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Abstract1

We present a conditional density model of river runoff given covariate information2

which includes precipation at four surrounding stations. The proposed model is non-3

parametric in the central part of the distribution and relies on Extreme-Value Theory4

parametric assumptions for the upper tail of the distribution. From the trained con-5

ditional density model, we can compute quantiles of various levels. The median can6

serve to simulate river runoff, quantiles of level 5% and 95% can be used to form a7

90% confidence interval, finally, extreme quantiles can estimate the probability of large8

runoff. The conditional density model is based on a mixture of hybrid Paretos. The9

hybrid Pareto is built by stitching a truncated Gaussian with a Generalized Pareto dis-10

tribution. The mixture is made conditional by considering its parameters as functions11

of covariates. A neural network is used to implement those functions. A penalty term12

on the tail indexes is added to the conditional log-likelihood to guide the maximum13

likelihood estimator towards solutions that are preferred. This alleviates the difficulties14

encounter with the maximum likelihood estimator of the tail index on small training15

sets. We evaluate the proposed model on rainfall-runoff data from the Orgeval basin in16

France. The effect of the tail penalty is further illustrated on synthetic data.17
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1 Introduction18

River runoff modelling is relevant for hydroelectricity planning, irrigation and flood preven-19

tion. It is a well-known fact among hydrologists that the river runoff is fat-tailed, meaning20

that sudden large values of runoff can occur which are three or four standard deviations away21

from the sample mean [BSS+08]. Taking into account those large values is essential since22

they understandably have a very large impact. Another well-known fact is that precipita-23

tion in the hydrographic basin influences the river runoff. However, there are many other24

mecanisms at work such as underground water tables and soil permeability that are specific25

to a given hydrographic basin. Most hydrological models try to reproduce the dynamics of26

the basin by modelling the mecanisms in terms of reservoirs. An alternative approach is to27

use a stochastic model which provides a full distribution of the river runoff. For example,28

such a model has been proposed in Lu and Berliner [LB99]. They assume three states or29

regimes of the runoff process: rising, falling and normal. Transitions probabilities between30

the states are modelled depending on past runoff values and on rainfall data. Given the31

current state, the distribution of the river runoff is assumed to follow an autoregressive pro-32

cess which depends on the past runoff values and the observed precipitation. We propose to33

model the distribution of the runoff at a future time step t + 1 given covariate information34

available at time t with another stochastic model, the conditional mixture of hybrid Paretos35

presented in [CB08a]. This model bears some similarities to the model of Lu and Berliner36

[LB99]. In the conditional mixture, we can see the number of components as the number37

of states, which is determined by model selection instead of being set a priori. The state38
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selection which is controlled by the mixture weights depends on all the covariates but not on39

the previous state. The distribution of the river runoff given the current state is given by the40

corresponding component density, that is a hybrid Pareto density. The parameters of this41

density are modelled as function of covariates which include past runoff and precipitation.42

The conditional mixture can adapt to a more general shape of the underlying distribution,43

including asymmetry and multi-modality. Also, the hybrid Pareto enables the stochastic44

model to take explicitly extreme values into account. Moreover, a neural network computes,45

given the covariates, the mixture weights (or state probabilities) and the component density46

parameters. In contrast to Lu and Berliner [LB99], we don’t need to assume a specific form47

for the relationship between the covariates and the model parameters since such a neural48

network can in principle approximate any continuous mapping. The model will be further49

detailed in section 2.50

Neural networks have been popular models for a good while in hydrology, see [MD00]51

for a survey. They were used to predict river runoff but, to our knowledge, not within a52

conditional mixture framework. Such traditional neural networks are generally not apt at53

capturing extreme observations. On the other hand, standard models to tackle extremes54

are drawn from Extreme Value Theory (EVT) [EKM97]. These models consider either55

maxima over a given period, in which case the generalized extreme-value (GEV) distribution56

is used, or observations that exceed a selected threshold and a generalized Pareto distribution57

(GPD) models the distribution of the exceedances. The EVT models thereby mean to58

estimate the upper tail of the underlying distribution. The choice of the GEV and the59

GPD is motivated by the fact that these are the limiting distributions of the maxima and60
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the exceedances respectively under some fairly general conditions. Although extreme runoff61

behavior is utterly important, hydrologists need to model the whole runoff distribution. One62

way to extend the GPD model to the whole distribution has been proposed by Frigessi et al.63

[FHR02]. Their model is a two-component mixture with one light-tailed component and one64

GPD component. The hybrid Pareto mixture can be seen as a different way to include the65

GPD into a mixture model. The hybrid is built by stitching together a Gaussian and a GPD66

while ensuring continuity at the junction point. In the hybrid Pareto mixture, the number of67

components is chosen according to the data at hand. The central part of the hybrid Pareto68

mixture consists of a Gaussian mixture which is a flexible non-parametric estimator. The69

upper tail of the hybrid Pareto mixture is made of a linear combination of GPDs. Through70

experiments, this approach has shown to perform well on heavy-tailed data [CB08b].71

Vrac and Naveau [VN07] have incorporated covariates in the Frigessi mixture [FHR02] in72

order to predict the distribution of rainfall. The covariates help discriminating between dif-73

ferent sorts of rainfall regimes: no rainfall, regular rainfall and extreme rainfall. A particular74

distribution is used according to which regime prevails. Another way to include covariates75

into an EVT model has been developed by Chavez-Demoulin and Davison [CDD04]. Covari-76

ates are assumed to influence the value taken by the GPD parameters. This relationship is77

modelled by spline smoothers. In the conditional hybrid Pareto model, the mapping between78

the hybrid Pareto mixture and the covariates is modelled by a neural network. In this case,79

the whole conditional distribution is estimated, not just the conditional upper tail, as in the80

model of Chavez-Demoulin and Davison [CDD04].81

The tail index parameter is the most difficult parameter to estimate, whatever model is82
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used, be it the GPD, the GEV distribution or some other method which one could think of83

for tail index estimation. This is because the tail index parameter, also termed the shape84

parameter, gives a sense of the overall shape of the distribution and in particular, of the tail85

behavior. Typically, few observations will occur in the tail which makes the estimation of86

the tail index very sensitive. Despite the good asymptotic properties of maximum likelihood87

estimators (MLEs), they are not very reliable in small samples given their high variance.88

Estimators of moments show a better behavior in small samples, however they assume that89

the expectation of the underlying distribution is finite (equivalently, that the tail index is90

smaller than one). Coles and Dixon [CD99] introduced a penalty term in the MLEs of91

the GEV parameters. The intuition behind the penalty term is to include a similar range92

restriction on the tail index estimator as for the moment estimator. Coles and Dixon [CD99]93

show that the penalized MLE of the tail index performs better in small samples than the94

classical MLE.95

The hybrid Pareto is one such model with a tail index parameter, which is inherited from96

the GPD. When density estimation is performed with a hybrid Pareto mixture, the tail index97

of the underlying distribution can be estimated from the tail index of the dominant com-98

ponent in the mixture, that is the component with the largest tail index (and consequently,99

the heaviest tail). In this case, the MLEs sensitivity in small samples appears in the follow-100

ing way: large tail indexes are assigned to components with negligible mixture weights. To101

prevent this, we add a penalty term to the log-likelihood based on a prior distribution of the102

mixture tail indexes. This is similar in spirits to the penalty proposed by Coles and Dixon103

[CD99]. We devised a prior distribution of the mixture tail indexes based on the following104
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intuitive idea. We would expect that most components would take care of modelling the105

central part of the distribution and therefore, have a tail index close to zero. If the tail of the106

underlying distribution is heavy, we would then expect that some components would have a107

tail index close to the tail index of the underlying distribution.108

We evaluate the conditional hybrid Pareto mixture on rainfall-runoff data from the109

Orgeval basin in France. The conditional median of the learned conditional hybrid Pareto110

mixture serves to generate river runoff at a future time step t+1. A 90% confidence interval111

is also computed as the quantiles of level 5% and 95%. This is in contrast with the work112

of Frigessi et al. [FHR02] and of Vrac and Naveau [VN07] who did not use their model for113

prediction at a future time step. We also look at the distribution of the conditional tail in-114

dexes on the test set; the effect of the tail penalty term in the maximum likelihood estimator115

can be seen. We gain then more insight into the effect of the new penalty by looking at116

experiments on synthetic data.117

2 Statistical Model of the Rainfall-Runoff Process118

We propose to model the rainfall-runoff process with the conditional hybrid Pareto mixture,119

see [CB08a]. This model combines the flexibility of non-parametric modelling and the ex-120

trapolation capability of the GPD methodology. Given a vector of covariates which describe121

meteorological and hydrological conditions, the conditional distribution of the river runoff122

is modelled by a mixture of hybrid Paretos whose parameters depend on covariates. Such123

a mixture is able to adapt to asymmetry, multi-modality and tail heaviness that might be124
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present in the conditional distribution of the runoff. The neural network which learns the125

relationship between the covariates and the mixture parameters is able to approximate prop-126

erly the highly non-linear relationship between rainfall and runoff. The conditional hybrid127

Pareto mixture provides a conditional density model that has proven to perform well on128

many kind of data sets (see [CB08a]). The model is explained in details in the following129

subsections.130

2.1 Hybrid Pareto Mixture131

Suppose we want to model the distribution of Y , a variable representing the river runoff,132

with no additional predictive information. We could estimate the distribution of Y with a133

mixture of Gaussians, which is a popular non-parametric estimator [Bis95]. This type of134

approach circumvents the need to choose a specific parametric form for the distribution of135

the runoff and can take into account multi-modality and asymmetry. Mixtures of Gaussians136

approximate a density by adding up weighted Gaussians or "bumps", see Figure 1. The137

density estimator is formally given by
∑m

j=1 πjφμj ,σj
(y), where the πj are the mixture weights138

and φμj ,σj
(·) is the Gaussian density with parameters μj and σj. The weights must sum to139

one, that is
∑m

j=1 πj = 1, to ensure that the estimator is a proper density. A Gaussian140

mixture approximates the distribution of heavy-tailed data, such as runoff data, by locating141

one component with a large standard deviation around the largest observations. However,142

its capacity to extrapolate beyond the sample range might be poor.143

The hybrid Pareto distribution was put forward as a way to transfer the extrapolation

properties of the GPD [EKM97] to mixture models. The hybrid Pareto distribution is a
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smooth extension of the GPD to the whole real axis. This new distribution is built by

stitching a GPD tail to a Gaussian, while enforcing continuity of the resulting density and

of its derivative. In this work, we focus on runoff data which is heavy-tailed so we let ξ > 0

in the GPD density:

gξ;β(y − α) =
1

β
(1 +

ξ

β
(y − α))−1/ξ−1 ξ > 0, y > α.

Let α be the junction point and φμ;σ(y) = 1/(
√

2πσ) exp(−(y − μ)2/(2σ2)) be the Gaussian

density function with parameters μ and σ. The two constraint equations (equality of the

density and of its derivative at α) are solved so that α and β, the GPD scale parameter,

become functions of ξ, the GPD tail index and of μ and σ, the Gaussian parameters. Let

θ = (ξ, μ, σ) be the parameter vector of the hybrid Pareto. The hybrid Pareto density is

given by:

hθ(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
γ
φμ;σ(y) if y ≤ α,

1
γ
gξ;β(y − α) if y > α,

where the dependent parameters are α(ξ, μ, σ) = μ + σ
√

W ((1 + ξ)2/2π), β(ξ, σ) = (σ(1 +

ξ))/(
√

W ((1 + ξ)2/2π)) and W is the Lambert W function defined by w = W (wew) (see

[CGH+96]). The re-weighting factor γ ensures that the density integrates to one and is given

by:

γ(ξ) = 1 +
1

2

(
1 + Erf

(√
W ((1 + ξ)2/2π) /2

))
,

where Erf(·) is the error function Erf(z) = 2√
π

∫ z

0
e−t2dt = 2Φ(z

√
2)− 1 and Φ is the stan-144

dard Gaussian distribution function, (see [PFTV92]). The hybrid Pareto, while inheriting145

the approximation properties of the GPD, bypasses the need for threshold selection inherent146
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in the classical GPD methodology [EKM97] since α, the junction point of the Gaussian and147

the GPD is computed implicitly as a function of the hybrid parameters.148

With a hybrid Pareto mixture
∑m

j=1 πjhθj
(y) to model the distribution of the river runoff,149

we get the best of both worlds: the central part is a mixture of Gaussians which benefits150

from flexible approximation properties and the upper tail is a linear combination of GPD151

densities that are capable of extrapolating in areas of unseen data under sound parametric152

assumptions.153

2.2 Conditional Density Model154

Our goal is to provide a model of the river runoff at a future time step. We have at our155

disposal rainfall data in the hydrographic basin of interest which influences river runoff.156

We therefore look into modelling the distribution of the runoff at time t + 1 given covariate157

information at time t, which includes rainfall observations and past runoff. The hybrid Pareto158

mixture can be turned into a conditional density model by thinking of the parameters of the159

mixture as function of covariates [Bis95]. These functions can be implemented in many ways.160

The simplest model would be a linear model. However, the relationship between rainfall and161

runoff is highly non-linear. A one-layer feedforward neural network of which the linear model162

is a special case (no hidden units) is able, if the number of hidden units is well chosen, to163

approximate any continuous relationship between covariates and mixture parameters. Data-164

driven selection of the number of hidden units provides a proper level of complexity (or165

non-linearity). A representation of the conditional mixture model with a neural network is166

given in Figure 2. The covariates, or inputs, are combined linearly and either fed to the167
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hidden units or directly connected to the neural network outputs. We took the hyperbolic168

tangent as the activation function of the hidden layer. The neural network outputs are then169

transformed into the mixture parameters. Different transformation functions constrain the170

range of each mixture parameter. The a
(0)
j in Figure 2 are dedicated to the mixture weights.171

The transformation function, the softmax, ensures that these weights are positive and sum172

to one. The a
(1)
j and a

(3)
j control the tail index and the spread parameter respectively of the173

jth component. They are guaranteed to be positive by using a softplus [DBB+01], a slow-174

growing version of the exponential. Finally, the a
(2)
j ’s are assigned to the location parameters175

and need no range constraint.176

There are two hyper-parameters to adjust the level of complexity in the conditional177

hybrid Pareto mixture: the number of hidden units in the neural network and the number of178

components in the mixture. The former controls the degree of non-linearity of the mapping179

between the covariates and the mixture parameters and the latter accounts for the complexity180

of the conditional density (in particular, the multi-modality and asymmetry). Given the181

approximation capabilities of the neural network and of the mixture model, if the complexity182

level is well chosen, the conditional mixture should be able to approximate any type of183

conditional density. The hyper-parameters are chosen so as to maximize the conditional log-184

likelihood on a validation set, distinct from the training set and thus, should be reasonably185

close to the ones that give the best generalization performance (the capacity to perform well186

on unseen data). Because there are many sources of variability (training data, optimization187

process), the hyper-parameter selection can be variable as well. Overall, the conditional188

hybrid Pareto mixture gave a better performance than other conditional density estimator189
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in the presence of heavy-tailed data [CB08a].190

2.3 Learning and Regularization191

The conditional mixture parameters are the neural network parameters ω. These are learned

by minimizing the negative conditional log-likelihood on the training data:

L(ω) = −
n∑

i=1

log(ψω(yi|xi)),

where the sum is over the training set Dn = {(x1, y1), . . . , (xn, yn)} and ψω(yi|xi) is the192

hybrid Pareto conditional mixture model evaluated at the data point i.193

In [CB08a], the authors have observed empirically that maximum likelihood estimation of194

the hybrid Pareto mixture, conditional or not, can lead to over-estimation of the tail indexes.195

This is especially striking for small training sets. The over-estimation of the tail index, even196

by a small amount, leads to gross over-estimation of the extreme quantiles. In order to guide197

maximum-likelihood estimation and avoid the over-estimation of the tail indexes, we use a198

penalty term based on the prior density of Equation (1):199

f(x; τ, η, ρ) = τη exp{−ηx} + (1 − τ)
exp{−(x − 0.5)2/(2ρ2)}√

2πρ
. (1)

Figure 3 illustrates two typical shapes of the prior density. In the case of runoff data, we200

can safely assume that the distribution has a tail index around 0.5 ([BSS+08]). This implies201

that a variant of the full line density in Figure 3 will hold. Most components will be light-202

tailed, with tail indexes close to zero. These components will take care of modelling the203

central part of the distribution. Some components will be heavy-tailed, with a tail index204

value close to the one of the underlying density and these will estimate the upper tail of the205
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distribution. Hence, the full line density is bimodal, with one mode at zero and the other206

one, smaller, around 0.5. On the other hand, if the data is light-tailed, then we assume that207

all the components will have tail indexes close to zero. The prior density in this case would208

look like the dashed line density in Figure 3.209

The two-component mixture of Equation (1) can generate densities such as those il-210

lustrated in Figure 3. The exponential component with parameter η controls the density211

assigned to the small tail indexes and the Gaussian component centered at 0.5 with stan-212

dard deviation ρ determines how wide the range of the larger tail indexes can be. The213

mixture weight τ establishes the trade-off between the two components. When τ is equal to214

zero, we are in the light-tail case.215

The conditional mixture parameters ω are now learned by minimizing a new cost function,

the negative conditional log-likelihood minus the penalty term:

L(ω) = −
n∑

i=1

log(ψω(yi|xi)) − λ

n

n∑
i=1

m∑
j=1

log f(ξi,j; τ, η, ρ)

where the first sum is over the training set Dn, the second sum in the penalty term is over216

the number of components m, ψω(yi|xi) is the hybrid Pareto conditional mixture model217

evaluated at point i and f(ξi,j; τ, η, ρ) is the prior density evaluated at the tail index of the218

jth component of the conditional mixture at point i. The penalty term introduces four other219

hyper-parameters: λ which controls the weight of the penalty with respect to the conditional220

log-likelihood and τ , η and ρ from the prior density (see Equation (1)). A restricted set of221

values for the prior density parameters was selected so as to ensure that the prior density222

follows our prior information about the shape of the distributions of the tail indexes. The223
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model is trained for several combinations of hyper-parameters (which include the number of224

hidden units and the number of components of the conditional hybrid Pareto mixture and225

the hyper-parameters attached to the penalty term). The set of hyper-parameters which226

gives the smallest cost in terms of negative conditional log-likelihood on data unseen during227

training (the validation set) is selected.228

3 Experiments229

We evaluate the conditional hybrid Pareto mixture on the rainfall-runoff data from the230

Orgeval basin in France. Synthetic data experiments help to gain more insight into the role231

of the new penalty term in the cost function. Since the generative model is known, the232

predicted tail indexes can be compared with the tail indexes of the generative model. We233

also compare the conditional quantiles of the generative versus learned model.234

3.1 Orgeval Basin Data235

The Orgeval Basin is located in France, East of Paris. There is no snow accumulation236

in the area that could affect the river runoff. Therefore, we focus on rainfall as a pre-237

dictor of the river runoff. In order to capture the mecanisms of the basin, moving av-238

erages and moving standard deviations of various window lengths of the river runoff are239

included in the covariates. The river runoff Qt from the Avenelles sub-basin and the pre-240

cipitations at four surrounding stations, P j
t , j = 1, . . . , 4, are available at a hourly time241

step for over thirty years but we use approximately ten years of data, from 1986 to 1996 (see242

14

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



http://www.antony.cemagref.fr/qhan/Site%20orgeval/Page%20accueil%20francais.htm for more243

details on the data and the basin.). We also have daily average temperatures at this site for244

the same time period. Date variables serve to capture the cycles and trends in the data. Pre-245

cisely, there are 16 covariates to predict the river runoff distribution: rainfall from the four246

precipitation stations at the previous time step, the runoff at the two previous time steps,247

moving averages and standard deviations with daily, weekly and monthly window widths,248

three date variables concerning the year, the month and the week and the daily average249

temperature at the previous day. Three time periods where there is no missing data are split250

into training and test sets. The data sets are summarized in Table 1. For this experiment,251

we set Yt = Qt+1 and Xt = [Qt, Qt−1, P
1
t , . . . , ] which means that given information available252

at time t, we model the distribution of the runoff at time t + 1. With the hourly data, we253

thus model the conditional distribution of the runoff at the next hour. In order to increase254

the prediction horizon to 6 and 12 hours, the hourly data are aggregated to form 6h and 12h255

time steps. To this end, we take the average of the runoff and the sum of the rainfall over256

the appropriate time period. This means that the lengths of our initial data sets in Table257

1 are divided by the length of the time steps. We thus have three different models, one for258

each time step.259

We assume that given the covariate vector Xt, the Yt are independent and identically260

distributed. It is thus possible to perform model selection via five-fold cross-validation (as261

opposed to sequential cross-validation which is more computationally intensive, see Bishop262

for details [Bis95]). Model selection works as follows. The training set is divided into five263

subsets or folds. The conditional hybrid Pareto mixture is first trained on four of those folds264
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for each set of hyper-parameters considered and the performance of each trained model is265

evaluated on the left out fold. This process is repeated five times, so that each fold in turn266

was left out and that the model performance was evaluated on all the data of the training267

set. The hyper-parameters that gave the best performance in validation are selected. The268

model with the selected hyper-parameters are trained again this time on the whole training269

set. The generalization ability, that is the performance on unseen data, is then estimated270

on the test set, which is distinct from the training set. Results from the experiments on271

the Orgeval basin data are summarized in Table 2 for each time step (1h, 6h, 12h). The272

selected hyper-parameters for the penalty term, (λ, τ, η, σ), correspond to the prior belief that273

the distribution is heavy-tailed. The confidence interval is computed from the conditional274

quantiles of level 0.05 and 0.95, therefore, the observed runoff should fall into that interval275

nine times out of ten. The percentage given on the row Confidence Interval is the actual276

percentage of observed runoff on the test set which fall into the confidence interval. We can277

see that it is pretty close to the expected one. A mesure of goodness-of-fit is the so-called278

R-square given as R2 = 1−∑
i(yi− ŷi)

2/
∑

i(yi− ȳ)2, where yi is the observed runoff, ŷi is the279

prediction and ȳ is the sample average. The closer R2 is to one, the better the prediction is.280

The R-square is computed on the test set and the conditional median of the trained model281

is used to predict the runoff. We can see from the last row of Table 2 that the R-square282

for all time steps are very good, although the accuracy of the prediction decreases with the283

length of the time step. Prediction at longer time steps are understanbly more difficult. A284

different test set is used for the 12h time step data (the data set number 2 in Table 1) in285

order to leave more data for the training set. The prediction is possibly more challenging on286
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that time period and at least, not directly comparable with the other two models, 1h and287

6h, which uses a similar test set.288

The river runoff for the test period is illustrated in the left column of Figure 4, each row289

corresponding to one time step. The model prediction, which is the conditional median of290

the trained model, is plotted for each test set in the right panel of Figure 4. For all time291

steps, we can see that the model captured very well the dynamics of the river runoff. In the292

left panel of Figure 5, we have plotted the confidence intervals in light grey with quantiles293

of level 0.05 and 0.95 for the first 100 points of the test set. The black line is the observed294

runoff. Sometimes, the confidence interval is very narrow while it grows larger where the295

model perceives more uncertainty. We can check the effect of the tail penalty by looking at296

the distribution of the tail indexes of the conditional hybrid Pareto mixture on the test set.297

This is illustrated in the right panel of Figure 5 by an histogram. Except for a few cases in298

which the tail index exceeds one (which is allowed by the prior), the largest tail index values299

vary between 0.2 and 0.6 while most tail indexes take on values near zero. The distribution300

of the tail indexes is thus consistent with our prior belief.301

3.2 Synthetic Data302

We generate synthetic data which resemble the runoff data in the sense that there are cycles

and that the tail indexes are in the same range. Let Y be a random variable distributed

according to a Fréchet distribution whose parameters are functions of an input variable X.
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Then the distribution function of Y |X = x is given by:

P (Y ≤ y|X = x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 si y ≤ μ(x),

exp

{
−

(
y−μ(x)

σ(x)

)−1/ξ(x)
}

si y > μ(x).

The Fréchet distribution is a canonical heavy-tail distribution: the tail of most heavy-tailed

distribution eventually behaves like the Fréchet tail. The input variable X is distributed

according to a standard Normal distribution. We chose the following sine-shaped functional

form for the dependence function ξ(·) :

ξ(x) = β1 + β2 sin (γ1 + γ2x) .

Since X ∼ N (0, 1), we select the parameters of ξ(·) so that ξ(X) ∈ [0.25, 0.5] with probability303

0.99. The dependence function μ(·) and σ(·) have a similar sine-shaped form but their304

parameters are chosen so that μ(X) ∈ [2, 6] and σ(X) ∈ [0.5, 1] with probability 0.99. We305

generated pairs of observations (Xi, Yi) according to this generative model. The left panel of306

Figure 6 illustrates the training set which is made of 2 000 such pairs of observations. The307

right panel shows the corresponding tail indexes. Model selection (the choice of the proper set308

of hyper-parameters) is performed via five-fold cross-validation on the training set. Results309

are presented on a test set, distinct from the training set, which consists of 10 000 pairs of310

observations generated according to the conditional Fréchet distribution described above.311

The model selected via five-fold cross-validation for the training set of Figure 6 has eight312

hidden units and two mixture components. The hyper-parameters for the tail penalty are313

the following: λ = 0.1, τ = 0.45, η = 50 and σ = 0.05. This corresponds to the shape314

of a prior density for heavy tails in Figure 3. The effect of the tail penalty can be seen in315
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the left panel of Figure 7: the histogram of the conditional tail indexes of the conditional316

hybrid Pareto mixture on the test set reflects the shape of the prior density. Note that less317

than 1% of the tail indexes are larger than 1 and are thus not shown in the Figure, this is318

due to the upper tail of the prior which still has some significative density in that area. For319

the generative model, the conditional tail indexes ξ(X) vary between 0.25 and 0.5 (see the320

right panel of Figure 6). According to our prior belief, there should be a small subset of tail321

indexes from the conditional hybrid Pareto mixture which take care of modelling the upper322

tail and thus should take values in the same interval [0.25, 0.5]. The histogram of Figure 7 is323

consistent with this prior belief. In the right panel of Figure 7 we have plotted the test set324

together with the quantiles of level 0.05% and 0.95% which form a 90% confidence interval325

as predicted from the trained conditional hybrid Pareto mixture. Among the test set, 89%326

of the data points fall into the confidence interval.327

In order to check how well the conditional density is learned in the upper tail, we compare328

three conditional quantiles of levels 0.9, 0.95 and 0.99 as computed from the generative model329

and the learned model. These are plotted in Figure 8: the black line is the quantile as330

computed from the trained conditional hybrid Pareto mixture and the light grey line is the331

quantile from the generative model. For the levels 0.9 and 0.95 (the top row), the two lines332

are almost indistinguishable from one another except for the lower and upper ends. The data333

density is much lower in these areas (see Figure 6) because the X variable follows a standard334

Normal distribution and this makes learning more difficult. The conditional quantile of level335

0.99 is less well approximated. This is also due to data scarcity and shows that the model is336

less reliable in that case. Table 3 compares the percentage of the data in the test set which337
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fall below the conditional quantiles of the generative model and the trained model for the338

three quantile levels. The picture is pretty similar for both models. Overall, the performance339

of the conditional hybrid Pareto mixture with the new tail penalty proves to be satisfying.340

4 Conclusion341

We have propose a new stochastic model based on the conditional hybrid Pareto mixture342

[CB08a], in order to model the distribution of the river runoff at a future time step given343

rainfall observations in the hydrographic basin. This model relies on non-parametric algo-344

rithms, namely a feed-forward neural network and a mixture of distributions, from which it345

gains flexibility. Moreover, the component of the mixture, the hybrid Pareto, inherits the tail346

approximation properties of the generalized Pareto distribution which are thus transmitted347

to the conditional hybrid Pareto mixture. Therefore, the conditional hybrid Pareto mixture348

has good approximation properties, as much in the central part of the distribution as in the349

upper tail area.350

We have introduce a penalty term in the maximum likelihood estimator in order to yield351

more realistic conditional tail index estimation. The penalty is based on a bimodal density352

which captures our prior knowledge of the distribution of the tail index. A hybrid Pareto353

mixture has as many tail indexes as there are components in the mixture. In the conditional354

case, the number of tail indexes is further multiplied by the number of data points. Our355

intuition is that the distribution of the tail indexes should have two modes, one around zero356

and one around the value of the tail index of the underlying distribution, if the latter is357
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heavy-tailed. Most components would be light-tailed and take care of modelling the central358

part of the distribution whereas few components would have a heavier tail, near the value359

of the tail index of the generative model, and would thus approximate the upper tail of the360

underlying distribution.361

The conditional hybrid Pareto mixture has been trained on data from the Orgeval basin in362

France. Rainfall at four surrounding stations and the river runoff are available at hourly time363

step. These data were aggregated to obtain 6 hour and 12 hour time steps. The stochastic364

model was trained on three data sets, the hourly, six and 12 hour time steps. Each model365

can then be used to forecast the river runoff at the next hour, six or 12 hours later. Our366

experiments have shown that the conditional hybrid Pareto mixture is able to capture the367

dynamics of the basin for the three predictive time horizos. In addition, the model provides368

reliable confidence intervals. The tail index penalty introduces the expected distribution of369

the conditional tail indexes, with one mode at zero and the second mode around 0.5, more370

or less sharp depending on the data set.371

Finally, the conditional hybrid Pareto mixture was trained on synthetic conditional data372

based on the Fréchet distribution. The distribution of the tail indexes is consistent with the373

values of the conditional tail indexes of the generative model. On the test set, 89% of the374

data points falls into the 90% confidence interval predicted by the model. Moreover, the375

trained model compares favorably with the generative model in terms of extreme quantiles.376

The conditional hybrid Pareto mixture with the new penalty term has proven to be377

effective at modelling the rainfall-runoff process for various time steps on the Orgeval basin378

and more insight into the model was gain by looking at an experiment on synthetic data.379
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This model is very flexible and could be useful to model the rainfall-runoff process in other380

hydrographic basins, by using appropriate covariates.381

22

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



Acknowledgments382

The authors thank the following funding organizations: FQRNT, CNRS, CEA and the383

AssimileX and ACQWA projects.384

23

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



References385

C. Bishop, Neural networks for pattern recognition, Oxford, 1995.386

P. Bernadara, D. Schertzer, E. Sauquet, I. Tchiguirinskaia, and M. Lang, The flood prob-387

ability distribution tail: how heavy is it?, Stochastic Environmental Research and Risk388

Assessment 22 (2008), 107–122.389

J. Carreau and Y. Bengio, A hybrid pareto mixture for conditional asymmetric fat-tailed390

distributions, IEEE Transactions on Neural Networks (2008).391

, A hybrid pareto model for asymmetric fat-tailed data: the univariate case, Extremes392

(2008).393

S. G. Coles and M. J. Dixon, Likelihood-based inference for extreme value models, Extremes394

2 (1999), no. 1, 5–23.395

V. Chavez-Demoulin and A. C. Davison, Generalized additive modelling of sample extremes,396

Applied Statistics 54 (2004), 207–222.397

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the lambert398

w function, Advances in Computational Mathematics 5 (1996), 329–359.399

C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, A universal approximator400

of convex functions applied to option pricing., Advances in Neural Information Processing401

Systems, vol. 13, 2001.402

24

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling extremal events, Applications of403

Mathematics, Stochastic Modelling and Applied Probability, Springer, 1997.404

A. Frigessi, O. Haug, and H. Rue, A dynamic mixture model for unsupervised tail estimation405

without threshold selection, Extremes 5 (2002), 219–235.406

Z.-Q. Lu and L. M. Berliner, Markov switching time series models with application to a407

daily runoff series, Water Resources Research 35 (1999), no. 2, 523–534.408

H. R. Maier and G. C. Dandy, Neural networks for the prediction and forecasting of water409

resources variables: a review of modelling issues and applications, Environmental Modelling410

and Software 15 (2000), 101–124.411

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in412

fortran: the art of scientific computing, 2nd ed., Cambridge University Press, 1992.413

M. Vrac and P. Naveau, Stochastic downscaling of precipitation: From dry events to heavy414

rainfalls, Water resources research 43 (2007).415

25

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



List of Tables416

1 Three periods with no missing value in the Orgeval basin data in order of417

decreasing lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29418

2 Experiments for the Orgeval basin data, for each time step (1h, 6h, 12h) we419

have: the sizes of the training and test sets (data set number from Table 1),420

the selected number of hidden units and components (h, m) followed by the421

selected penalty hyper-parameters (λ, τ, η, σ), the percentage of the runoff in422

the test set which falls in the predicted 90% confidence interval and the R2 of423

the predicted median on the test set. . . . . . . . . . . . . . . . . . . . . . . 30424

3 Experiments with the conditional Fréchet data: percentage of the data in the425

test set which fall below the conditional quantiles of levels 0.9, 0.95 and 0.99426

for the generative and the trained models. . . . . . . . . . . . . . . . . . . . 31427

26

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



List of Figures428

1 Gaussian mixture density (full line) with seven components trained on heavy-429

tailed data. The dashed lines represent the contribution of each component430

to the density. Five components model the central part and the other two431

components contribute to the density in the upper tail. . . . . . . . . . . . 32432

2 Representation of a conditional mixture model with hybrid Pareto compo-433

nents ψω(y|x). Inputs are fed to a one-layer feedforward neural network with434

an extra linear connection directly to the outputs. The outputs are then435

tranformed into the mixture parameters so as to fullfil range constraints. . . 33436

3 The distribution in full line has one mode at zero and one mode at 0.5 while437

the distribution in dashed line has only significant density around zero. The438

former distribution reflects our prior information about how the tail indexes of439

a hybrid Pareto mixture should be distributed when the data is heavy-tailed440

and the latter distribution when the data is light-tailed. . . . . . . . . . . . . 34441

4 Left column: observed runoff of the Avenelles sub-basin for the test period,442

each row corresponding to a given time step (1h, 6h and 12h). Right column:443

predicted median on the test set from the learned hybrid Pareto conditional444

mixture for the three time steps. . . . . . . . . . . . . . . . . . . . . . . . . 35445

27

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



5 Left panel: in black, the observed runoff for the first 100 points of the test set446

illustrated in Figure 4 together with a 90% confidence interval in light grey447

predicted from the conditional mixture. Right panel: histogram of the tail448

indexes of the conditional hybrid Pareto mixture on the test set. . . . . . . 36449

6 Left panel: training set of 2 000 data points distributed according to the con-450

ditional Fréchet distribution with a sine-shaped functional for the dependent451

parameters. Right panel: the corresponding conditional tail indexes of the452

generative conditional Fréchet model. . . . . . . . . . . . . . . . . . . . . . . 37453

7 Left panel: histogram of the conditional tail indexes of the trained conditional454

hybrid Pareto mixture on the test set. Right panel: 90% confidence interval455

from the trained model on the test set together with the data points (89% of456

the data fall into the confidence interval). . . . . . . . . . . . . . . . . . . . 38457

8 Conditional quantiles of level 90%, 95% and 99% clockwise, in black, as com-458

puted from the mixture model and in light grey, from the generative condi-459

tional Fréchet model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39460

28

Water Resour. Res., 45, W10437, doi:10.1029/2009WR007880. 



Time period Hourly observations

1: 03/26/86 18:00:00 to 05/22/94 08:00:00 71 487

2: 07/22/96 15:00:00 to 08/24/01 16:00:00 44 618

3: 05/30/94 18:00:00 to 06/18/96 03:00:00 17 987

Table 1: Three periods with no missing value in the Orgeval basin data in order of

decreasing lengths.
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Hourly 6 hours 12 hours

Training data 52 846 (1) 9 913 (1) 7 455 (1,3)

Test data 10 000 (1) 2 000 (1) 3 717 (2)

(h, m) (4,4) (4,8) (4,12)

(λ, τ, η, σ) (0.01,0.5,50,0.1) (0.1,0.1,50,0.2) (1,0.1,50,0.1)

Confidence Interval 91.94% 92.1% 87.6%

R2 0.99 0.92 0.73

Table 2: Experiments for the Orgeval basin data, for each time step (1h, 6h, 12h)

we have: the sizes of the training and test sets (data set number from Table 1), the

selected number of hidden units and components (h, m) followed by the selected penalty

hyper-parameters (λ, τ, η, σ), the percentage of the runoff in the test set which falls in

the predicted 90% confidence interval and the R2 of the predicted median on the test

set.
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0.9 0.95 0.99

Generative model 89.64% 94.54% 98.97%

Trained model 89.16% 94.1% 98.39%

Table 3: Experiments with the conditional Fréchet data: percentage of the data in the

test set which fall below the conditional quantiles of levels 0.9, 0.95 and 0.99 for the

generative and the trained models.
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Figure 1: Gaussian mixture density (full line) with seven components trained on heavy-

tailed data. The dashed lines represent the contribution of each component to the density.

Five components model the central part and the other two components contribute to the

density in the upper tail.
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Figure 2: Representation of a conditional mixture model with hybrid Pareto compo-

nents ψω(y|x). Inputs are fed to a one-layer feedforward neural network with an extra

linear connection directly to the outputs. The outputs are then tranformed into the

mixture parameters so as to fullfil range constraints.
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Figure 3: The distribution in full line has one mode at zero and one mode at 0.5 while

the distribution in dashed line has only significant density around zero. The former

distribution reflects our prior information about how the tail indexes of a hybrid Pareto

mixture should be distributed when the data is heavy-tailed and the latter distribution

when the data is light-tailed.
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Figure 4: Left column: observed runoff of the Avenelles sub-basin for the test period,

each row corresponding to a given time step (1h, 6h and 12h). Right column: predicted

median on the test set from the learned hybrid Pareto conditional mixture for the three

time steps.
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Figure 5: Left panel: in black, the observed runoff for the first 100 points of the test set

illustrated in Figure 4 together with a 90% confidence interval in light grey predicted from

the conditional mixture. Right panel: histogram of the tail indexes of the conditional

hybrid Pareto mixture on the test set.
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Figure 6: Left panel: training set of 2 000 data points distributed according to the condi-

tional Fréchet distribution with a sine-shaped functional for the dependent parameters.

Right panel: the corresponding conditional tail indexes of the generative conditional

Fréchet model.
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Figure 7: Left panel: histogram of the conditional tail indexes of the trained conditional

hybrid Pareto mixture on the test set. Right panel: 90% confidence interval from the

trained model on the test set together with the data points (89% of the data fall into

the confidence interval).
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Figure 8: Conditional quantiles of level 90%, 95% and 99% clockwise, in black, as

computed from the mixture model and in light grey, from the generative conditional

Fréchet model.
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