice 0: set of enriched nodes I+ (∗) and enriched �nite elements K ∈ T +
h

Figure 3. Illustration of choice 0: 4 outcomes of function ψ

Choice 1 Another possible choice, inspired from [38], consists in taking

ψ(x, ξ) =
∑
i∈I

φi(x)|ϕi(ξ)| − |ϕ(x, ξ)| =
{ ∑

i∈I φi(x)(|ϕi(ξ)|+ ϕi(ξ)) if x ∈ Ω1(ξ)∑
i∈I φi(x)(|ϕi(ξ)| − ϕi(ξ)) if x ∈ Ω2(ξ)
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The set of enriched supports I+ is still de�ned by (43). We notice a special feature of this
enrichment: for a given ξ, the function ψ(x, ξ) takes only non-zero values on the �nite elements
cut by the interface (see the set of enriched �nite elements T +

h on Figure 4 and samples of
ψ on Figure 5). In the deterministic framework [38], it has been shown that this function
allows to recover the optimal convergence rate obtained with a �nite element approximation
associated with a mesh conforming the interface (O(h2) convergence rate with respect to the
L2 norm). However, in the stochastic framework, this enrichment presents some drawbacks for
the computation of the Galerkin projection. Indeed, for an element K ∈ T +

h , the computation
of the �nite element contribution E(AKHαHβ) requires a stochastic integration of a function
which depends on the restriction ψ(x, ξ) to the element K, denoted ψK : K × Ξ → R. The
support of function ψK appears to be a small subset of K × Ξ, corresponding to outcomes
ξ ∈ Ξ such that K∩Γ(ξ) ̸= ∅. In the case where the range of variation of Γ is large (i.e. Γ spans
�several elements layers�), we have to perform a stochastic integration of a function with a low
probability to di�er from zero. The integration procedure proposed in [21] is still e�cient but
requires a high level of accuracy, which generates high computational costs. Another drawback
of this choice is that the degrees of freedom a(ξ) and a+(ξ) are non-smooth functions of
ξ. Then, the projection of these degrees of freedom on a polynomial stochastic basis leads
to a poor accuracy and bad convergence properties (for Galerkin and L2 projections). This
enrichment function will be denoted by ψ1 and will be tested in the numerical examples in
Section 7.

Figure 4. Illustration of choice 1: set of enriched nodes I+ (∗) and enriched �nite elements K ∈ T +
h .

Figure 5. Illustration of choice 1: 4 outcomes of function ψ
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Choice 2 As a �nal choice, we propose to de�ne

ψ(x, ξ) =

{ ∑
i∈I+

1
φi(x)(β + ϕi(ξ)) if x ∈ Ω1(ξ)∑

i∈I+
1
φi(x)(β − ϕi(ξ)) if x ∈ Ω2(ξ)

where β is a constant. The set of enriched supports is chosen as I+ = I+1 ∪ I+2 , with

I+1 = {i ∈ I;Pξ(Ωi ∩ Γ(ξ) ̸= ∅) > 0} (44)

I+2 = {i ∈ I\I+1 ;∃j ∈ I+1 ,xi ∈ ∂Ωj} (45)

I+1 is then the set of nodes whose support is possibly cut by the interface (corresponding to
the sets I+ of choices 0 and 1) and I+2 is a complementary set of nodes connected to supports
{Ωi}i∈I+

1
(see �gure 6). In fact, the proposed function ψ is a modi�cation of the function

(β − |ϕ|) which consists in restricting its expansion on the interpolation basis {φi} to the set
i ∈ I+1 . For a given ξ, this choice allows to obtain a spatial support of ψ(·, ξ) which is ∪i∈I+

1
Ωi,

i.e. the union of supports cut by the interface (see �gure 7). In practise, parameter β is chosen
in the following way:

β ≈ sup
i∈I+,ξ∈Ξ

|ϕi(ξ)|

We observe that this choice allows to improve the condition number of the discretized problem
(19) (in particular when comparing with β = 0). Numerical experiments of the authors, which
are not illustrated here, have shown that this choice of ψ keeps the good convergence properties
of choice 1 in the deterministic framework. In the stochastic framework, this choice allows to
circumvent the drawbacks of choice 1. The stochastic integration is made easier by the fact
that the support of function ψK , for K ∈ T +

h , is the entire domain K×Ξ. Moreover, degrees of
freedom a and a+ recover a good regularity at stochastic level, which leads to a good accuracy
and convergence properties when using a standard global polynomial approximation at the
stochastic level. This enrichment function will be denoted by ψ2 in Section 7.

Figure 6. Illustration of choice 2: sets of enriched nodes I+1 (∗) and I+2 (2) and enriched �nite elements
K ∈ T +

h
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Figure 7. Illustration of choice 2: 4 outcomes of function ψ

7. NUMERICAL EXAMPLES

In this section, we illustrate the proposed method on three numerical examples in linear
elasticity. These examples will allow to compare the accuracy of the di�erent enrichment
strategies and of the di�erent projection techniques (Galerkin or L2 projections).

7.1. Preliminaries

7.1.1. Elasticity problem We here apply the method to the analysis of the deformations
of a structure under small perturbations assumption. The structure is composed by two
linear elastic homogenous and isotropic materials, separated by a random interface Γ(ξ) =
∂Ω1(ξ) ∩ ∂Ω2(ξ). We denote by u ∈ W = V ⊗ S the displacement �eld, with V = {v ∈
(H1(Ω))

d);v|Γ = 0}. The weak formulation writes as in equation (4), with the following
de�nition of bilinear and linear forms:

A(u,v) =

∫
Ξ

∫
Ω

ϵ(v) : (C1H(−ϕ) +C2H(ϕ)) : ϵ(u) dx dPξ (46)

B(v) =

∫
Ξ

∫
Γ2

v · F ds dPξ (47)

where C1 and C2 are the Hooke elasticity tensors of the two phases of the material, ϵ(u) is
the strain tensor (symmetric part of the gradient of u) and F is a surface load applied on a
part Γ2 of the boundary.

7.1.2. Approximation spaces and projection techniques Approximation space W+
h,P is simply

de�ned by using de�nition (34) for each component of the displacement �eld, i.e.

uh,P =
∑
i∈I

φi(x)ai(ξ) +
∑
i∈I+

φi(x)ψ(x, ξ)a
+
i (ξ), ai,a

+
i ∈ Rd ⊗ SP (48)

In the numerical examples, we choose for SP = Pp(Ξ) a polynomial space of degree p. We
denote by X-SFEM-G and X-SFEM-P the approximate solutions respectively obtained with
Galerkin and L2 projections on the classical approximation space Wh,P . We denote by X-
SFEM-G+

1 and X-SFEM-P+
1 (resp. X-SFEM-G+

2 and X-SFEM-P+
2 ) the approximate solutions

obtained with Galerkin and L2 projections on W+
h,P when using an enrichment strategy based

on function ψ1 (resp. ψ2).

7.1.3. Error estimation In order to estimate the accuracy of the approximations, we introduce
the following global error indicator between the approximate solution uh,P (x, ξ) and the exact



EXTENDED STOCHASTIC FINITE ELEMENT METHOD 17

solution u(x, ξ):

εh,p =
∥uh,P − u∥L2(Ω×Ξ)

∥u∥L2(Ω×Ξ)
, (49)

with

∥u∥2L2(Ω×Ξ) =

∫
Ξ

∫
Ω

u(x,y) · u(x,y) dx dPξ(y) (50)

We also de�ne a local error indicator εKh,p which is the local contribution to the global error§:

εKh,p =
∥uh,P − u∥L2(K×Ξ)

∥u∥L2(Ω×Ξ)
. (51)

7.2. Example 1: random plate with random vertical material interface

7.2.1. Problem de�nition We consider a square domain Ω = (0, 1) × (0, 1) ⊂ R2 composed
of two materials separated by a random vertical interface Γ(ξ), whose horizontal location
depends on a single uniform random variable ξ ∈ U(0.4, 0.6) (see Figure 8). The interface Γ(ξ)
is characterized by the following level-set function: for x = (x, y) ∈ Ω, ϕ(x, ξ) = x − ξ.
The problem is here formulated in a one dimensional probability space (Ξ,BΞ, Pξ), with
Ξ = (0.4, 0.6) and Pξ the uniform measure on (0.4, 0.6). The two materials have the following
deterministic properties: Young modulus E1 = 1 and Poisson coe�cient ν1 = 0 in Ω1(ξ),
E2 = 2 and ν2 = 0 in Ω2(ξ). The plate is �xed on the left edge and submitted to a uniform
tension load F = (1, 0) on the right edge (see Figure 8). This example is in fact a one-
dimensional problem whose exact solution is known. For the approximation at space level, we

ξ

Ω (ξ)

FΓ1

Ω (ξ)1 2

Γ (ξ)
Γ2

Figure 8. Example 1: plate in tension with random vertical material interface.

use the �nite element mesh represented on Figure 6. At stochastic level, we use a generalized
polynomial chaos with degree p: basis functions {Hα} of SP are the Legendre polynomials on
Ξ = (0.4, 0.6).

§the local error contribution to the global error veri�es εh,p =
(∑

K∈Th
(εKh,p)

2
)1/2



18 A. NOUY AND A. CLEMENT

7.2.2. Accuracy of the X-SFEM-G approximation We �rst study the convergence of the
di�erent X-SFEM-G approximations. Table I indicates the global error indicator εh,p (see
equation (49)) according to polynomial chaos degree p.

p = 1 p = 2 p = 3 p = 4
X-SFEM-G 9 10−3 6.6 10−3 5.8 10−3 5.5 10−3

X-SFEM-G+
1 5 10−3 2 10−3 9 10−4 5.7 10−4

X-SFEM-G+
2 4.3 10−14 4.1 10−14 4 10−14 4.2 10−14

Table I. Example 1 : global errors εh,p obtained with X-SFEM-G, X-SFEM-G+
1 and X-SFEM-G+

2 ,
according to polynomial chaos degree p.

We observe that X-SFEM-G+
2 leads to the exact solution, while X-SFEM-G+

1 leads to a
relatively good approximation but not to the exact one. However, X-SFEM-G+

1 systematically
leads to a lower error than X-SFEM-G. In order to understand why the enrichment function
ψ1 does not allow to get the exact solution, we illustrate on Figure 9 the response surface of
the horizontal displacement for a particular point x = (0.5, 0.55) such that Pξ(x ∈ Ω1(ξ)) > 0
and Pξ(x ∈ Ω2(ξ)) > 0. This �gure shows the response surfaces obtained with the three
approximate solutions (X-SFEM-G, X-SFEM-G+

1 and X-SFEM-G+
2 ) and the exact solution.

First, we observe that the X-SFEM-G approximation is not able to capture the irregularity

0.4 0.45 0.5 0.55 0.6
0.45

0.46
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0.48

0.49

0.5
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0.53
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u
x

 

 
exact

X-SFEM-G   ,
+
2  p=1

0.4 0.45 0.5 0.55 0.6
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0.49
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0.52

0.53

 

 

exact
X-SFEM-G, p=4

X-SFEM-G  ,
+
1  p=4

ξ

u
x

(a) (b)

Figure 9. Example 1: response surfaces of horizontal displacement at point x = (0.5, 0.55): comparison
between exact, X-SFEM-G and X-SFEM-G+

1 solutions (a), comparison between exact and X-SFEM-
G+

2 solutions (b).

with respect to ξ. With the X-SFEM-G+
1 approximation, this irregularity is captured but other

spurious irregularities appear. With this choice of enrichment, degrees of freedom ai(ξ) and
a+
i (ξ) are non-smooth functions of ξ and are not well represented on a polynomial chaos basis.

Figure 10 shows the response surfaces of an enriched degree of freedom obtained with the X-
SFEM-G+

1 for di�erent polynomial degrees p. On this �gure, the reference response surface is
obtained with a collection of deterministic X-FEM computations for di�erent positions of the
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interface (with a ψ1 enrichment). We notice that the enriched degree of freedom is piecewise
constant and that the Galerkin projection only seeks to approximate the non-zero part of the
enriched degree of freedom. For this problem, when the range of variation of Γ(ξ) is increasing
(more and more elements layers spanned by the interface), the accuracy of the X-SFEM-G+

1

solution decreases. On the other hand, the X-SFEM-G+
2 perfectly matches the exact solution.

The enrichment function ψ2 captures the irregularity with respect to ξ and degrees of freedom
become smooth (polynomial) functions of ξ which are exactly represented on a polynomial
basis.

0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

ξ

a
i+

 

 

X-FEM

X - SFEM-G
+
1 , p=1

X - SFEM-G
+

1
, p=2

X- SFEM-G
+

1
 , p=3

X - SFEM-G
+

1
 , p=4

Figure 10. Example 1: response surfaces of an enriched degree of freedom obtain with X-SFEM-G+
1

for di�erent polynomial chaos orders p.

7.2.3. Accuracy of the X-SFEM-P approximation We now focus on the results obtained
with the L2 projection method. Table II indicates the global error indicator εh,p according
to polynomial chaos degree p for standard approximation X-SFEM-P and enriched
approximations X-SFEM-P+

1 and X-SFEM-P+
2 based on enrichment functions ψ1 and ψ2

respectively. We notice that the results are close to those obtained with the Galerkin projection
(see table I). The exact solution is only obtained with X-SFEM-P+

2 .

p = 1 p = 2 p = 3 p = 4
X-SFEM-P 5.5 10−3 5.3 10−3 5.2 10−3 5.2 10−3

X-SFEM-P+
1 1.4 10−3 1 10−3 7.2 10−4 3.9 10−4

X-SFEM-P+
2 1.6 10−12 2.4 10−12 2.1 10−12 5.5 10−12

Table II. Example 1: global errors εh,p obtained with solutions X-SFEM-P, X-SFEM-P+
1 and X-FEM-

P+
2 according to polynomial chaos degree p.

It should be noticed that the choice of the stochastic quadrature is essential with the
X-SFEM-P+

1 approximation. In fact, the enriched basis functions ψ1(x, ξ)φi(x) and the
associated degrees of freedom a+

i (ξ) have localized supports in Ξ. For a given x, this support
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may be small if the size of �nite elements is small compared to the range of variation of Γ(ξ).
If one uses a coarse stochastic quadrature (few integration points), the projection of enriched
degrees of freedom E(a+

i Hα) may be badly estimated or even equal to zero if no integration
points are located in the support of ξ 7→ a+

i (ξ). This drawback is circumvented when using the
enrichment function ψ2. With this enrichment, the enriched degrees of freedom a+

i (ξ) have for
support the whole stochastic domain Ξ and their projection on the polynomial basis is well
estimated by using relatively coarse stochastic quadrature.

Remark 4. Let us notice that with X-SFEM-P+
2 , a pre-processing is needed in order to de�ne

the enriched structure of the �nite element model. Then, X-SFEM-P+
2 loses a part of the

non-intrusive character usually associated with L2 stochastic projection techniques.

7.3. Example 2: circular plate with circular random inclusion

7.3.1. Problem de�nition We consider the circular domain Ω ⊂ R2 represented on Figure
11(a). The two materials are separated by a circular random interface Γ(ξ) with center (0, 0)
and random radius ξ ∈ U(0.72, 1.8) which is a uniform random variable. The external boundary
Γ1 = ∂Ω is a circle with radius b = 2. This example will illustrate the ability of the X-SFEM
method to deal with a large range of variation of the random interface. The problem is here
formulated in a one dimensional probability space (Ξ,BΞ, Pξ), with Ξ = (0.72, 1.8) and Pξ

the uniform measure on (0.72, 1.8). We denote by Ω1(ξ) the internal domain and by Ω2(ξ)
the external domain. The material properties are deterministic on each subdomain: E1 = 1,
ν1 = 0.25 in Ω1 and E2 = 10, ν2 = 0.3 in Ω2. We impose a linear displacement �eld u = x on
the boundary Γ1. In practise, the problem is reformulated on function ũ = u − x ∈ W with
homogeneous Dirichlet boundary conditions on Γ1.
At the space level, we use a �nite element mesh composed of 3-nodes triangular �nite

elements. In order to study convergence properties of the approximations, we consider three
di�erent meshes with average element size h ∈ {0.18, 0.09, 0.06}. Figure 11(b) shows one
of these meshes, whose elements are split into three groups: the �rst group (e1) gathers
elements surely in Ω1, the second group (e2) gathers elements surely in Ω2 and the third
group (ec) gathers elements possibly cut by the interface Γ(ξ). At stochastic level, we use a
generalized polynomial chaos with degree p for which the basis functions of SP are the Legendre
polynomials on Ξ = (0.72, 1.8). This problem has an analytical solution (see [23]). It allows us
to perform a convergence analysis.

7.3.2. Accuracy of the X-SFEM-G approximation For this example, we only use a Galerkin
projection for the approximation (X-SFEM-G). Using the global and local error indicators
de�ned in equations (49) and (51), we propose to study the convergence of the di�erent X-
SFEM solutions (X-SFEM-G, X-SFEM-G+

1 and X-SFEM-G+
2 ) according to polynomial chaos

degree p ∈ {1, ...7} and mesh size h ∈ {0.18, 0.09, 0.06}. Figure 12 presents the convergence
of the global error indicator εh,p with p for h = 0.09. As expected, the X-SFEM solution
leads to signi�cant error values and presents a slow convergence with p. Although the X-
SFEM-G+

1 approximation provides better results, we can observe a slow convergence with p.
Thus, with X-SFEM-G+

1 , a high polynomial chaos degree is usually required in order to get
an accurate (converged) approximation. The X-SFEM-G+

2 solution provides the best results.
The convergence with p of εh,p is very fast (error close to 10−3 with only p = 2).
Figure 13 indicates the local errors for the X-SFEM-G+

1 approximation with p = 7 and
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Figure 11. Example 2: circular plate with circular random inclusion (a) and X-SFEM mesh with three
groups of elements (b).
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Figure 12. Example 2: convergence of error εh,p according to p for h = 0.09 obtained with the three
X-SFEM-G approximations.

the X-SFEM-G+
2 approximation with p = 1. We notice that with X-SFEM-G+

1 with a high
polynomial chaos degree, the local errors in �nite elements belonging to the set (ec) are much
higher than with X-SFEM-G+

2 with a very low polynomial chaos degree.
Figure 14 shows the convergence of εh,p with the mesh size h for a �xed polynomial chaos
degree p = 3. On this �gure, only the X-SFEM-G+

2 solution is represented. We can observe a
good convergence rate (O(h1.6)) which is close to the optimal expected convergence rate (in
O(h2)).
Finally, we examine the response surfaces of the radial displacement obtained with the three
X-SFEM approximations at a particular point x = (1.5, 0) such that Pξ(x ∈ Ω1(ξ)) > 0 and
Pξ(x ∈ Ω2(ξ)) > 0 (Point P1 on Figure 11). Figure 15 illustrates these response surfaces. Two
events Ξ1 ∈ BΞ and Ξ2 ∈ BΞ can be clearly distinguished, corresponding to outcomes ξ such
that P1 ∈ Ω1(ξ) or P1 ∈ Ω2(ξ) respectively. We �rst observe that on Ξ2, the three approximate
solutions give better response surfaces than on Ξ1. This comes from properties of the Galerkin
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Figure 13. Example 2: local errors εKh,p obtained with X-SFEM-G+
1 with p = 7 (a) and X-SFEM-G+

2

with p = 1 (b).
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Figure 14. Example 2: convergence of error εh,p according to h obtained with X-SFEM-G+
2 solution.

approximation. Roughly speaking, the Galerkin projection is associated with an inner product
which gives a higher weight to outcomes ξ in Ξ2 (since E2

E1
= 10). However, on Ξ1, the X-

SFEM-G+
2 solution leads clearly to better results. We can notice that with X-SFEM-G+

2 , the
irregularity is well captured by the enrichment function and a polynomial chaos of degree p
only equal to 1 is su�cient in order to accurately approximate the degrees of freedom.

7.4. Example 3: homogenization of a cell with random inclusion

7.4.1. Problem de�nition We consider a cell Ω = (0, 1)× (0, 1) of an heterogeneous material
composed of two material phases. The two phases Ω1(ξ) and Ω2(ξ) are separated by a random
interface Γ(ξ) characterized by the iso-zero of the following level-set:

ϕ(x, ξ) = R(α(x), ξ)− ∥x− c∥,
c = (0.5, 0.5), R(α, ξ) = 0.25 + 0.1 (ξ1(ξ) cos(2α) + ξ2(ξ) sin(2α))



EXTENDED STOCHASTIC FINITE ELEMENT METHOD 23

0.8 1 1.2 1.4 1.6 1.8
1.7

1.8

1.9

2

2.1

2.2

ξ

u
r

 

 

exact

X-SFEM-G p=7

X- SFEM-G
+
1
 p=7

X- SFEM-G
+
2
 p=1

1.4 1.45 1.5 1.55 1.6

2.02

2.04

2.06

2.08

2.1

2.12

ξ

u
r

 

 

1P
1

P
1

2Ω  (ξ) Ω  (ξ)

Figure 15. Example 2: response surfaces of radial displacement for point P1 obtained with X-SFEM-G
(p = 7), X-SFEM-G+

1 (p = 7) and X-SFEM-G+
2 (p = 1).

Random variables ξ1 ∈ U(−1, 1) and ξ2 ∈ U(−1, 1) are statistically independent uniform
random variables. We work in the associated 2-dimensional probability space (Ξ,BΞ, Pξ)
with ξ = (ξ1, ξ2) and Ξ = (−1, 1) × (−1, 1). The material parameters of the two phases
are deterministic: E1 = 1 and ν1 = 0.3 in Ω1(ξ) and E2 = 10 and ν2 = 0.3 in Ω2(ξ).
In this example, we want to compute the random homogenized elasticity tensor Chom(ξ)

leading to a macroscopic constitutive relation Σ = Chom(ξ) : E, linking the macroscopic stress
�eld Σ to the macroscopic strain �eld E. The chosen homogenization procedure consists in
imposing homogeneous stresses on the boundary [42], i.e. F = Σ · n on ∂Ω. In practise, we
compute the solutions corresponding to the three loading cases shown on Figure 16 (uniform
horizontal tension, uniform vertical tension and homogeneous shear), corresponding to the
three following macroscopic stresses:

Σ(11) =

(
1 0
0 0

)
, Σ(22) =

(
0 0
0 1

)
, Σ(12) =

(
0 1
1 0

)
We denote by u(kl)(x, ξ) the three corresponding displacement �elds. The coe�cients of the

random homogenized compliance Shom(ξ) = Chom(ξ)
−1

are then obtained by the following
equations:

(Shom(ξ))ijkl =
1

mes(Ω)

∫
∂Ω

(u(kl) ⊗s n)ij ds

At the spatial level, we use the �nite element mesh shown on Figure 17. At stochastic level, we
use a generalized polynomial chaos with degree p = 3 at stochastic level. In this example, we
only consider the approximate solutions obtained with X-SFEM-G and X-SFEM-G+

2 (Galerkin
projections).

7.4.2. Comparison with a deterministic X-FEM approach Here, we compare the approximate
solutions obtained with X-SFEM-G and X-SFEM-G+

2 with a reference solution obtained with
a simple sampling technique coupled with a deterministic X-FEM code (with a classical
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Figure 16. Example 3: cell of an heterogenous material with random inclusion.

e
c

e
1

e
2

Figure 17. Example 3: X-SFEM �nite element mesh with the three element groups: (e1) gathers
elements surely in Ω1, (e2) gathers elements surely in Ω2 and (ec) gathers elements possibly cut by

the interface Γ(ξ).

enrichment based on ψ1)). We choose a particular point x = (0.7, 0.7) of Ω such that
Pξ(x ∈ Ωk(ξ)) > 0 for k = 1 and 2. We �rst look at the response surfaces of the horizontal
displacement at x for the case of homogeneous shear loading. Figure 18 shows the response
surfaces obtained with X-SFEM-G, X-SFEM-G+

2 and the reference deterministic X-FEM
solution. We observe that the X-SFEM-G+

2 solution is very close to the reference solution while
the X-SFEM-G solution gives quite bad results. It is to note that the enriched approximation
based on function ψ2 is able to capture the strong irregularity in the response surface and
allows the use of a simple polynomial chaos basis for the representation of degrees of freedom.
Figure 19 shows the stress component σ11 obtained for two particular outcomes of the geometry
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and for two di�erent loading cases. We notice that stresses obtained with the X-SFEM-G+
2

solution match very well the reference solution near the interface, which is not the case of the
standard X-SFEM-G approximation.

Figure 18. Example 3: response surfaces of horinzontal displacement for point x = (0.7, 0.7) obtained
with X-SFEM-G, X-SFEM-G+

2 and the reference solution (X-FEM); shear loading case.

7.4.3. Computation of homogenized sti�ness Now, we focus on the calculation of the random
homogenized elasticity tensor Chom(ξ). The di�erent displacement �elds u(kl) are obtained
with X-SFEM-G or X-SFEM-G+

2 projections. Then, in a post-processing step, we compute
a decomposition of Chom(ξ) on a polynomial chaos basis of degree p = 3: Chom(ξ) =∑P

α=1 C
hom

α Hα(ξ). The reference response surface is obtained with deterministic X-FEM
computations, with a classical enrichment based on function ψ1. Figure 20 shows the response
surfaces of Chom

1111 obtained with X-SFEM-G, X-SFEM-G+
2 and the reference solution. We

clearly observe that X-SFEM-G+
2 leads to far better results than X-SFEM-G.

Figures 21(a) and 21(b) illustrate the probability density functions (PDFs) obtained for
two components of Chom. As a reference solution, we use a Monte-Carlo approach with 5,000
samplings coupled to a deterministic X-FEM code with enrichment based on function ψ1. We
can notice a good agreement between X-SFEM-G+

2 and the reference solution.
Finally, we focus on the two �rst statistical moments of the components of Chom. Table III

gives the mean µ and the standard deviation σ of Chom1111 and C
hom
1122 obtained with X-SFEM-G,

X-SFEM-G+
2 and a reference Monte-Carlo method coupled with a deterministic X-FEM code.

We observe a very good agreement between the X-SFEM-G+
2 and the reference Monte-Carlo

simulation. The bad results obtained with X-SFEM-G method clearly highlight the relevance
of the enrichment procedure.

7.5. Example 4: heterogeneous cell with material interface presenting changes in topology

This example will illustrate the ability of the X-SFEM technique to deal with changes of
topology in the geometry. We consider a cell Ω = (0, 1) × (0, 1) of an heterogeneous material
composed of two material phases. The material parameters of the two phases are deterministic:
E1 = 10 and ν1 = 0.3 in Ω1 and E2 = 1 and ν2 = 0.25 in Ω2. The random domain Ω2(ξ)
is the union of two circular inclusions with radius r = 0.15 and random horizontal location
(see Figure 22(a)). The two phases Ω1(ξ) and Ω2(ξ) are separated by a random interface Γ(ξ)
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Figure 19. Exemple 3: comparison of stress �elds σ11 obtained with X-SFEM-G (a), X-SFEM-G+
2 (b)

and reference X-FEM (c) for two outcomes of the geometry and two loading cases.

Figure 20. Exemple 3: response surfaces of Chom
1111 obtained with X-SFEM-G, X-SFEM-G+2 and the

reference solution (X-FEM).
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Figure 21. Example 3: probability density functions of Chom
1111 and Chom

1122 obtained with X-SFEM-G+
2

and the reference solution (Monte-Carlo with 5,000 samples).

Chom1111 Chom1122

µ σ µ σ
X-SFEM-G 1.268 0.0323 0.4118 0.0043

X-SFEM-G+
2 1.4201 0.0379 0.4523 0.008

Monte-Carlo/X-FEM 1.4165 0.0376 0.4519 0.0081
±4.10−4 ±1.10−4 ±4.10−5 ±2.10−5

Table III. Example 3: mean µ and standard deviation σ of Chom
1111 and C

hom
1122 obtained with X-SFEM-G,

X-SFEM-G+
2 and the reference Monte-Carlo/X-FEM method (with con�dence intervals).

characterized by the iso-zero of the following level-set:

ϕ(x, ξ) = max(ϕ1(x, ξ), ϕ2(x, ξ)), ϕi = r − ∥x− (ξi, 0.5)∥ (52)

where ξ1 ∈ U(0.2, 0.5) and ξ2 ∈ U(0.5, 0.8) are statistically independent uniform random
variables. We work in the associated 2-dimensional probability space (Ξ,BΞ, Pξ) with ξ =
(ξ1, ξ2) and Ξ = (0.2, 0.5)× (0.5, 0.8).
In this example, we only consider the approximation obtained with X-SFEM-G+

2 (Galerkin
projection on an approximation space enriched with function ψ2). At the stochastic level, we
use a polynomial chaos of degree p = 3 in dimension 2. The �nite element mesh is shown on
�gure 22(b). Let us note that there is no element surely in the domain Ω2. Figure 22(c) shows
the set of enriched �nite elements T +

h .

Figure 23 shows the stress component σ11 obtained for four particular outcomes of the
geometry (with di�erent topologies). For all outcomes, we notice that stresses obtained with
the X-SFEM-G+

2 solution match very well the reference solution, computed with a classical
deterministic X-FEMmethod (with ψ1 enrichment). The proposed X-SFEM approach allows to
build an approximate solution which is very accurate for all outcomes of the geometry although
these outcomes correspond to very di�erent geometrical patterns, with eventual changes in
topology.
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Figure 22. Example 4: (a) problem de�nition. (b) �nite element mesh with the two element groups:
elements e1 surely in Ω1, elements ec possibly cut by the interface Γ(ξ) (no elements surely in Ω2).

(c) Enriched �nite elements K ∈ T +
h .

Figure 23. Exemple 4: comparison of stress �elds σ11 obtained with X-SFEM-G+
2 (a) and reference

X-FEM (b) for four outcomes of the geometry (corresponding to two types of topologies).

We now consider the computation of the elastic energy W (ξ) de�ned by

W (ξ) =
1

2

∫
Ω

ϵ(u(x, ξ)) : C : ϵ(u(x, ξ))dx

Figure 24 illustrates the probability density functions of W (ξ) obtained with the X-SFEM-
G+

2 solution and a reference solution based on a Monte-Carlo approach with 10,000 samples
coupled with a deterministic X-FEM method using a classical ψ1 enrichment. We can observe
a good agreement between the two solutions.
Finally, Table IV indicates the tail probabilities of W (ξ) obtained with X-SFEM-G+

2 for
di�erent orders p ∈ {3, 4, 5}. Results are compared with the reference Monte-Carlo simulation.
We observe a very good accuracy of X-SFEM-G+

2 for the estimation of events with probabilities
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Figure 24. Exemple 4: comparison of probability density functions ofW (ξ) obtained with X-SFEM-G+
2

and the reference solution (Monte-Carlo with 10,000 samples).

down to 10−3, even with low polynomial degree p. Let us note that in order to obtain such a
good accuracy for lower probabilities, a higher polynomial degree p could be used.

w
0.07 0.071 0.072 0.073

X-SFEM-G+
2

p = 3 7.5 10−2 3.2 10−2 1.05 10−2 1.4 10−3

p = 4 7.5 10−2 3.2 10−2 1.02 10−2 1.1 10−3

p = 5 7.5 10−2 3.2 10−2 0.99 10−2 1.1 10−3

Monte-Carlo/X-FEM 7.6 10−2 3.1 10−2 0.95 10−3 0.9 10−3

±1.10−3 ±7.10−4 ±4.10−4 ±1.10−4

Table IV. Example 4: probabilities Pξ(W (ξ) > w) obtained with X-SFEM-G+
2 and a Monte-Carlo/X-

FEM method (with 10,000 samples), for di�erent values of w.

8. CONCLUSIONS, LIMITATIONS AND PERSPECTIVES

We have proposed a mariage between the eXtended Finite Element Method (X-FEM) and
spectral stochastic methods for the numerical simulation of multi-phased heterogeneous
materials with random material interfaces. The �rst point of the proposed method consists
in representing implicitly the random geometry with the level-set technique. Classical spectral
stochastic �nite element approximation spaces are then simply de�ned by introducing a �xed
�nite element mesh. However, these classical approximation spaces (�nite element at space
level and polynomial chaos at stochastic level) do not allow capturing the irregularities of
the solution �eld with respect to spatial and stochastic variables. Then, an extension of the
partition of unity method has been introduced for the construction of enriched approximation
spaces in a tensor product space, which are able to capture these irregularities and lead to
better accuracy and convergence properties of the approximation. Two enrichment strategies
(choices 1 and 2) have been proposed and compared. The choice 1, directly inspired from the
deterministic X-FEM, appeared to be unadapted to the stochastic framework. The choice 2,
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which is adapted to the spectral stochastic framework, allows to recover very good convergence
properties of the approximation at both spatial and stochastic levels. It has been also illustrated
that both Galerkin and L2 stochastic projections lead to satisfactory results when using the
proposed enriched approximation spaces.
A natural extension of this work concerns the study of structures containing cracks with

random location or geometry. This extension will be introduced in a forthcoming paper.
Let us emphasize that the proposed method allows handling problems where the randomness

on the geometry of interfaces can be represented by a low number of random parameters. This
limitation is classical in the context of spectral stochastic methods and is due to the dramatic
increase of computational costs when dealing with high stochastic dimension (so called curse
of dimensionality). This clearly restricts the range of application of the proposed method. In
particular, in its present form, this method can not be applied for the homogenization of multi-
phased random materials, where the description of the random microstructure (or equivalently
of the random interface between phases) can typically require the introduction of thousands of
random variables [43, 44]. Until now, traditional stochastic simulation techniques, associated
with deterministic FEM or XFEM-type approaches, remain the only way to perform such
computational analyses. However, methodologies based on separated representation techniques
have been recently proposed in order to circumvent the curse of dimensionality in the context
of spectral approaches [45]. The coupling between these techniques and the developments of
the present paper will be addressed in future works. Let us note that alternative to spectral
stochastic methods are available for constructing an explicit representation of a function of
random parameters. In particular, for high stochastic dimension, di�erent methods have been
proposed in order to circumvent the curse of dimensionality: ANOVA, HDMR, polynomial
dimensional decomposition [46, 47, 48]. For the representation of functionals which do not
satisfy the basic assumptions required by these techniques (e.g. low order correlations amongst
input variables), enrichment strategies inspired from the present article may be a possible
remedy.
Another point concern the extension of the proposed method to the case of evolving random

interfaces. For time-dependent stochastic problems, the accuracy of spectral approaches based
on polynomial approximations may strongly deteriorate. Let us �nally mention that the
extension of the proposed enrichment strategy to time-dependent problems could be a possible
way to circumvent this drawback.
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