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Abstract

Flood quantile estimation is of great importance for several types of engineering studies and policy decisions.

However, practitioners must often deal with the limited availability of data and with short length observation

series. Thus, the information must be used optimally. During the last decades, to make better use of available

data, inferential methodology has evolved from annual maxima modeling to peaks over a threshold one. To

mitigate the lack of data, peaks over a threshold are sometimes combined with additional information - mostly

regional or historical information. However the most important information for the practitioner remains the

data available at the target site. In this study, a model that allows inference on the whole time series is

introduced. In particular, the proposed model takes into account the dependence between successive extreme

observations using an appropriate extremal dependence structure. Results show that this model leads to more

accurate flood peak quantile estimates than conventional estimators. In addition, as the time dependence is

taken into account, inferences on other flood characteristics can be performed. An illustration is given with

flood duration data. Our analysis shows that the accuracy of the proposed models to estimate flood duration

is related to specific catchment characteristics. Some suggestions to increase the flood duration predictions are

presented.

Keywords: Multivariate extreme value distribution, Extremal index, Markov chain models, Flood frequency

analysis

1 Introduction

Estimation of extreme flood events is important for several engineering design and risk management activities.

This is a considerable task as the amount of data available is often limited. Thus, to increase the precision and the
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quality of the estimates, several authors resorted to the use of other sources of information. For example, Chebana

and Ouarda [2008], Ribatet et al. [2007a], Kjeldsen and Jones [2006, 2007] and Cunderlik and Ouarda [2006] used

information from other homogeneous gaging stations. Werritty et al. [2006] and Reis Jr. and Stedinger [2005] used

historical information to improve inferences. Incorporation of additional information in the estimation procedure

is attractive but it should not be more prominent than the original target site data [Ribatet et al., 2007b]. Before

looking for other sources of information, it seems reasonable to use efficiently the data available at the target site.

Most often, practitioners possess initially the whole time series rather than only the extreme observations. In

particular, the reduction of a time series to a sample of Annual Maxima (AM) represents a loss of information.

In this perspective, the Peaks Over Threshold (POT) [Ashkar and Rousselle, 1987; Madsen and Rosbjerg,

1997] approach is less wasteful as more than one event per year can be inferred. However, the declustering method

used to identify independent events is quite subjective. Furthermore, even though a “quasi automatic” procedure

was recently introduced by Ferro and Segers [2003], there is still a waste of information as only cluster maxima are

used.

Coles et al. [1994] and Smith et al. [1997] proposed an approach based on Markov chain models that uses all

exceedances and accounts for temporal dependence between successive observations. Finally, the entire information

available within the time series is taken into account. More recently, Fawcett and Walshaw [2006] gave an illustrative

application of the Markov chain model to extreme wind speed modeling.

In the present study, extreme flood events are of interest. The performance of the Markov chain model is

compared to the conventional POT approach. The data analyzed consist of a collection of 50 French gaging

stations. These stations constituted a subset of the data set formed by Renard et al. [2008] to examine stationarity

of hydrological extremes in France. The area under study ranges from 2◦W to 7◦E and from 45◦N to 51◦N. The

drainage areas vary from 72 to 38300 km2 with a median value of 792 km2. Daily observations were recorded from

39 to 105 years, with a mean value of 60 years. For the remainder of this article, the quantile benchmark values

are derived from the maximum likelihood estimates on the whole times series using a conventional POT analysis.

The paper is organized as follows: Section 2 introduces the theoretical aspects for the Markov chain model,

while Section 3 checks the relevance of the Markovian model hypothesis. Sections 4 and 5 analyze the performance

of the Markovian model to estimate the flood peaks and durations respectively. Finally, some conclusions and

perspectives are presented in Section 6.

2 A Markov Chain Model for Cluster Exceedances

In this section, the extremal Markov chain model is presented. In the remainder of this article, it is assumed

that the flow Yt at time t depends on the value Yt−1 at time t − 1. In this flexible formulation, Yt represents the

streamflow at any time scale t. In hydrology, the daily time scale is often used. In this case Yt represents the daily

streamflow for day t. However, the model remains valid for any time scale - e.g. hourly scale. The dependence
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between two consecutive observations is modeled by a first order Markov chain. Before introducing the theoretical

aspects of the model, it is worth justifying and describing the main advantages of the proposed approach.

It is now well-known that the univariate Extreme Value Theory (EVT) is relevant when modeling either

AM or POT data series. Nevertheless, its extension to the multivariate case is surprisingly rarely applied in

practice. Recently the use of the multivariate framework to treat hydrological extreme events has been receiving

additional attention. Several applications made use of bivariate distributions and copulas to jointly model the

various components of extreme hydrological events, for instance flood peak, volume and duration [Yue et al., 2001;

Zhang and Singh, 2006], drought magnitude, volume and duration [Ashkar et al., 1998; Ouarda et al., 2008], and

storm intensity and duration [Salvadori and DeMichele, 2004]. The adoption of the multivariate framework to treat

extreme hydrological events was motivated by the fact that single-variable hydrological analysis provides limited

understanding and assessment of the true behavior of hydrological phenomena which are often characterized by a

set of correlated random variables. Recent research is starting to focus on the development of regional multivariate

modeling tools [Chebana and Ouarda, 2007]. A common element in all research dealing with the use of multivariate

tools for the analysis of extreme hydrological events is the attempt to maximize the use of all available hydrological

information to improve inference concerning rare events.

The present work aims to motivate the use of the Multivariate EVT (MEVT). In our application, the multi-

variate results are used to model the dependence between a set of lagged values in a times series. Consequently,

compared to the AM or the POT approaches, the amount of observations used in the inference procedure is clearly

larger. For instance, while only cluster maxima are used in a POT analysis, all exceedances are inferred using a

Markovian model. In this sense, the proposed approach lies between POT analysis and conventional time series

analysis. Indeed, time series analysis is interested in the dependence structure for the whole time series including

low streamflow values, while the proposed approach focuses on the dependence structure between successive ex-

treme observations. POT modeling, on the other hand, leads to the loss of a significant part of extreme values as

only (independent) flood peaks are considered.

2.1 Likelihood function

Let Y1, . . . , Yn be a stationary first-order Markov chain with a joint distribution function of two consecutive

observations F (y1, y2), and F (y) its marginal distribution. Thus, the likelihood function L evaluated at the n

first daily streamflow values (y1, . . . , yn) is:

L(y1, . . . , yn) = f(y1)

n
∏

i=2

f(yi|yi−1) =

∏n
i=2 f(yi, yi−1)
∏n−1

i=2 f(yi)
(1)

where f(yi) is the marginal density, f(yi|yi−1) is the conditional density, and f(yi, yi−1) is the joint density of the

i − 1 and i daily observations.

To model all exceedances above a sufficiently large threshold u, the joint and marginal densities must be known.
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Standard univariate EVT arguments [Coles, 2001] justify the use of a Generalized Pareto Distribution (GPD) for

f(yi) - e.g. a term of the denominator in equation (1). As a consequence, the marginal distribution is defined by:

F (y) = 1 − λ

(

1 + ξ
y − u

σ

)−1/ξ

, y ≥ u (2)

where 1 + ξ(y − u)/σ > 0, λ = Pr[Y ≥ u], σ and ξ are respectively the scale and shape parameters. Similarly,

MEVT arguments [Resnick, 1987] justify the use of a bivariate extreme value distribution for f(yi, yi−1) - e.g. a

term of the numerator in equation (1). Thus, the joint distribution is defined by:

F (y1, y2) = exp [−V (z1, z2)] , y1 ≥ u, y2 ≥ u (3)

where V is a homogeneous function of order -1, e.g. V (nz1, nz2) = n−1V (z1, z2), satisfying V (z1,∞) = z−1
1 and

V (∞, z2) = z−1
2 , and zi = −1/ logF (yi), i = 1, 2.

Unlike the univariate case, there is no finite parametrization for the V functions. Thus, it is common to use

specific parametric families for V such as the logistic [Gumbel, 1960], the asymmetric logistic [Tawn, 1988], the

negative logistic [Galambos, 1975] or the asymmetric negative logistic [Joe, 1990] models. Some details for these

parametrizations are reported in Appendix A. These models, as all models of the form (3) are asymptotically

dependent, that is [Coles et al., 1999]:

χ = lim
ω→1

χ(ω) = limω→1 Pr [F (Y2) > ω|F (Y1) > ω] > 0 (4)

χ = lim
ω→1

χ(ω) = limω→1
2 log(1−ω)

log Pr[F (Y1)>ω,F (Y2)>ω] − 1 = 1 (5)

Other parametric families exist to consider simultaneously asymptotically dependent and independent cases

[Bortot and Tawn, 1998]. However, apart from a few particular cases (see Section 3), the data analyzed here seems

to belong to the asymptotically dependent class. Consequently, in this work, only asymptotically dependent models

are considered - i.e. of the form (1)–(3).

2.2 Inference

The Markov chain model is fitted using maximum censored likelihood estimation [Ledford and Tawn, 1996]. The

contribution Ln(y1, y2) of a two consecutive daily streamflow values y1, y2 to the numerator of equation (1) is given

by:
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Ln(y1, y2) =















































exp [−V (z1, z2)] [V1(z1, z2)V2(z1, z2) − V12(z1, z2)] K1K2, if y1 > u, y2 > u

exp [−V (z1, z2)] V1(z1, z2)K1, if y1 > u, y2 ≤ u

exp [−V (z1, z2)] V2(z1, z2)K2, if y1 ≤ u, y2 > u

exp [−V (z1, z2)] , if y1 ≤ u, y2 ≤ u

(6)

where Kj = −λjσ
−1t1+ξ

j z2
j exp(1/zj), tj = [1 + ξ(yj − u)/σ]

−1/ξ
+ and Vj , V12 are respectively the partial derivative

with respect to the component j and the mixed partial derivative. The contribution Ld(yj) of a daily streamflow

yj to the denominator of equation (1) is given by:

Ld(yj) =















σ−1λ [1 + ξ(yj − u)/σ]−1/ξ−1
+ , if yj > u,

1 − λ, otherwise.

(7)

Finally, the log-likelihood is given by:

log L(y1, . . . , yn) =
n
∑

i=2

log Ln(yi−1, yi) −
n−1
∑

i=2

log Ld(yi) (8)

2.3 Return levels

Most often, the main objective of an extreme value analysis is quantile estimation. As for the POT approach, return

level estimates can be computed. However, as all exceedances are inferred, this is done in a different way as the

dependence between successive observations must be taken into account. For a stationary sequence Y1, Y2, . . . , Yn

with a marginal distribution function F , Lindgren and Rootzen [1987] have shown that:

Pr [max {Y1, Y2, . . . , Yn} ≤ y] ≈ F (y)nθ (9)

where θ ∈ [0, 1] is the extremal index and can be interpreted as the reciprocal of the mean cluster size [Leadbetter,

1983] - i.e. θ = 0.5 means that extreme (enough) events are expected to occur by pair. θ = 1 (resp. θ → 0)

corresponds to the independent (resp. perfect dependent) case.

As a consequence, the quantile QT corresponding to the T -year return period is obtained by equating equa-

tion (9) to 1 − 1/T and solving for T . By definition, QT is the observation that is expected to be exceeded once

every T years, i.e,

QT = u − σξ−1

(

1 −
{

λ−1
[

1 − (1 − 1/T )1/(nθ)
]}−ξ

)

(10)

It is worth emphasizing equation (9) as it has a large impact on both theoretical and practical aspects. Indeed,

for the AM approach, equation (9) is replaced by
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Figure 1: Histogram of the extremal index estimations from the 100 simulated Markov Chains of length 2000.

Pr [max {Y1, Y2, . . . , Yn} ≤ y] ≈ G(y) (11)

where G is the distribution function of the random variable Mn = max {Y1, Y2, . . . , Yn}, that is a generalized

extreme value distribution. In particular, equations (9) and (11) differ as the first one is fitted to the whole set of

observations Yi, while the latter is fitted to the AM ones. By definition, the number nY of the Yi observations is

much larger than the size nM of the AM data set. Especially, for daily data, nY = 365nM .

From equation (10), the extremal index θ must be known to obtain quantile estimates. The methodology

applied in this study is similar to the one suggested by Fawcett and Walshaw [2006]. Once the Markovian model

is fitted, 100 Markov chains of length 2000 were generated. For each chain, the extremal index is estimated using

the estimator proposed by Ferro and Segers [2003] to avoid issues related to the choice of declustering parameter.

In particular, the extremal index θ is estimated using the following equations:

θ̂(u) =















max

(

1,
2[

P

N−1

i=1
(Ti−1)]2

(N−1)
P

N−1

i=1
T 2

i

)

, if max {Ti : 1 ≤ i ≤ N − 1} ≤ 2

max

(

1,
2(

P

N−1

i=1
Ti)

2

(N−1)
P

N−1

i=1
(Ti−1)(Ti−2)

)

, otherwise

(12)

where N is the number of observations exceeding the threshold u, Ti is the inter-exceedance time, e.g. Ti = Si+1−Si

and Si is the i-th exceedance time.

Lastly, the extremal index related to a fitted Markov chain model is estimated using the sample mean of the

100 extremal index estimations. Figure 1 represents the histogram of these 100 extremal index estimations. In this
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Figure 2: Autocorrelation plot (left panel) and scatterplot of the time series at lag 1 (right panel) for station
E6470910.

study, as a large number of time series is involved, the number and length of the simulated Markov chains may be

too small to lead to the most accurate extremal index estimations; but avoid intractable CPU times. If less sites

are considered, it is preferable to increase these two values.

A preliminary study (not presented here) has shown that, for quantile estimation, this procedure was more

accurate than estimating θ using the estimator of Leadbetter [1983]. This confirms the conclusions drawn by

Fawcett [2005] for extreme wind speed data.

3 Extreme Value Dependence Structure Assessment

Prior to performing any estimations, it is necessary to test whether: (a) the first order Markov chain assumption

and (b) the extreme value dependence structure (equation (3)) are appropriate to model successive observations

above the threshold u.

Figures 2 and 3 illustrate the auto-correlation functions and the scatter plots between two consecutive observa-

tions for two different gaging stations. As the partial autocorrelation coefficient at lag 1 is large, Figures 2 and 3

(left panels) corroborate the (a) hypothesis. However, some partial auto-correlation coefficients are significant

beyond lag 1. This may suggest that a higher-order model may be more appropriate but does not necessarily mean

that a first-order assumption is completely flawed. Simplex plots [Coles and Tawn, 1991] can be used to assess the

suitability of a second-order assumption over a first-order one. For instance, if the points of the simplex plot are

grouped in a cluster of points on the interior, this suggests that a second-order Markov chain might be more ap-

propriate - though this doesn’t necessarily imply that the first-order assumption will completely fail. On the other
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Figure 3: Autocorrelation plot (left panel) and scatterplot of the time series at lag 1 (right panel) for station
A4200630.
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Figure 4: Simplex plots for stations K0523010 (left panel), K4470010 (middle panel) and E6470910 (right panel).

hand, if the points tend to lie toward the edge of the plot, pairwise dependence is implied. For our application,

it seems that a first-order model seems to be valid - except for the three slowest dynamic catchments. Figure 4

consists of simplex plots for the stations K0523010, K4470010 and E6470910. These three simplex plots lead to

three different conclusions: (a) the left panel advocates the use of the first-order assumption, (b) the middle panel

suggests that a second-order Markov chain might be more appropriate and (c) the right panel clearly promotes

the use of a second-order assumption. The middle panel corresponds to the three slowest dynamic catchments as

stated above while the right panel is specific as station E6470910 has a major runoff contribution coming from

groundwater flow.

Though it is an important stage because of its consequences on quantile estimates [Ledford and Tawn, 1996;

Bortot and Coles, 2000], verifying the (b) hypothesis is a considerable task. An overwhelming dependence between

consecutive observations at finite levels is not sufficient as it does not give any information about the dependence
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Figure 5: Plot of the χ and χ statistics and the related 95% confidence intervals for station E6470910. The solid
blue lines are the theoretical bounds.

relationship at asymptotic levels. For instance, the overwhelming dependence at lag 1 (Figures 2 and 3, right

panels) does certainly not justify the use of an asymptotic dependent model.

Figures 5 and 6 present the evolution of the χ(ω) and χ(ω) statistics as ω increases for two different sites.

For these figures, the confidence intervals are derived by bootstrapping contiguous blocks to take into account the

successive observations dependence [Ledford and Tawn, 2003]. The χ(ω) and χ(ω) statistics seem to depict two

different asymptotic extremal dependence structures. From Figure 5, it seems that limχ(ω) ≫ 0 and lim χ(ω) = 1

for ω → 1. On the contrary, Figure 6 advocates that limχ(ω) = 0 and limχ(ω) < 1 for ω → 1. Consequently,

Figure 5 seems to conclude for an asymptotically dependent case while Figure 6 for an asymptotically independent

case.

In theory, asymptotic (in)dependence should not be assessed using scatterplots. However, these two different

features can be deduced from Figures 2 and 3. For Figure 2, the scatterplot (Yt−1, Yt) is increasingly less spread

as the observations become larger; while increasingly more spread for Figure 3. In other words, for the first case,

the dependence seems to become stronger at larger levels while it is the opposite for the second case.

Two specific cases for different asymptotic dependence structures were illustrated. Table 1 shows the evolution

of the χ(ω) statistics as ω increases for all the sites under study. Most of the stations have significantly positive

χ(ω) values. In addition, only 13 sites have a 95% confidence interval that contains the 0 value. For 9 of these

stations, the 95% confidence intervals correspond to the theoretical lower and upper bounds; so that uncertainties

are too large to determine the extremal dependence class. For the χ statistic, results are less clear-cut. Figure 7

represents the histograms for χ(ω) for successive ω values. Despite only a few observations being close to 1,

most of the stations have a χ(ω) value greater than 0.75. These values can be considered as significantly high
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Figure 6: Plot of the χ and χ statistics and the related 95% intervals for station A4200630. The solid blue lines
are the theoretical bounds.
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Figure 7: Histograms of the χ(ω) statistics for different ω values. Left panel: ω = 0.98, middle panel: ω = 0.985
and right panel: ω = 0.99.

as −1 < χ(ω) ≤ 1, for all ω. Consequently, models of the form (1)–(3) may be suited to model the extremal

dependence between successive observations.

Other methods exist to test the extremal dependence but were unconvincing for our application [Ledford and

Tawn, 2003; Falk and Michel, 2006]. Indeed, the approach of Falk and Michel [2006] does not take into account the

dependence between Yt−1 and Yt; while the test of Ledford and Tawn [2003] appears to be poorly discriminatory

for our case study.
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4 Performance of the Markovian Models on Quantile Estimation

4.1 Comparison between Markovian estimators

In this section, the performance of six different extremal dependence structures is analyzed on the 50 gaging

stations introduced in section 1. These models are: log for the logistic, nlog for the negative logistic, mix for the

mixed models and their relative asymmetric counterparts - e.g. alog, anlog and amix. To assess the impact of

the dependence structure on flood peak estimation, the efficiency of each model to estimate quantiles with return

periods 2, 10, 20, 50 and 100 years is evaluated.

As practitioners often have to deal with small record lengths in practice, the performance of the Markovian

models is analyzed on all sub time series of length 5, 10, 15 and 20 years. Finally, to assess the efficiency for all

the gaging stations considered in this study, the normalized bias (nbias), the variance (var) and the normalized

mean squared error (nmse) are computed:

nbias =
1

N

N
∑

i=1

Q̂i,T − QT

QT
(13)

var =
1

N − 1

N
∑

i=1

(

Q̂i,T − QT

QT
− nbias

)2

(14)

nmse =
1

N

N
∑

i=1

(

Q̂i,T − QT

QT

)2

(15)

where QT is the benchmark T -year return level and Q̂i,T is the i-th estimate of QT .

Figure 8 depicts the nbias densities for Q20 with a record length of 5 years. It is overwhelming that the extremal

dependence structure has a great impact on the estimation of Q20. By comparing the two panels, it can be seen

that the symmetric dependence structures give spreader densities; that is, more variable estimates. Independently

of the symmetry, Figure 8 shows that the mixed dependence family is more accurate.

Table 2 shows the nbias, var and nmse statistics for all the Markovian estimators as the record length increases

for quantile Q50. This table confirms results derived from Figure 8. Indeed, the asymmetric dependence structures

lead to less variable and biased estimates - as their nbias and var statistics are smaller. In addition, for all record

length values, the Markovian models perform with the same hierarchy; that is the mix and amix models are by far

the most accurate estimators - i.e. with the smallest nmse values. Similar results (not shown) have been obtained

for other quantiles.

From a hydrological point of view, these two results are not surprising. The symmetric models suppose that

the variables Yt and Yt+1 are exchangeable. In our context, exchangeability means that the time series is reversible

- e.g. the time vector direction has no importance. When dealing with AM or POT and stationary time series, this

can be a reasonable hypothesis. For example, the MLE remains the same with any permutations of the AM/POT
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Figure 8: Densities of the normalized biases of Q20 estimates for the symmetric Markovian models (left panel) and
the asymmetric ones (right panel). Target site record length: 5 years.

sample. However, when modeling all exceedances, the time direction can not be considered as reversible as flood

hydrographs are clearly non symmetric.

The Pickands dependence function A(ω) [Pickands, 1981] is another representation for the extremal dependence

structure for any extreme value distribution. A(ω) is related to the V function in equation (3) as follows:

A(ω) =
V (z1, z2)

z−1
1 + z−1

2

, ω =
z1

z1 + z2
(16)

Figure 9 represents the Pickands dependence function for all the gaging stations and the three asymmetric

Markovian models. One major specificity of the mixed models is that these models can not account for perfect
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Figure 9: Representation of the Pickands dependence functions for the 50 gaging stations. Left panel : alog, middle
panel: anlog and right panel: amix. “+” represents the theoretical dependence bound for the amix model.
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Figure 10: Densities of the normalized biases for the amix model and the MLE, PWU , and PWB estimators for
quantiles Q5 (left panel), Q10 (middle panel) and Q20 (right panel). Record length: 5 years.

dependence cases. In particular, the Pickands dependence functions for the mixed models satisfy A(0.5) ≥ 0.75

while A(0.5) ∈ [0.5, 1] for the logistic and negative logistic models. From Figure 9, it can be seen that only few

stations have a dependence function that could not be modeled by the amix model. Therefore, the dependence

range limitation of the amix model does not seem to be too restrictive.

In this section, the effect of the extremal dependence structure was assessed. It was established that the

symmetric models are hydrologically inconsistent as they could not reproduce the flood event asymmetry. In

addition, for all the quantiles analyzed, the asymmetric mixed model is the most accurate for flood peak estimations.

Therefore, in the remainder of this section, only the amix model will be compared to conventional POT estimators.

4.2 Comparison between amix and conventional POT estimators

In this section, the performance of the amix estimator is compared to the estimators usually used in flood frequency

analysis. For this purpose, the quantile estimates derived from the Maximum Likelihood Estimator (MLE), the

Unbiased and Biased Probability Weighted moments estimators [Hosking and Wallis, 1987] (PWU and PWB

respectively) are considered.

Figure 10 depicts the nbias densities for the amix, MLE, PWU and PWB estimators related to the Q5, Q10

and Q20 estimations with a record length of 5 years. It can be seen that amix is the most accurate model for all

quantiles. Indeed, the amix nbias densities are the sharpest with a mode close to 0. Focusing only on “classical”

estimators (e.g. MLE, PWU and PWB), there is no estimator that performs systematically better than the other

ones. These two results advocate the use of the amix model.

Table 3 shows the performance of each estimator for the estimation of Q50 as the record length increases. It

can be seen that the amix model performs better than the conventional estimators for the whole range of record

lengths analyzed. First, amix has the same bias than the conventional estimators. Thus, the amix dependence

structure seems to be suited to estimate flood quantiles. Second, because of its smaller variance, amix is more
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Figure 11: Evolution of the nmse as a function of the return period for the amix, MLE, PWU and PWB
estimators. Record length: (a) 5 years, (b) 10 years, (c) 15 years and (d) 20 years.

accurate than MLE, PWU and PWB estimators. This smaller variance is mainly a result of all of the exceedances

(not only cluster maxima) being used in the inference procedure. Consequently, the amix model has a smaller

nmse - around half of the conventional models.

Figure 11 shows the evolution of the nmse as the return period increases for the amix, MLE, PWU and

PWB models. This figure corroborates the conclusions drawn from Figure 10 and Table 3. It can be seen that

the amix model has the smallest nmse, independently of the return period and the record length. In addition, the

amix becomes increasingly more efficient as the return period increases - mostly for return periods greater than

20 years. While the conventional estimators present an erratic nmse behavior as the return period increases, the

amix model is the only one that has a smooth evolution. To conclude, these results confirm that the amix model

clearly improves flood peak quantile estimates - especially for large return periods.

5 Inference on Other Flood Characteristics

As all exceedances are modeled using a first order Markov chain, it is possible to infer other quantities than flood

peaks - e.g. volume or duration. In this section, the ability of these Markovian models to reproduce flood duration
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Figure 12: dmean and dmed normalized biases as a function of the theoretical values for the three asymmetric
Markovian models.

is analyzed. For this purpose, the most severe flood hydrographs within each year are considered and normalized by

their peak values. Consequently, from this observed normalized hydrograph set, two flood characteristics derived

from a data set of hydrographs [Robson and Reed, 1999; Sauquet et al., 2008] are considered: (a) the duration

dmean above 0.5 of the normalized hydrograph set mean and (b) the median dmed of the durations above 0.5 of

each normalized hydrograph.

5.1 Global Performance

Figure 12 illustrates the flood duration dmean and dmed biases derived from the three asymmetric Markovian

models as a function of their empirical estimates. It can be seen that no model leads to accurate flood duration

estimations. In addition, the extremal dependence structure has a clear impact on these estimations. In particular,

the anlog and amix models seem to underestimate flood durations, while the alog model leads to overestimations.

Consequently, two different conclusions can be drawn. First, as large durations are poorly estimated, higher order

Markov chains may be of interest. However, this is a considerable task as higher dimensional multivariate extreme

value distributions often lead to numerical problems. Instead of considering higher order Markov chains, another

alternative may be to change daily observations for d-day observations - where d is larger than 1. Second, it is
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Figure 13: Observed and simulated normalized mean hydrographs for the J0621610 (left panel) and the L0400610
(right panel) stations.

overwhelming that the extremal dependence structure affects flood duration estimations. As noticed in Section 2.1,

there is no finite parametrization for the extremal dependence structure V - see Equation (3). Consequently, it

seems reasonable to suppose that one suited for flood hydrograph estimation may exist.

Figure 13 depicts the observed normalized mean hydrographs and the ones predicted by the three asymmetric

Markovian models. For the J0621610 station (left panel), the normalized hydrograph is well estimated by the three

models; whereas for the L0400610 station (right panel), the normalized hydrograph is poorly predicted. This result

confirms the inability of the three Markovian models to reproduce long flood events with daily data and a first

order Markov chain.

Figure 14 represents the biases related to each value of the normalized mean hydrograph. The nmse is also

reported on the right side to allow for a rational comparison of the estimators. It can be seen that the alog model

dramatically overestimates the hydrograph rising limb while giving reasonable estimations for the recession phase.

The anlog model slightly overestimates the rising part while strongly underestimates the recession one. The amix

model always leads to underestimations - this is more pronounced for the falling limb. However, despite these

different behaviors, these three estimators seems to have a similar performance - in terms of nmse.

Figure 15 represents the spatial distribution of the nmse on the normalized mean hydrograph estimation for

each Markovian model. Results seem to indicate that there is a specific spatial distribution. In particular, the worst

cases are located in the middle part of France. In addition, for different extremal dependence structures, the best

nmse values correspond to different spatial locations. The alog model is more accurate for the extreme northern

part of France; the anlog model is more efficient for the eastern; while the amix model performs best in the middle.

Consequently, since at a global scale no model is accurate to estimate the normalized mean hydrograph, it is worth

trying to identify which catchment types are related to the best estimations.
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from the flood peak time.
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Figure 15: nmse spatial distribution according to the three Markovian models. Left panel: alog, middle panel:
anlog and right panel: amix. The radius is proportional to the nmse value.

For the data set of the present case study, this is a considerable task. No standard statistical technique leads

to reasonable results. In particular, the principal component analysis, hierarchical classification, sliced inverse

regression lead to no conclusion concerning which catchment types are more suitable for our models. Only a

regression approach gives some first guidelines. For this purpose, a regression between the nbias on the dmean

estimation for each asymmetric model and some geomorphologic and hydrologic indices are performed. The effect

of the drainage area, an index of catchment slope derived from the hypsometric curve [Roche, 1963], the Base Flow

Index (BFI) [Tallaksen and Van Lanen, 2004, Section 5.3.3] and an index characterizing the rainfall persistence

[Vaskova and Francès, 1998] are considered.
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nbias (dmean; anlog) = 0.89 − 2.19BFI, R2 = 0.40 (17)

nbias (dmean; amix) = 0.49 − 1.74BFI, R2 = 0.43 (18)

From equations (17) and (18), it can be seen that the BFI variable explains around 40% of the variance.

Despite the fact that a large variance proportion is not taken into account, the BFI is clearly related to the

dmean estimation performance. These equations indicate that the anlog (resp. amix) model is more accurate to

reproduce the dmean variable for gaging stations with a BFI around 0.4 (resp. 0.28). These BFI values correspond

to catchments with moderate up to flash flow regimes respectively. These results corroborate the ones derived from

Figure 14: the first order Markovian models with a 1-day lag conditioning are not appropriate for long flood

duration estimations. Consequently, while no physiographic characteristic is related to the alog performance, it is

suggested, for such 1-day lag conditioning, to use the anlog and amix models for quick basins.

6 Conclusions and Perspectives

Despite the fact that univariate EVT is widely applied in environmental sciences, its multivariate extension is

rarely considered. This work tries to promote the use of the MEVT in hydrology. In this work, the bivariate case

was considered as the dependence between two successive observations was modeled using a first order Markov

chain. This approach has two main advantages for practitioners as: (a) the amount of data to be inferred increases

considerably and (b) other features can be estimated - flood duration, volume.

In this study, a comparison between six different extremal dependence structures (including both symmetric

and asymmetric forms) was carried out. Results show that an asymmetric dependence structure is more relevant.

From a hydrological point of view, this asymmetry is rational as flood hydrographs are asymmetric. In particular,

for our data, the asymmetric mixed model gives the most accurate flood peak estimations and clearly improves

flood peak estimations in comparison to conventional estimators, independently of the return period considered.

The ability of these Markovian models to estimate flood duration was also studied. It was shown that, at first

sight, no dependence structure is able to reproduce the flood hydrograph accurately. However, it seems that the

anlog and amix models may be more appropriate when dealing with moderate up to flash flow regimes. These

results depend strongly on the conditioning term (i.e. Pr[Yt ≤ yt|Yt−δ = yt−δ]) of the first order Markov chain and

on the auto-correlation within the time series. In our application, δ = 1 and a daily time step was considered.

More general conclusions can be drawn. The weakness of the proposed models to derive consistent flood

hydrographs may not be related to the daily time step but to the inadequacy between the conditioning term and

the flood dynamics. To ensure better results, higher order Markov chains may be of interest [Fawcett and Walshaw,

2006]. However, as numerical problems may arise, another alternative may be to still consider a first order chain
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but to change the “conditioning lag value” δ. In particular, for some basins, it may be more relevant to condition

the Markov chain with a larger but more appropriate lag value.

Another option to improve the proposed models for flood hydrograph estimation is to use a more suitable

dependence function V . As there is no finite parametrization for the extremal dependence structure, it seems

reasonable that one more appropriate for flood hydrographs may exist. In this work, results show that the anlog

model is more able to reproduce the hydrograph rising part, while the alog is better for the recession phase. One

alternative is to define

V (z1, z2) = αV1 (z1, z2) + βV2 (z1, z2)

where V1 (resp. V2) is the extremal dependence function for the alog (resp. anlog) model and α and β are real

constants such that α + β = 1. By definition, V is a new extremal dependence function. In particular, V may

combine the accuracy of the alog and anlog models for both the rising and recession part of the flood hydrograph.

Another alternative may be to look at the non-parametric Pickands dependence function estimators [Capéraà et al.,

1997] but this will require techniques to simulate Markov chains from these non-parametric estimations.

Finally, the models proposed in this article were asymptotically dependent. Recently, Heffernan and Tawn

[2004] proposed a semi-parametric approach allowing for asymptotic independence and which can be applied to

problems of any dimension. This semi-parametric approach might be appropriate when asymptotic dependence

seems too restrictive and/or k-order Markov chain models, k > 1, should be considered.

All statistical analysis were performed within the R Development Core Team [2007] framework. In particular,

the POT package [Ribatet, 2007] integrates the tools that were developed to carry out the modeling effort presented

in this paper. This package is available, free of charge, at the website http://www.R-project.org, section CRAN,

Packages or at its own web page http://pot.r-forge.r-project.org/.
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A Parametrization for the Extremal Dependence

This appendix presents some useful results for the six extremal dependence models that have been considered in

this work. As first order Markov chains were used, only the bivariate results are described. The expressions of

the partial and mixed partial derivatives, the Pickands dependence function and the limiting dependence cases are
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reported in Table 4 and 5.
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Table 1: χ(ω) statistics for all stations. ω = 0.98, 0.985, 0.99.

Stations
ω = 0.98 ω = 0.985 ω = 0.99

χ(ω) 95% C.I. χ(ω) 95% C.I. χ(ω) 95% C.I.
A3472010 0.67 (-0.02, 1.00) 0.60 (-0.02, 1.00) 0.57 (-0.01, 1.00)
A4200630 0.53 ( 0.21, 0.81) 0.45 ( 0.07, 0.77) 0.38 (-0.01, 0.76)
A4250640 0.55 ( 0.27, 0.82) 0.49 ( 0.18, 0.76) 0.41 ( 0.02, 0.71)
A5431010 0.44 (-0.02, 1.00) 0.44 (-0.02, 1.00) 0.41 (-0.01, 1.00)
A5730610 0.59 ( 0.25, 0.94) 0.56 ( 0.20, 0.90) 0.50 ( 0.07, 0.97)
A6941010 0.62 ( 0.22, 0.99) 0.60 ( 0.16, 1.00) 0.56 ( 0.06, 1.00)
A6941015 0.63 ( 0.29, 0.95) 0.60 ( 0.20, 0.96) 0.58 ( 0.17, 0.98)
D0137010 0.39 ( 0.04, 0.69) 0.33 (-0.02, 0.67) 0.28 (-0.01, 0.69)
D0156510 0.59 ( 0.25, 0.88) 0.55 ( 0.20, 0.86) 0.53 ( 0.14, 0.92)
E1727510 0.62 ( 0.18, 0.91) 0.59 ( 0.16, 0.93) 0.47 (-0.01, 0.89)
E1766010 0.63 ( 0.23, 0.98) 0.59 ( 0.17, 0.96) 0.54 ( 0.09, 0.96)
E3511220 0.59 ( 0.10, 1.00) 0.53 (-0.02, 1.00) 0.50 (-0.01, 0.99)
E4035710 0.77 ( 0.02, 1.00) 0.68 (-0.02, 1.00) 0.60 (-0.01, 1.00)
E5400310 0.88 ( 0.30, 1.00) 0.89 ( 0.29, 1.00) 0.83 ( 0.13, 1.00)
E5505720 0.91 ( 0.24, 1.00) 0.87 ( 0.09, 1.00) 0.86 ( 0.02, 1.00)
E6470910 0.96 ( 0.40, 1.00) 0.94 ( 0.25, 1.00) 0.98 ( 0.00, 1.00)
H0400010 0.84 ( 0.12, 1.00) 0.83 ( 0.02, 1.00) 0.78 (-0.01, 1.00)
H1501010 0.82 ( 0.36, 1.00) 0.90 ( 0.39, 1.00) 0.84 ( 0.26, 1.00)
H2342010 0.68 ( 0.31, 1.00) 0.67 ( 0.25, 1.00) 0.60 ( 0.11, 1.00)
H5071010 0.75 ( 0.30, 1.00) 0.76 ( 0.22, 1.00) 0.75 ( 0.15, 1.00)
H5172010 0.80 ( 0.47, 1.00) 0.77 ( 0.42, 1.00) 0.73 ( 0.30, 1.00)
H6201010 0.69 ( 0.29, 1.00) 0.69 ( 0.14, 1.00) 0.69 ( 0.08, 1.00)
H7401010 0.85 ( 0.46, 1.00) 0.85 ( 0.38, 1.00) 0.81 ( 0.27, 1.00)
I9221010 0.67 ( 0.23, 1.00) 0.66 ( 0.19, 1.00) 0.59 ( 0.04, 1.00)
J0621610 0.61 ( 0.25, 0.92) 0.58 ( 0.20, 0.94) 0.51 ( 0.08, 0.91)
K0433010 0.59 ( 0.22, 0.91) 0.54 ( 0.15, 0.89) 0.45 ( 0.00, 0.85)
K0454010 0.71 ( 0.37, 1.00) 0.67 ( 0.24, 1.00) 0.65 ( 0.14, 1.00)
K0523010 0.62 (-0.02, 1.00) 0.58 (-0.02, 1.00) 0.53 (-0.01, 1.00)
K0550010 0.61 ( 0.22, 0.94) 0.57 ( 0.15, 0.94) 0.54 ( 0.07, 1.00)
K0673310 0.67 ( 0.24, 1.00) 0.65 ( 0.18, 1.00) 0.66 ( 0.07, 1.00)
K0910010 0.65 (-0.02, 1.00) 0.61 (-0.02, 1.00) 0.58 (-0.01, 1.00)
K1391810 0.68 ( 0.27, 1.00) 0.64 ( 0.16, 0.98) 0.60 ( 0.06, 0.96)
K1503010 0.69 ( 0.38, 0.98) 0.67 ( 0.30, 0.98) 0.64 ( 0.23, 1.00)
K2330810 0.68 ( 0.29, 1.00) 0.66 ( 0.22, 1.00) 0.62 ( 0.09, 1.00)
K2363010 0.65 ( 0.26, 0.98) 0.66 ( 0.16, 1.00) 0.61 ( 0.01, 1.00)
K2514010 0.61 ( 0.24, 1.00) 0.61 ( 0.21, 1.00) 0.58 ( 0.12, 1.00)
K2523010 0.53 (-0.02, 1.00) 0.53 (-0.02, 1.00) 0.51 (-0.01, 1.00)
K2654010 0.68 ( 0.37, 1.00) 0.68 ( 0.31, 1.00) 0.60 ( 0.10, 1.00)
K2674010 0.60 ( 0.25, 0.89) 0.58 ( 0.22, 0.94) 0.54 ( 0.08, 0.95)
K2871910 0.62 ( 0.26, 0.95) 0.57 ( 0.15, 0.94) 0.56 ( 0.10, 0.97)
K2884010 0.62 ( 0.25, 1.00) 0.57 ( 0.17, 0.97) 0.59 ( 0.16, 1.00)
K3222010 0.56 ( 0.21, 0.90) 0.53 ( 0.18, 0.93) 0.46 ( 0.11, 0.89)
K3292020 0.59 ( 0.27, 0.91) 0.57 ( 0.17, 0.91) 0.48 ( 0.07, 0.90)
K4470010 0.76 ( 0.39, 1.00) 0.77 ( 0.40, 1.00) 0.73 ( 0.27, 1.00)
K5090910 0.64 ( 0.27, 0.93) 0.64 ( 0.26, 0.96) 0.58 ( 0.12, 0.98)
K5183010 0.57 ( 0.14, 0.91) 0.56 ( 0.15, 0.96) 0.53 ( 0.06, 0.97)
K5200910 0.63 ( 0.24, 0.93) 0.62 ( 0.20, 0.95) 0.56 ( 0.11, 0.97)
L0140610 0.73 ( 0.23, 1.00) 0.66 ( 0.15, 1.00) 0.58 (-0.01, 1.00)
L0231510 0.59 ( 0.16, 0.91) 0.55 ( 0.11, 0.92) 0.53 (-0.01, 0.92)
L0400610 0.74 (-0.02, 1.00) 0.65 (-0.02, 1.00) 0.61 (-0.01, 1.00)
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Table 2: Several characteristics of the Markovian estimators on Q50 estimation as a function of the record length.
Standard errors are reported in brackets.

Model
5 years 10 years 15 years 20 years

nbias var nmse nbias var nmse nbias var nmse nbias var nmse

log -0.35 0.54 0.66 -0.32 0.32 0.42 -0.30 0.23 0.32 -0.28 0.17 0.25
(16e-3) (22e-3) (18e-3) (12e-3) (12e-3) (14e-3) (11e-3) (9e-3) (12e-3) (9e-3) (7e-3) (11e-3)

nlog -0.21 0.20 0.24 -0.20 0.11 0.15 -0.18 0.08 0.12 -0.18 0.06 0.09
(10e-3) (7e-3) (11e-3) (7e-3) (4e-3) (9e-3) (6e-3) (3e-3) (8e-3) (5e-3) (2e-3) (7e-3)

mix -0.08 0.14 0.14 -0.07 0.08 0.08 -0.06 0.05 0.06 -0.05 0.04 0.04
(8e-3) (5e-3) (8e-3) (6e-3) (2e-3) (6e-3) (5e-3) (2e-3) (5e-3) (4e-3) (1e-3) (5e-3)

alog -0.15 0.39 0.41 -0.13 0.22 0.24 -0.11 0.16 0.17 -0.10 0.12 0.13
(14e-3) (15e-3) (14e-3) (10e-3) (9e-3) (11e-3) (9e-3) (6e-3) (9e-3) (8e-3) (4e-3) (8e-3)

anlog -0.10 0.20 0.21 -0.09 0.11 0.12 -0.08 0.08 0.09 -0.08 0.06 0.06
(10e-3) (7e-3) (10e-3) (7e-3) (4e-3) (8e-3) (6e-3) (2e-3) (6e-3) (5e-3) (2e-3) (6e-3)

amix -0.06 0.11 0.12 -0.05 0.06 0.06 -0.04 0.04 0.05 -0.03 0.03 0.03
(7e-3) (4e-3) (7e-3) (6e-3) (2e-3) (6e-3) (5e-3) (1e-3) (5e-3) (4e-3) (1e-3) (4e-3)

Table 3: Several characteristics of the amix, MLE, PWU and PWB estimators for Q50 estimation as a function
of the record length. Standard errors are reported in brackets.

Model
5 years 10 years 15 years 20 years

nbias var nmse nbias var nmse nbias var nmse nbias var nmse

amix -0.06 0.11 0.12 -0.05 0.06 0.07 -0.04 0.04 0.05 -0.04 0.03 0.03
(8e-3) (4e-3) (8e-3) (6e-3) (2e-3) (6e-3) (5e-3) (1e-3) (5e-3) (4e-3) (1e-3) (4e-3)

MLE -0.13 0.25 0.27 -0.14 0.13 0.14 -0.13 0.08 0.10 -0.11 0.05 0.07
(12e-3) (15e-3) (12e-3) (8e-3) (6e-3) (9e-3) (7e-3) (3e-3) (7e-3) (5e-3) (2e-3) (6e-3)

PWU 0.08 0.30 0.31 -0.01 0.15 0.15 -0.03 0.10 0.10 -0.03 0.06 0.06
(13e-3) (13e-3) (13e-3) (9e-3) (6e-3) (9e-3) (7e-3) (3e-3) (7e-3) (6e-3) (2e-3) (6e-3)

PWB -0.07 0.20 0.21 -0.10 0.11 0.12 -0.11 0.08 0.09 -0.10 0.05 0.06
(10e-3) (8e-3) (11e-3) (7e-3) (4e-3) (8e-3) (6e-3) (2e-3) (7e-3) (5e-3) (1e-3) (6e-3)

Table 4: Partial and mixed partial derivatives, definition domain, total independent and perfect dependent cases
for each extremal symmetric dependence function V .

Model
Symmetric Models

log nlog mix

V (x, y)
(

x−1/α + y−1/α
)α 1

x + 1
y − (xα + yα)

−1/α 1
x + 1

y − α
x+y

V1(x, y) −x− 1

α
−1V (x, y)

α−1

α − 1
x2 + xα−1 (xα + yα)

− 1

α
−1

− 1
x2 + α

(x+y)2

V2(x, y) −y− 1

α
−1V (x, y)

α−1

α − 1
y2 + yα−1 (xα + yα)

− 1

α
−1

− 1
y2 + α

(x+y)2

V12(x, y) −(xy)−
1

α
−1 1−α

α V (x, y)
α−2

α −(α + 1)(xy)α−1 (xα + yα)
− 1

α
−2

− 2α
(x+y)3

A(w)
[

(1 − w)
1

α + w
1

α

]α

1 − [(1 − w)−α + w−α]
− 1

α 1 − w (1 − w) α

Independence α = 1 α → 0 α = 0
Total dependence α → 0 α → +∞ Never reached
Constraint 0 < α ≤ 1 α > 0 0 ≤ α ≤ 1
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Table 5: Partial and mixed partial derivatives, definition domain, total independent and perfect dependent cases for each extremal asymmetric dependence
function V .

Model
Asymmetric Models

alog anlog amix

V (x, y) 1−θ1

x + 1−θ2

y +

[

(

x
θ1

)−1/α

+
(

y
θ2

)−1/α
]α

1
x + 1

y −
[(

x
θ1

)α

+
(

y
θ2

)α]−1/α
1
x + 1

y − (2α+θ)x+(α+θ)y

(x+y)2

V1(x, y) − 1−θ1

x2 − θ
1

α

1 x− 1

α
−1

[

(

x
θ1

)−1/α

+
(

y
θ2

)−1/α
]α−1

− 1
x2 + θ−α

1 xα−1
[(

x
θ1

)α

+
(

y
θ2

)α]−1/α−1

− 1
x2 − 2α+θ

(x+y)2 + 2 (2α+θ)x+(α+θ)y
(x+y)3

V2(x, y) − 1−θ2

y2 − θ
1

α

2 y− 1

α
−1

[

(

x
θ1

)−1/α

+
(

y
θ2

)−1/α
]α−1

− 1
y2 + θ−α

2 yα−1
[(

x
θ1

)α

+
(

y
θ2

)α]−1/α−1

− 1
y2 − α+θ

(x+y)2 + 2 (2α+θ)x+(α+θ)y
(x+y)3

V12(x, y) α−1
α (θ1θ2)

1

α (xy)−
1

α
−1

[

(

x
θ1

)−1/α

+
(

y
θ2

)−1/α
]α−2

−(α + 1)(θ1θ2)
−α(xy)α−1

[(

x
θ1

)α

+
(

y
θ2

)α]−1/α−2
6α+4θ
(x+y)3 − 6 (2α+θ)x+(α+θ)y

(x+y)4

A(w) (1 − θ1) (1 − w) + (1 − θ2)w +
[

(1 − w)
1

α θ
1

α

1 + w
1

α θ
1

α

2

]α

1 −

[

(

1−w
θ1

)−α

+
(

w
θ2

)−α
]− 1

α

θw3 + αw2 − (α + θ)w + 1

Independence α = 1 or θ1 = 0 or θ2 = 0 α → 1 or θ1 → 0 or θ2 →= 0 α = θ = 0
Total dependence α → 0 α → +∞ Never reached
Constraint 0 < α ≤ 1, 0 ≤ θ1, θ2 ≤ 1 α > 0, 0 < θ1, θ2 ≤ 1 α ≥ 0, α + 2θ ≤ 1, α + 3θ ≥ 0
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