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Abstract

Over the past years, model reduction techniques have become a necessary path for
the reduction of computational requirements in the numerical simulation of complex
models. A family of a priori model reduction techniques, called Proper Generalized
Decomposition (PGD) methods, are receiving a growing interest. These methods
rely on the a priori construction of separated variables representations of the solu-
tion of models defined in tensor product spaces. They can be interpreted as general-
izations of Proper Orthogonal Decomposition (POD) for the a priori construction
of such separated representations. In this paper, we introduce and study different
definitions of PGD for the solution of time-dependent partial differential equations.
We review classical definitions of PGD based on Galerkin or Minimal Residual
formulations and we propose and discuss several improvements for these classical
definitions. We give an interpretation of optimal decompositions as the solution of
pseudo eigenproblems. We also introduce a new definition of PGD, called Minimax
PGD, which can be interpreted as a Petrov-Galerkin model reduction technique,
where test and trial reduced basis functions are related by an adjoint problem.
This new definition improves convergence properties of separated representations
with respect to a chosen metric. It coincides with a classical POD for degener-
ate time-dependent partial differential equations. For the numerical construction
of each PGD, we propose algorithms inspired from the solution of eigenproblems.
Several numerical examples illustrate and compare the different definitions of PGD
on transient advection-diffusion-reaction equations.

Key words: Model reduction, Evolution problems, Proper Orthogonal
Decomposition (POD), Proper Generalized Decomposition (PGD), Generalized
Spectral Decomposition, Separation of variables
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1 Introduction

The numerical simulation of physical models takes today an important place
in numerous branches of science and engineering. Due to the increasing com-
plexity of models, more and more refined discretizations and robust numerical
solution techniques are needed in order to obtain reliable predictions of their
responses. Furthermore, in the context of optimization, model identification,
or parametric and stochastic analyses, the aim is not to predict the response
of a unique model but of a family of models. In order to achieve these analyses,
traditional solution techniques require the optimal use of constantly evolving
computational resources. However, for many applications, innovative method-
ologies, alternative to the brute force approach, are obviously necessary to
access numerical predictions.

The concept of model reduction seems to be a path for solving these compu-
tational issues. Model reduction methods exploit the fact that the response of
complex models (or of a family of models) can often be approximated with a
reasonable precision by the response of a surrogate model, which is the projec-
tion of the initial model on a low-dimensional reduced basis. The dimension
of reduced bases may be of several orders of magnitude lower than the di-
mension of the classically used numerical models. Model reduction methods
distinguish themselves by the way of defining and constructing the reduced
bases of functions. Among these methods, model reduction methods based
on separation of variables are receiving a growing interest in various fields of
scientific computing. In the context of the solution of evolution problems, a
separated representation of the solution u(x, t) defined on a space-time do-
main consists of a sum of products of scalar functions of the time variable by
functions of the space variable:

u(x, t) ≈ um(x, t) =
m∑

i=1
wi(x)λi(t) (1)

When the solution u is known (or at least an approximation of it), an optimal
order m (or rank m) separated representation (1) — also known as tensor
product approximation or finite sums decomposition — can be classically de-
fined as the one which minimizes the distance to the solution with respect to
a particular norm. This separated representation is optimal in the sense that
it minimizes this distance for a given order m of decomposition. Under some
assumptions on the chosen norm, this is the basic definition of the classical
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Proper Orthogonal Decomposition (POD), also known as Karhunen-Loève de-
composition [18,26], Singular Value Decomposition or Principal Component
Analysis in other contexts. This decomposition is classically used as an a
posteriori model reduction technique for long-time simulations or parametric
analyses of evolution problems [5,4,19,20,16,36,24,10,15,3]

In this paper, we focus on the more challenging problem of the a priori con-
struction of such separated representations. The aim is to introduce different
strategies for the construction of an approximate separated representation (1)
of the solution, without a priori knowing the solution nor an approximation
of it. This requires to adopt another definition of the separated representation
and then to propose dedicated algorithms for its construction. The different
methods introduced in this article can be interpreted as generalizations of the
POD for the a priori construction of separated representations. The resulting
decompositions have been recently called Proper Generalized Decompositions
(PGD) 2 . This type of methods has been first introduced by Ladevèze in the
context of the LATIN method [21] (LArge Time INcrement method) for re-
ducing computational costs (memory requirements and computational times)
associated with the solution of multiple linear evolution problems resulting
from a nonlinear iterative strategy which is global in time. In this context,
separated representation (1) was called “radial approximation”. In the litera-
ture, two variants of PGD have been proposed for the progressive construction
of (1), respectively based on a Galerkin formulation [21,12,22,9] or a Minimal
Residual formulation [31,23] of the evolution problem. PGD methods have
also been introduced in other contexts: separation of physical variables and
parameters (or random variables) in the context of parametrized (or stochas-
tic) PDEs [27,28,32,29] 3 , with a possible additional separation of parame-
ters [11,30] 4 , separation of coordinate variables in multi-dimensional PDEs
[6,1,2,8] 5 .

In this paper, we introduce and study different definitions of PGD for the
solution of time-dependent partial differential equations. We review classical
definitions of PGD based on Galerkin or Minimal Residual formulations and
we propose and discuss several improvements for these classical definitions.
We give an interpretation of decompositions as the solution of pseudo eigen-

2 Roughly speaking, PGD methods introduce different definitions of the separated
representation (1) which require only the operator and right-hand side of the PDE,
and not the solution itself as in the definition of the POD. With dedicated algo-
rithms, it then allows to build the separated representation without knowing the
solution a priori.
3 u(x, t, ξ) ≈

∑m
i=1 wi(x, t)λi(ξ), with ξ the (random) parameters. In this context,

PGD has been named Generalized Spectral Decomposition as a generalization of
spectral decomposition of random processes.
4 u(x, t, ξ) ≃ u(x, t, ξ1, . . . , ξd) ≈

∑m
i=1 wi(x, t)λ1

i (ξ1) . . . λd
i (ξd)

5 u(x1, . . . , xd) ≈
∑m

i=1 w1
i (x1) . . . wd

i (ξd)
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problems and propose algorithms inspired from the solution of eigenproblems
for the construction of these decompositions. We also introduce an innova-
tive definition, called Minimax PGD, which allows us to improve convergence
properties of decomposition (1) with respect to a chosen metric. This new
PGD can be interpreted as an a priori Petrov-Galerkin model reduction tech-
nique, where test and trial reduced basis functions are related by an adjoint
problem involving the chosen metric. For degenerate time-dependent partial
differential equations, this new definition coincides with a classical POD with
respect to the chosen metric.

The outline of the paper is as follows. In section 2, we introduce an abstract
weak formulation of a class of time-dependent partial differential equations. In
section 3, we recall the principles of model reduction methods with a particular
focus on a posteriori model reduction methods based on the POD. In section
4, we focus on PGD methods. We present classical progressive definitions of
these decompositions, based on Galerkin or minimal residual formulations.
We give an interpretation of these decompositions as the solutions of pseudo
eigenproblems and we propose possible improvements. In section 5, we intro-
duce and analyze a non classical definition of PGD, called Minimax PGD.
In section 6, several numerical examples illustrate the behavior of the Proper
Generalized Decomposition methods introduced in this article.

2 Time-dependent partial differential equation and discretization

2.1 Model problem: advection-diffusion-reaction equation

As a problem model, we consider a transient advection-diffusion-reaction equa-
tion defined on a spatial domain Ω ⊂ Rd and a time interval I = (0, T ). The
solution u(x, t), with (x, t) ∈ Ω × I, solves:

u̇− ∇ · (µ∇u) + c · ∇u+ σu = f on Ω × I (2a)
u = 0 on ∂Ω × I (2b)
u = u0 on Ω × {0} (2c)

where u̇ = ∂u
∂t

, u0(x) is the initial condition, f(x, t) is a volumic source, and
µ(x, t), c(x, t) and σ(x, t) are diffusion, advection and reaction parameters
which are eventually space and time dependent.
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2.2 Space weak formulation

We identify u with a function defined on I with values in Hilbert space V =
H1

0 (Ω), with u(t) : x ∈ Ω 7→ u(t)(x) ≃ u(x, t). A weak formulation of (2)
writes: find u : I → V such that

m(u̇(t), v) + a(u(t), v; t) = ℓ(v; t) ∀v ∈ V (3a)
u(0) = u0 (3b)

where m(·, ·) and a(·, ·; t) are bilinear forms on V and where ℓ(·; t) is a linear
form on V , defined by:

m(u, v) =
∫

Ω
u v dx =< u, v >L2(Ω), ℓ(v; t) =

∫
Ω
f(t) v dx (4)

a(u, v; t) =
∫

Ω
µ(t)∇u · ∇v dx+

∫
Ω
c(t) · ∇u v dx+

∫
Ω
σ(t)u v dx (5)

2.3 Space-time weak formulation

A space-time weak formulation of (2) is now introduced [25]. We introduce
the following function space

L2(I; V) = {v : I → V ;
∫

I
∥v(t)∥2

V dt < +∞}. (6)

where ∥·∥V is a norm on V . We denote T = L2(I;R) := L2(I) and identify the
space L2(I; V) with the tensor product space V⊗T . We denote by V ′ = H−1(Ω)
the dual space of V . A weak solution of problem (3) can then be defined by
the following problem: find u ∈ V ⊗ T such that u̇ ∈ L2(I; V ′) and 6

B(u, v) = L(v) ∀v ∈ V ⊗ T (7)

where B and L are bilinear and linear forms defined by

B(u, v) =
∫

I
m(u̇(t), v(t)) dt+

∫
I
a(u(t), v(t); t) dt+m(u(0+), v(0+)) (8)

L(v) =
∫

I
ℓ(v(t); t) dt+m(u0, v(0+)) (9)

with v(0+) = lims↓0 v(s). The solution of problem (7) verifies the initial con-
dition in a weak sense.

6 Let us note that u̇(t) ∈ V ′ is assimilated with its Riesz representation in V in the
notation m(u̇(t), v(t)).
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2.4 Time Discontinuous Galerkin approximation

2.4.1 Piecewise polynomial approximation

We consider a time discretization using time discontinuous Galerkin framework
[14,38,37]. Let I = {Ik = (tk−1, tk)}r

k=1 denote a partition of I = (0, T ), with
t0 = 0 < t1 < ... < tr = T . We denote by Pp(Ik;X) = {v : Ik → X ; v(t) =∑p

i=0 vit
i, vi ∈ X} the set of polynomial functions of degree p defined on Ik

with values in X, and by Pp(I;X) the set of piecewise polynomial functions
of degree p in time associated with partition I:

Pp(I;X) = {v : I → X ; ∀Ik ∈ I, v|Ik
∈ Pp(Ik;X)}

2.4.2 Definition of the approximation

The time discontinuous Galerkin approximation is sought in the semi-discrete
approximation space Pp(I; V) ⊂ L2(I; V). This approximation space is identi-
fied with the tensor product space V ⊗ TP , with TP := Pp(I;R) ⊂ T , where P
denote the dimension of TP . The approximation of problem (7) is then defined
by:

u ∈ V ⊗ TP , B(u, v) = L(v) ∀v ∈ V ⊗ TP (10)

where in the definition (8) of bilinear form B, the time derivative is interpreted
as follows:
∫

I
m(u̇(t), v(t)) dt =

r∑
k=1

∫
Ik

m(u̇(t), v(t)) dt+
r−1∑
k=1

m(u(t+k ) − u(t−k ), v(t+k ))

(11)

where v(t±) = lims↓0 v(t ± s). In practice, problem (10) is separated into r
problems, which are local on each time interval Ik and can be solved sequen-
tially. For k ∈ {1, . . . , r}, the restriction u|Ik

∈ Pp(Ik; V) is defined by∫
Ik

m(u̇(t), v(t)) dt+
∫

Ik

a(u(t), v(t); t) dt+m(u(t+k−1), v(t+k−1))

=
∫

Ik

ℓ(v(t); t) dt+m(u(t−k−1), v(t+k−1)) ∀v ∈ Pp(Ik; V) (12)

where by convention u(t−0 ) = u0. The solution u|Ik
∈ Pp(Ik; V) can be inter-

preted as a time continuous Galerkin approximation (using polynomial ap-
proximation in time) of an evolution problem defined on time interval Ik, with
a weakly imposed initial condition u(t−k−1) which is obtained from the solution
on the previous time interval.
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Remark 1 A time continuous Galerkin approximation would be also defined
by problem (10), by choosing for TP the space of continuous piecewise poly-
nomial functions in time, i.e. TP = Pp(I;R) ∩ C0(I;R). This approximation
is not used in practice since it requires the solution of a global problem in
time. However, it could be used within the context of a priori model reduction
techniques introduced in the following sections.

Remark 2 Let us note that classical time integration schemes lead to the solu-
tion of a problem which can be also recasted under the form (10), by identifying
TP ≃ RP , where P is the number of time steps {tk}P

k=1. The approximate so-
lution u = {u(tk)}P

k=1 ∈ (V)P , which gathers the solution at the different time
steps, can be identified with a function in V ⊗ TP .

2.5 Spatial approximation

At spatial level, we consider a classical Galerkin approximation (finite element
or spectral finite element) by introducing an approximation space VN ⊂ V ,
with VN = {v = ∑N

i=1 φivi;φi ∈ V , vi ∈ R}. The fully discretized Galerkin
approximation is then defined by

u ∈ VN ⊗ TP , B(u, v) = L(v) ∀v ∈ VN ⊗ TP (13)

We identify v ∈ VN with a vector v = (v1, . . . , vN)T ∈ RN , such that problem
(13) is equivalently written: find u ∈ RN ⊗ TP ≃ Pp(I;RN) such that

∫
I

v(t)T Mu̇(t) dt+
∫

I
v(t)T A(t)u(t) dt+ v(0+)T Mu(0+)

=
∫

I
v(t)T f(t) dt+ v(0+)T Mu0, ∀v ∈ RN ⊗ TP (14)

where M and A(t) are matrices whose components are defined by (M)ij =
m(φj, φi) and (A(t))ij = a(φj, φi; t), where f(t) is a vector whose components
are defined by (f(t))i = ℓ(φi; t), and where u0 ≃ u0. In equation (14), the time
derivative must be interpreted as in (11) for time discontinuous functions.

7



3 Proper Orthogonal Decomposition and a posteriori model reduc-
tion techniques

3.1 Reduced order models

Classical model reduction techniques consist in seeking an approximation of
the solution u under the form

um(x, t) =
m∑

i=1
wi(x)λi(t) (15)

where the wi ∈ V and the λi ∈ T form low-dimensional reduced bases of
spatial functions and time functions respectively.

3.1.1 Galerkin projection on a reduced basis of spatial functions

Classical model reduction techniques start with the construction of a low di-
mensional subspace Vm = span{wi}m

i=1 ⊂ V and define the Galerkin approxi-
mation um ∈ Vm ⊗ T by

B(um, vm) = L(vm) ∀vm ∈ Vm ⊗ T (16)

Problem (16) can be interpreted as a time weak formulation of the following
system of m ordinary differential equations: for i ∈ {1, . . . ,m},

m∑
j=1

m(wj, wi)λ̇j(t) +
m∑

j=1
a(wj, wi; t)λj(t) = ℓ(wi; t), (17a)

m∑
j=1

m(wj, wi)λj(0) = m(u0, wi), (17b)

where the initial condition corresponds to a projection of the initial condition
um(0) = u0 on subspace Vm, i.e. m(um(0) − u0, w) = 0 ∀w ∈ Vm.

3.1.2 Galerkin projection on a reduced basis of time functions

Another point of view consists in first constructing a low dimensional subspace
Tm = span{λi}m

i=1 ⊂ T . The Galerkin approximation um ∈ V ⊗ Tm is then
defined by

B(um, vm) = L(vm) ∀vm ∈ V ⊗ Tm (18)

8



Problem (18) can be interpreted as a system of m coupled time-independent
partial differential equations:

m∑
j=1

bij(wj, w
∗) = ℓi(w∗) ∀w∗ ∈ V, i = 1 . . .m (19)

where the bij and ℓi are bilinear and linear forms on V , defined by

bij(w,w∗) = B(λjw, λiw
∗), ℓi(w∗) = L(w∗λi) (20)

In practise, this approach is not used for large scale applications since the
solution of the system of coupled partial differential equations leads to pro-
hibitive computational costs. This limitation will guide the selection of par-
ticular Proper Generalized Decomposition methods in sections 4 and 5.

3.2 Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD) technique (also known as Sin-
gular Value Decomposition or Karhunen-Loève decomposition [18,26] in other
contexts) consists in defining a separated representation um of the solution
u ∈ V ⊗ T such that it is optimal with respect to a particular metric. An
optimal separated representation of order m, denoted

um =
m∑

i=1
wiλi, wi ∈ V , λi ∈ T , (21)

is classically defined as the one which minimizes the distance to the exact
solution u with respect to a given norm ∥ · ∥ on V ⊗ T , i.e.

∥u− um∥2 = min
{wi}m

i=1∈(V)m

{λi}m
i=1∈(T )m

∥u−
m∑

i=1
wiλi∥2 (22)

Functions wi and λi in the decomposition um can then be considered as optimal
reduced basis functions with respect to the chosen norm. A classical choice
consists in introducing a natural norm on V ⊗ L2(I), defined by

∥u∥2 =
∫

I
∥u(t)∥2

V dt (23)

where ∥ · ∥V is a given norm on Hilbert space V . Denoting by < ·, · >V the
inner product associated with ∥·∥V , the inner product on V ⊗L2(I) associated
with ∥ · ∥ is defined by

≪ u, v ≫=
∫

I
< u(t), v(t) >V dt (24)
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Inner product ≪ ·, · ≫ have the following separation property: ∀λ, λ∗ ∈ T
and ∀w,w∗ ∈ V ,

≪ wλ,w∗λ∗ ≫=< w,w∗ >V< λ, λ∗ >T (25)

where < ·, · >T =< ·, · >L2(I) is the natural inner product in L2(I). It cor-
responds to a classical construction of an inner product on a tensor product
space V ⊗ T by “tensorization” of inner products on V and T . When the cho-
sen inner product has the separation property (25), we classically show that
problem (22) leads to the following eigenproblem:

G(w) = σw (26)

where operator G : V → V is defined as follows: for w,w∗ ∈ V ,

< G(w), w∗ >V=<< w∗, u >V , < u, w >V>T (27)

G is called the spatial correlation operator of u associated with inner products
< ·, · >V and < ·, · >T and sometimes called “POD operator”. For the par-
ticular choice < λ, λ∗ >T =< λ, λ∗ >L2(I)=

∫
I λ(t)λ∗(t) dt, G has the following

form:

G(w) =
∫

I
u(t) < u(t), w >V dt

G is a symmetric positive linear operator. Under classical regularity assump-
tions on u, it is a compact operator, so that classical spectral theory applies
[34]. Let {wi}i>1 denote an orthogonal set of eigenfunctions of G, which forms
an hilbertian basis of V . The eigenpairs (wi, σi) ∈ V × R+ of G being sorted
by decreasing eigenvalues (σ1 > σ2 > . . . > 0), an optimal separated represen-
tation um of order m of u can then be written as (21), with

λi(t) = ∥wi∥−2
V < wi, u(·, t) >V (28)

and where ∥wiλi∥ = ∥wi∥V∥λi∥T = √
σi. The truncation error verifies:

∥u− um∥2 = ∥u∥2 −
m∑

i=1
σi −→

m→∞
0 (29)

The above defined functions wi ∈ V and λi ∈ T are orthogonal with respect
to inner products < ·, · >V and < ·, · >T respectively. Decomposition (21) is
then called a biorthogonal decomposition of u.

Remark 3 A classical choice for < ·, · >V consists in using the natural in-
ner product in L2(Ω) or H1(Ω) [17]. Let us note that other choices than
< ·, · >L2(I) could also be made for inner product < ·, · >T . For example, taking
< λ, λ∗ >T =

∫
I α(t)λ(t)λ∗(t) dt, with α(t) > 0, may allow to better fit the solu-

tion in some regions of the time domain. Taking for < ·, · >T the natural inner
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product on H1(I) may lead to a better approximation of u̇ (it is possible to work
in H1(I) ⊂ T = L2(I) since the solution u ∈ (V ⊗ L2(I)) ∩ (L2(Ω) ⊗H1(I)))
(see [16]).

Remark 4 The optimal separated representation can be equivalently defined
by formulating an eigenproblem on λ,

G⋄(λ) = σλ (30)

where G⋄, sometimes called the “auxiliary POD operator”, is defined as fol-
lows: for λ, λ∗ ∈ T ,

< G⋄(λ), λ∗ >T =<< λ∗, u >T , < u, λ >T >V (31)

Eigenproblems (26) and (30) are equivalent in the following sense (see [16] for
more details): if (wi, σi) ∈ V ×R+ is an eigenpair of (26), then (λi, σi) ∈ T ×
R+, with λi defined by (28), is an eigenpair of (30). Conversely, if (λi, σi) ∈
T × R+ is an eigenpair of (30), then (wi, σi) ∈ V × R+, with wi = ∥λi∥−2

T <
λi, u >T , is an eigenpair of (26). Let us note that for the particular choice
< λ, λ∗ >T =

∫
I λ(t)λ∗(t) dt, G⋄ has the following form:

G⋄(λ)(t) =
∫

I
< u(t), u(s) >V λ(s) ds

where function k(t, s) =< u(t), u(s) >V is the classical time correlation ker-
nel 7 .

3.3 A posteriori model reduction using Proper Orthogonal Decomposition

Of course, the solution u (or at least an approximation of u) have to be
known in order to perform the classical POD. This decomposition can then be
considered as an a posteriori model reduction technique. However, the POD
technique can be used as a model reduction technique for parametric analyses
or long-time simulations [19,20,16,36,24,10,15,3].

In a parametric analysis, where operator and right-hand side of the partial
differential equation depend on a set of parameters ξ, one may be interested
in computing the solution for ξ ∈ Ξ, where Ξ denotes a (discrete) set of
parameters values. A simple model reduction technique consists in solving
the evolution problem for a subset of parameters values. For each evolution
problem, a reduced basis of space (or time) functions is extracted a posteriori

7 Note that since k(t, s) ∈ L2(I × I), G⋄ : L2(I) → L2(I) is a Hilbert-Schmidt
operator.
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from the classical POD 8 . The reduced basis obtained for each parameter value
can be added to a global reduced basis [36], used for subsequent unresolved
parameters values, or can be interpolated in different ways [24,3]. With this
procedure, a particular attention must be paid to the sorting and selection
of reduced basis functions. Error estimation and reduced basis enrichment
strategies are necessary in order to control the precision of the reduced order
approximation for the unresolved parameters values [19,20].

The POD technique can be also used in long-time simulations. An approxi-
mation of the solution is computed with traditional numerical methods on a
small time interval I ′ = (0, T ′), with T ′ ≪ T . The application of POD allows
to extract a reduced basis of spatial functions (or time functions) from the
restriction of the solution to I ′ × Ω. An approximate solution can then be
computed on the whole time interval I by solving the reduced order problem
(16) (or (18)). Error estimation and reduced basis enrichment strategies are
also necessary in order to control the precision of the reduced order approxi-
mation on the whole time interval.

4 A priori model reduction through Proper Generalized Decom-
position

We now introduce different methods, recently called Proper Generalized De-
composition (PGD) methods, for the a priori construction of an approximate
separated representation of the solution. In this section, we present different
possible definitions of PGDs, based on Galerkin orthogonality criteria or min-
imal residual criteria. We give an interpretation of these decompositions as
generalizations of Proper Orthogonal Decompositions. We also propose algo-
rithms for the construction of the different PGDs.

In the following, we denote by Wm = {wi}m
i=1 ∈ (V)m the set of space functions

and by Λm = {λi}m
i=1 ∈ (T )m the set of time functions of the decomposition

um = ∑m
i=1 wiλi, denoted um = Wm · Λm.

4.1 PGD based on Galerkin orthogonality criteria

We first introduce a classical definition of the PGD based on Galerkin or-
thogonality criteria [21,12,22]. Although there is no existence nor convergence
results about the proposed definition (in the general case), it appears to be an
8 Let us also mention the “Reduced Basis Method” [35,7] as an alternative to POD
for the definition of optimal reduced basis in the context of parametric or direct
stochastic analysis.
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efficient technique for building separated representations in many applications.
Different variants and improvements of this original definition of the PGD are
proposed and discussed. These improvements are inspired from recent works
in the context of stochastic partial differential equations [27,28,32].

4.1.1 Progressive definition of space and time functions

We assume that a decomposition um−1 of order (m − 1) is known. For the
definition of the order m decomposition, a new couple (w, λ) ∈ V × T is
defined as the optimal couple which verifies the double Galerkin orthogonality
criterium:

B(um−1 + wλ,wλ∗ + w∗λ) = L(wλ∗ + w∗λ) ∀λ∗ ∈ T , ∀w∗ ∈ V (32)

Definition 5 We introduce the following mappings:

• Sm : T → V is the application which maps a time function λ ∈ T into a
space function w = Sm(λ) ∈ V, defined by:

B(um−1 + wλ,w∗λ) = L(w∗λ) ∀w∗ ∈ V (33)

• Tm : V → T is the application which maps a space function w ∈ V into a
time function λ = Tm(w) ∈ T , defined by:

B(um−1 + wλ,wλ∗) = L(wλ∗) ∀λ∗ ∈ T (34)

A couple (w, λ) ∈ V × T then verifies equation (32) if and only if w = Sm(λ)
and λ = Tm(w). The progressive Galerkin-based PGD is then defined as fol-
lows.

Definition 6 (Progressive Galerkin PGD) (wm, λm) ∈ V × T is defined
as the “optimal” couple among those (w, λ) ∈ V × T which verify one of the
following equivalent properties:

• (w, λ) verifies

w = Sm(λ) and λ = Tm(w) (35)

• λ = Tm(w) and w is a fixed point of mapping Gm = Sm ◦ Tm, i.e.

w = Gm(w) (36)

• w = Sm(λ) and λ is a fixed point of mapping G⋄
m := Tm ◦ Sm, i.e.

λ = G⋄
m(λ) (37)

We will see that optimality in definition 6 is unclearly defined in the general
case.

13



4.1.2 Interpretation as a pseudo eigenproblem

We can easily show that Gm and G⋄
m in (36) and (37) are homogeneous oper-

ators of degree 1, i.e.

∀α ∈ R\{0}, Gm(αw) = αGm(w), G⋄
m(αλ) = αG⋄

m(λ) (38)

Problems (36) and (37) are then interpreted as pseudo eigenproblems, the
optimal functions w and λ being the dominant eigenfunctions of Gm and G⋄

m

respectively. A function w (resp. λ) is called an eigenfunction of Gm (resp.
G⋄

m) if it verifies (36) (resp. (37)) (see [28] for further discussions on these
pseudo eigenproblems). The associated eigenvalue can be defined by

σm(w) = B(wTm(w), wTm(w)) (39)
(resp. σ⋄

m(λ) = B(Sm(λ)λ, Sm(λ)λ) ) (40)

In the general case, the above interpretation needs for further mathemati-
cal investigations (it is a non classical mathematical problem). However, the
following degenerate case highlights the above interpretation.

4.1.2.1 Degenerate case. We consider that bilinear form B defined on
tensor product space V ⊗ T can be written as the product of a bilinear form
BS on V and of a bilinear form BT on T , i.e. ∀λ, λ∗ ∈ T and ∀w,w∗ ∈ V ,

B(wλ,w∗λ∗) = BS(w,w∗)BT (λ, λ∗) (41)

Remark 7 Of course, in the present context, separation property (41) of B
is not satisfied for general time-dependent PDEs but it can be seen as a limit
case when some parameters of the PDE become negligible.

If separation property (41) is satisfied, one can easily prove that eigenproblems
(36) and (37) are equivalent to

σm(w)w = Ǧm(w) and σ⋄
m(λ)λ = Ǧ⋄

m(λ) (42)

where

Ǧm(w) = BT (u− um−1, BS(u− um−1, w)) = σm(w)Gm(w), (43)
Ǧ⋄

m(λ) = BS(u− um−1, BT (u− um−1, λ)) = σ⋄
m(λ)G⋄

m(λ), (44)

For equivalent eigenfunctions w and λ, i.e. related by λ = Tm(w) or w =
Sm(λ), the associated eigenvalues σm(w) = σ⋄

m(λ) and

σm(w) = BS(w,w)BT (Tm(w), Tm(w)) = BS(w, Ǧm(w))BS(w,w)−1 (45)
σ⋄

m(λ) = BS(Sm(λ), Sm(λ))BT (λ, λ) = BT (λ, Ǧ⋄
m(λ))BT (λ, λ)−1 (46)
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In the case where BS and BT define inner products on V and T respectively,
operators Ǧm and Ǧ⋄

m are classical correlation operators of (u − um−1) con-
structed from these inner products. Then, if we choose wm ∈ V and λm ∈ T
as the dominant eigenfunctions of Ǧm and Ǧ⋄

m respectively, um−1 + wmλm

minimizes the distance to u measured with the metric induced by BS and BT .
The obtained decomposition um is the classical Proper Orthogonal Decompo-
sition which converges towards u with respect to this metric. It is optimal in
the sense that for a given order m, it is the optimal separated representation
with respect to this metric 9 . However, if bilinear forms BS and BT do not
define inner products on V and T (in particular if they are non symmetric),
we have no guaranty that these eigenproblems admit real positive eigenval-
ues and that dominant eigenfunctions will lead to a convergent sequence um.
Therefore, the obtained decomposition um can not be interpreted as a Proper
Orthogonal Decomposition of the solution u.

4.1.2.2 General case. When separation property (41) is not satisfied
but when bilinear form B still defines an inner product on V ⊗ T , it is still
possible to define pseudo eigenfunctions and eigenvalues (see [28]) and to prove
the convergence of the obtained decomposition um with respect to this metric.
Denoting by ∥ · ∥B = B(·, ·) the norm induced by B, we have

∥u− um∥2
B = ∥u∥2

B −
m∑

i=1
σi(wi) = ∥u∥2

B −
m∑

i=1
σ⋄

i (λi) (47)

where σi(wi) (resp. σ⋄
i (λi)) is the dominant eigenvalue, with σi defined by

(39) (resp. (40)). In a more general case, when B does not define an inner
product (e.g. B non-symmetric as it is the case for the present context of time-
dependent PDEs), there is no existence results for solutions (in real Hilbert
spaces) to pseudo eigenproblem (36) (or (37)). However, the interpretation
in terms of a pseudo eigenproblem is a fruitful interpretation in the sense
that it allows to propose dedicated algorithms for the construction of the
decomposition, these algorithms being inspired from classical algorithms for
eigenproblems.

4.1.3 Power algorithm for the construction of the PGD

For a given decomposition um−1, a new optimal function wm ∈ V (resp. λm ∈
T ) is defined as the dominant pseudo eigenfunction of operator Gm (resp. G⋄

m).
It leads to the definition of the decomposition um = um−1 +wmλm, with λm =
Tm(wm) (resp. wm = Sm(λm)). A natural algorithm to capture the dominant

9 This construction leads to a uniquely defined decomposition (if eigenvalues are of
multiplicity 1), where functions wi (resp. λi) are orthogonal with respect to inner
product BS (resp. BT ).
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eigenfunction of operator Gm = Sm ◦ Tm consists in performing power-type
iterations. Starting from an initial function w(0) = Sm(λ(0)) (in practice, λ(0)

is generated randomly), we compute the sequence w(k+1) = Gm(w(k)) = Sm ◦
Tm(w(k)). This leads to the algorithm 1.

Algorithm 1 (PGD-P) (Power iterations algorithm)
1: for m = 1 to mmax do
2: Initialize λ
3: for k = 1 to kmax do
4: Compute w = Sm(λ)
5: Normalize w
6: Compute λ = Tm(w)
7: Check convergence of (wλ)
8: end for
9: Set wm = w and λm = λ

10: Set um = um−1 + wmλm and check convergence
11: end for

Remark 8 In Algorithm 1, there is no need for normalization of functions w
or λ. However, we here arbitrarily choose to normalize space functions w.

For particular cases where PGD coincides with POD, algorithm 1 is a classi-
cal power iterations algorithm with deflation for the capture of the dominant
eigenspace of the classical eigenproblem associated with the correlation oper-
ator of the solution u.

Remark 9 In practise, we select a relatively coarse stagnation criterium for
the power iterations (≈ 10−2 on wλ), which is sufficient to obtain a good
approximation of the new couple (wm, λm). In general, power iterations reach
this criterium very fast (in k ≈ 3 iterations). A slow convergence may reveal
multiple or close eigenvalues. However, also in this case, a good couple (w, λ)
(although not converged) is often reached in a few iterations. In practise, we
then select kmax ≈ 3.

4.1.4 Optimal Galerkin PGD and its construction

For the general case where PGD does not coincide with POD, algorithm 1
does not lead to an optimal decomposition um = Wm · Λm in the sense of the
Galerkin projection. An optimal Galerkin PGD can be defined by imposing the
residual to be simultaneously orthogonal to reduced spaces Vm = span(Wm) ⊂
V and Tm = span(Λm) ⊂ T . These two Galerkin orthogonality criteria are
equations (16) and (18) and can be reformulated as follows.

Definition 10 Let T : (V)m → (T )m be the application which maps space

16



functions Wm ∈ (V)m into time functions Λm = T (Wm) ∈ (T )m defined by

B(Wm · Λm,Wm · Λ∗
m) = L(Wm · Λ∗

m) ∀Λ∗
m ∈ (T )m (48)

Let S : (T )m → (V)m be the application which maps time functions Λm ∈ (T )m

into space functions Wm = S(Λm) ∈ (V)m defined by

B(Wm · Λm,W
∗
m · Λm) = L(W ∗

m · Λm) ∀W ∗
m ∈ (V)m (49)

A decomposition um = Wm · T (Wm) verifies equation (16). The application of
mapping T requires the solution of the system of ordinary differential equa-
tions (17). A decomposition um = S(Λm) · Λm verifies equation (18). The
application of mapping S requires the solution of a set of time-independent
partial differential equations (19). The optimal Galerkin-based PGD is then
defined as follows.

Definition 11 (Optimal Galerkin PGD) The couple (Wm,Λm) ∈ (V)m ×
(T )m is defined as the “optimal” couple among those which verify one of the
following equivalent properties:

• (Wm,Λm) verifies

Wm = S(Λm) and Λm = T (Wm) (50)

• Λm = T (Wm) and Wm is a fixed point of mapping G = S ◦ T , i.e.

Wm = G(Wm) (51)

• Wm = S(Λm) and Λm is a fixed point of mapping G⋄ = T ◦ S, i.e.

Λm = G⋄(Λm) (52)

Equation (51) (resp. (52)) can still be interpreted as a pseudo eigenproblem
on operator G = S ◦T (or G⋄ = T ◦S), the optimal set of functions Wm (resp.
Λm) being associated with the dominant eigenspace of G (resp. G⋄) (see [28]).
A natural algorithm then consists in performing subspace iterations in order
to capture this dominant eigenspace (Algorithm 2). This algorithm leads to
optimal sets of functions in the sense of Galerkin projection and leads to a
decomposition um which can be significantly better than the decomposition
obtained with a progressive definition of the PGD, constructed by a power
iterations algorithm (Algorithm 1).

Algorithm 2 (PGD-S) (Subspace iterations algorithm)
1: for m = 1 to mmax do
2: Initialize Λm

3: for k = 1 to kmax do
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4: Compute Wm = S(Λm)
5: Compute Λm = T (Wm)
6: Check convergence
7: end for
8: Set um = Wm · Λm and check convergence
9: end for

4.1.5 Approximations of the optimal Galerkin PGD

At each iteration, the application of mapping G = S ◦ T requires the appli-
cation of mappings T and S. In the context of time-dependent PDEs, the
application of mapping T is relatively cheap since it corresponds to a set of
ODEs (formulation of the initial problem on a reduced basis of space func-
tions). However, the application of mapping S is generally very costly (and not
usual) for large scale applications (2D or 3D problems) since it involves the
solution of a set of coupled time-independent PDEs. In the present context,
this algorithm should be avoided. The question is then: can we build a better
decomposition than the progressive PGD without applying the mapping S ?

A simple modification of power iterations algorithm (Algorithm 1) is possible.
It consists in introducing the application of mapping T in order to update
the whole set of time functions Λm after each construction of a new couple
of functions (wm, λm). This leads to the algorithm 3, which corresponds to
the power iterations algorithm with an additional updating of time functions.
Although the obtained decomposition is not the optimal one, this modification
significantly improves the quality of the progressive PGD.

Algorithm 3 (PGD-P∗) (Power iterations algorithm with update)

1: for m = 1 to mmax do
2: Perform steps 2 to 9 of Algorithm 1 and obtain the dominant eigenfunc-

tion wm of Gm.
3: Compute Λm = T (Wm)
4: Set um = Wm · Λm and check convergence
5: end for

Remark 12 Another algorithm, inspired from Arnoldi algorithm for classical
eigenproblems, has been proposed in [28] in the context of stochastic partial
differential equations. This algorithm allows the capture of an approximation
of the dominant eigenspace of G without applying the mapping S. For many
applications, power iterations algorithm with update and Arnoldi algorithm
lead to very similar convergence properties. Arnoldi algorithm is usually more
efficient since it requires the solution of only m uncoupled time-independent
PDEs in order to build an order m decomposition. In this paper, we do not
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focus on efficiency aspects of PGD constructions but only on convergence prop-
erties of the different definitions. This Arnoldi algorithm is not detailed but it
should be considered as a way to further improve computational efficiency of
PGD methods (see efficiency analyses in [28]).

4.2 PGD based on a minimal residual formulation

In this section, we introduce another possible definition of the PGD based on a
minimal residual criterium [31,23]. This construction is more “robust” than the
Galerkin PGD in the sense that monotone convergence of the decomposition
in the residual norm can be proved. However, it has several drawbacks which
are detailed in section 4.2.4.

4.2.1 Progressive definition of time and space functions

We still consider a progressive definition of the decomposition by assuming
that a decomposition um−1 of order m−1 is known. Let us denote by ≪ ·, · ≫
an inner product on V ⊗ T and by ∥ · ∥ the associated norm. Let us define the
residual R(u) ∈ V ⊗ T of equation (7) by:

≪ v,R(u) ≫= L(v) −B(u, v) =≪ v, ℓ− B(u) ≫ ∀v ∈ V ⊗ T (53)

where ℓ ∈ V ⊗ T and operator B : V ⊗ T → V ⊗ T are defined by using Riesz
representations in Hilbert space V ⊗ T .
We introduce the following natural definition of the Minimal Residual PGD.

Definition 13 (Progressive Minimal Residual PGD) An optimal couple
(wm, λm) ∈ V × T is defined as the one which minimizes the residual norm:

(wm, λm) ∈ arg min
(w,λ)∈V×T

∥R(um−1 + wλ)∥2 (54)

or equivalently:

(wm, λm) ∈ arg min
(w,λ)∈V×T

1
2

≪ B(wλ),B(wλ) ≫ − ≪ R(um−1),B(wλ) ≫

(55)

Let us note that this definition of PGD is equivalent to the Galerkin PGD
applied to a least-square formulation of the problem (symmetrized problem).
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4.2.2 Interpretation as a pseudo eigenproblem

The stationarity conditions (or Euler-Lagrange equations) associated with
quadratic optimization problem (54) write: ∀(w∗, λ∗) ∈ V × T ,

≪ B(wλ),B(wλ∗ + w∗λ) ≫=≪ R(um−1),B(wλ∗ + w∗λ) ≫ (56)

In order to directly apply the analysis and algorithms of section 4.1, we refor-
mulate the problem with similar notations.

Definition 14 We use the following definitions for mappings Sm and Tm.

• Sm : T → V is the application which maps a time function λ ∈ T into a
space function w = Sm(λ) ∈ V defined by:

≪ B(wλ),B(w∗λ) ≫=≪ R(um−1),B(w∗λ) ≫ ∀w∗ ∈ V (57)

• Tm : V → T is the application which maps a space function w ∈ V into a
time function λ = Tm(w) ∈ T defined by

≪ B(wλ),B(wλ∗) ≫=≪ R(um−1),B(wλ∗) ≫ ∀λ∗ ∈ T (58)

Stationarity conditions (57) and (58) can then be written w = Sm(λ) and
λ = Tm(w) respectively. The simultaneous verification of both equations
can still be interpreted as pseudo eigenproblem (36) (or (37)) on operator
Gm = Sm ◦ Tm (or G⋄

m = Tm ◦ Sm). The (pseudo) eigenvalue associated
with an eigenfunction w of Gm (i.e. such that w = Gm(w)) is defined by
σm(w) =≪ B(wTm(w)),B(wTm(w)) ≫. The optimal function wm is the dom-
inant eigenfunction of Gm, which maximizes σm(w). The obtained couple
(wm, Tm(wm)) is optimal in the sense that it minimizes the residual norm.
We easily prove the following property:

∥R(um)∥2 = ∥R(um−1)∥2 − σm(wm) = ∥ℓ∥2 −
m∑

i=1
σi(wi) (59)

which shows that the residual norm is monotonically decreasing. Decomposi-
tion um can be constructed by using power iterations algorithm (algorithm 1),
where power iterations allow the capture of the dominant eigenfunctions wm

of successive operators Gm.

Remark 15 Power iterations can also be interpreted as an alternated mini-
mization algorithm for solving (54) (minimizing successively on time functions
and space functions).
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4.2.3 Other definitions and algorithms

Other definitions and algorithms introduced in sections 4.1.4 and 4.1.5 for
the Galerkin PGD can be naturally applied to the minimal residual PGD, in
order to improve the convergence properties of the decomposition. It simply
consists in applying the definitions and algorithms of Galerkin-based PGD on
the following least-square formulation of the problem:

u ∈ V ⊗ T , B̂(u, v) = L̂(v) ∀v ∈ V ⊗ T (60)
B̂(u, v) =≪ B(v),B(u) ≫=≪ v,B∗B(u) ≫,

L̂(v) =≪ B(v), ℓ ≫=≪ v,B∗(ℓ) ≫

where B∗ is the adjoint operator of B. Algorithms introduced in sections 4.1.4
and 4.1.5 are then simply transposed to this formulation by using bilinear
form B̂ and linear form L̂ (instead of B and L) in the definition of mappings
Tm, Sm, T and S.

4.2.4 Comments on the minimal residual PGD

An advantage of the minimal residual formulation is that the convergence
with m of the PGD um is monotonic, if convergence is evaluated with the
residual norm (cf. equation (59)). In that sense, it is a robust construction of
a separated representation and it can be used in cases where Galerkin-based
PGD fails. However, it has several drawbacks:

• Although it has a mononotic convergence in residual norm, the resulting
decomposition may present very poor convergence properties with respect
to usual norms. This will be illustrated in numerical examples. In fact, the
convergence rate with respect to usual metrics strongly depends on the
choice of the residual norm ∥ · ∥. Taking for the residual norm the natural
norm in L2(Ω) ⊗L2(I) usually leads to bad convergence rates in usual solu-
tion norms. A suitable residual norm, constructed from the operator of the
problem, may improve this convergence rate 10 . However, the construction
of a suitable norm is not straightforward and the use of optimal norms may
induce additional computational issues.

10 If we want to obtain a good convergence of the solution with respect to a certain
norm ∥ · ∥ (e.g. L2 norm), the residual norm ∥R(um)∥ should give a measure of
the error as close as possible to ∥u − um∥. A natural L2-norm of the residual,
i.e. ∥R(um)∥2 =≪ R(um), R(um) ≫, is clearly not adapted. One could choose
∥R(u)∥2 = ≪ R(u), MR(u) ≫, where M is a suitable symmetric bounded coercive
operator. For example, if we denote B = ∂

∂t +A, with A a bounded coercive operator,
one could choose for M the inverse of the symmetric part of A (or an approximation
of it, for computational reasons).
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• This formulation can be easily implemented in a discretized framework,
where the residual R(u) ∈ VN ⊗ TP is defined by replacing function space
V ⊗ T by VN ⊗ TP in (53). The residual norm then measures the error with
respect to the classical Galerkin solution u ∈ VN ⊗ TP (i.e. the solution
of equation (13)). Algorithms are easily implemented in an algebraic set-
ting (see appendix B). However, in a continuous framework, it leads to non
classical formulations, which require the introduction of more refined func-
tion spaces in order to guaranty existence and uniqueness of solutions (e.g.
by introducing H2(Ω) ⊗H1(I) in place of H1(Ω) ⊗L2(I) for the advection-
diffusion-reaction equation). The a posteriori construction of approximation
spaces for the approximation of time and space functions is then non triv-
ial (at least at the space level). In practice, a minimal residual formulation
should then be applied to the discretized problem (13) (after the introduc-
tion of space and time approximation spaces VN and TP ). Let us note that
time problems are now global in time 11 (equivalent to the weak formulation
of a second order differential equation with initial and final conditions) and
therefore, this formulation does not allow to take part of the causality of the
initial problem for the computation of time functions. This can be a major
drawback if a very high dimensional approximation space TP is used.

• This formulation requires much more computational efforts than the Galerkin
PGD. Indeed, PGD algorithms take part of the low order (or low rank) sepa-
rated representation of operator B and right-hand side ℓ (see appendix A on
computational aspects). This minimal residual formulation being equivalent
to a Galerkin-based PGD on operator B∗B and right-hand side B∗ℓ, where
B∗ denotes the adjoint operator of B, the separation orders are dramatically
increased.

For all the above reasons, this PGD based on a minimal residual formulation
should be avoided — in the opinion of the author — in practical applications
for which Galerkin-based PGDs work.

5 Minimax Proper Generalized Decomposition

In this section, we propose a new definition of PGD which allows to improve
the convergence properties of Galerkin-based PGD with respect to a desired

11 Let us briefly illustrate the fact that time problems are global in time. A time
problem minλ ∥R(um−1 + wλ)∥2 can be recast as minλ ∥l − λ̇ − aλ∥2. For simplicity,
suppose that λ(0) = 0 is imposed in a strong sense. If we select a L2-norm for the
residual norm, we have ∥l∥2 =

∫
I l(t)2dt and the Euler-Lagrange equation associated

with the above quadratic minimization problem is
∫

I(λ̇∗ + aλ∗)(λ̇ + aλ − l) dt = 0,
∀λ∗. After an integration by part, one can easily prove that the associated strong
form is a second order differential equation with initial and final conditions.
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metric. This new definition can be interpreted as a PGD based on Petrov-
Galerkin criteria, where the orthogonality of the residual is imposed with
respect to another set of space and time functions, which are solution of an
adjoint problem. We also propose an algorithm for its construction.

Remark 16 Let us note that this new definition could be also applied to the
Minimal Residual PGD by considering that the initial formulation is the sym-
metrized Least-Square formulation of the time-dependent PDE.

5.1 Definition of the Minimax Proper Generalized Decomposition

We here assume that a decomposition um−1 of order (m− 1) is known (previ-
ously computed). The idea is to define a new couple (w, λ) ∈ V × T with the
two following orthogonality criteria:

B(um−1 + wλ, w̃∗λ̃) = L(w̃∗λ̃) ∀w̃∗ ∈ V (61a)
B(um−1 + wλ, w̃λ̃∗) = L(w̃λ̃∗) ∀λ̃∗ ∈ T (61b)

where (w̃, λ̃) ∈ V ×T is another couple of space and time functions. Equations
(61) impose the cancelation of the projection of the residual on subspaces
V ⊗ {λ̃} and {w̃} ⊗ T , instead of V ⊗ {λ} and {w} ⊗ T for the classical
Galerkin-based PGD (equation (32)). Of course, additional equations must
be added in order to define functions (w̃, λ̃) ∈ V × T . We use the following
additional orthogonality criteria:

B(w∗λ, w̃λ̃) =≪ w∗λ,wλ ≫ ∀w∗ ∈ V (62a)
B(wλ∗, w̃λ̃) =≪ wλ∗, wλ ≫ ∀λ∗ ∈ T (62b)

where ≪ ·, · ≫ is an inner product on V ⊗ T . In practice, we select a clas-
sical inner product having the following separation property: ∀λ, λ∗ ∈ T and
∀w,w∗ ∈ V,

≪ wλ,w∗λ∗ ≫=< w,w∗ >V< λ, λ∗ >T (63)

where < ·, · >V and < ·, · >T are inner products on V and T respectively. The
idea is to construct simultaneously two sets of functions (w, λ) ∈ V ⊗ T and
(w̃, λ̃) ∈ V ⊗ T such that they verify equations (61) and (62) simultaneously.

Let us now introduce a rigorous definition of optimal sets of functions (w, λ)
and (w̃, λ̃).

Definition 17 We introduce the functional Lm : (V ⊗ T ) × (V ⊗ T ) → R
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defined for v, ṽ ∈ V ⊗ T by

Lm(v, ṽ) = 1
2

≪ v, v ≫ −B(um−1 + v, ṽ) + L(ṽ) (64)

We also introduce L̂m : (V ×V)× (T ×T ) → R, the functional associated with
the restriction of Lm on the set of rank-one separated functions, defined for
{w, w̃} ∈ V × V and {λ, λ̃} ∈ T × T by

L̂m({w, w̃}, {λ, λ̃}) = Lm(wλ, w̃λ̃)

We then propose the following definition of the Minimax PGD 12 .

Definition 18 (Progressive Minimax PGD)
The set of functions (wm, w̃m, λm, λ̃m) ∈ (V × V × T × T ) is defined by

(wmλm, w̃mλ̃m) ∈ arg max
w̃∈V,λ̃∈T

min
w∈V,λ∈T

Lm(wλ, w̃λ̃) (65)

We notice that equations (61a), (61b), (62a) and (62b) are the stationarity
conditions of functional Lm with respect to w̃, λ̃, w and λ respectively. The
set of functions (w, w̃, λ, λ̃) then satisfies equations (61) and (62) if and only if
it makes stationary the functional Lm. For fixed (w, w̃) (resp. (λ, λ̃)), λ̃ (resp.
w̃) appears as a Lagrange multiplier which imposes the orthogonality of the
residual R(um−1 + λw) with respect to subspace {w̃} ⊗ T (resp. V ⊗ {λ̃}).

In the following, we introduce operator B : V ⊗ T → V ⊗ T and element
ℓ ∈ V ⊗ T associated with B and L by Riesz representation (using inner
product ≪ ·, · ≫), as defined in section 4.2. Functional Lm can equivalently
be written

Lm(v, ṽ) = 1
2

≪ v, v ≫ − ≪ B(v), ṽ ≫ + ≪ R(um−1), ṽ ≫ (66)

where R(um−1) = ℓ − B(um−1) is the residual associated with um−1. If we
denote by em = u−um−1 ∈ V ⊗ T , with u = B−1ℓ, and ẽm = B∗−1(em), where
B∗ is the adjoint operator of B, we easily see that

(em, ẽm) = arg max
ṽ∈V⊗T

min
v∈V⊗T

Lm(v, ṽ)

We can then interpret wmλm (resp. w̃mλ̃m) as the best rank-one separated
representation of em = u−um−1 (resp. B∗−1(em)), in the sense of the minimax
problem 13 .
12 For the mathematical analysis of minimax problems, the reader can refer to [13].
13 In particular, in the sense of the minimax problem, w1λ1 is the best rank-one
separated representation of u, w2λ2 is the best rank-one separated representation
of u − w1λ1, etc.
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5.2 Reformulation as a fixed point problem

Definition 19 We introduce the following mappings:

• Sm : T ×T → V is the application which maps time functions {λ, λ̃} ∈ T ×T
into a space function w = Sm(λ, λ̃) ∈ V defined by equation (61a).

• Tm : V × V → T is the application which maps space functions {w, w̃} ∈
V × V into a time function λ = Tm(w, w̃) ∈ T defined by equation (61b).

• S̃ : V × T × T → V is the application which maps functions {w, λ, λ̃} ∈
V × T × T into a space function w̃ = S̃(w;λ, λ̃) ∈ V defined by equation
(62a).

• T̃ : T × V × V → T is the application which maps functions {λ,w, w̃} ∈
T × V × V into a time function λ̃ = T̃ (λ;w, w̃) ∈ T defined by equation
(62b).

The set of functions {w, λ} ∈ V × T and {w̃, λ̃} ∈ V × T is then searched as
the optimal set of functions verifying simultaneously

w = Sm(λ, λ̃), λ = Tm(w, w̃), w̃ = S̃(w;λ, λ̃), λ̃ = T̃ (λ;w, w̃) (67)

Definition 20 We denote by Ŝm : T × T → V × V and T̂m : V × V → T × T
the mappings defined by

Ŝm(λ, λ̃) =
{
Sm(λ, λ̃), S̃(Sm(λ, λ̃);λ, λ̃)

}
(68)

T̂m(w, w̃) =
{
Tm(w, w̃), T̃ (Tm(w, w̃);w, w̃)

}
(69)

The following definition of mappings Ŝm and T̂m also holds.

Proposition 21 Mappings Ŝm and T̂m are uniquely characterized by

L̂m({w, w̃}, T̂m(w, w̃)) = max
λ̃∈T

min
λ∈T

L̂m({w, w̃}, {λ, λ̃}) := 1
2
J(w, w̃) (70)

L̂m(Ŝm(λ, λ̃), {λ, λ̃}) = max
w̃∈V

min
w∈V

L̂m({w, w̃}, {λ, λ̃}) := 1
2
J⋄(λ, λ̃) (71)

Definition 22 We introduce the composed mapping

Ĝm(w, w̃) = Ŝm ◦ T̂m(w, w̃) (72)

and we let Ĝ1
m and Ĝ2

m be the component mappings of Ĝm, i.e. such that
Ĝm =

{
Ĝ1

m, Ĝ
2
m

}
, defined by

Ĝ1
m(w, w̃) = Sm(T̂m(w, w̃)) (73)

Ĝ2
m(w, w̃) = S̃(Sm(T̂m(w, w̃)); T̂m(w, w̃)) (74)
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The following proposition immediately follows from previous definitions.

Proposition 23 For {w, w̃} ∈ V × V and {λ, λ̃} ∈ T × T , the following
assertions are equivalent:

• {w, w̃} and {λ, λ̃} verify equations (61) and (62)
• {w, w̃} and {λ, λ̃} verify

{w, w̃} = Ŝm(λ, λ̃) and {λ, λ̃} = T̂m(w, w̃) (75)

• {λ, λ̃} = T̂m(w, w̃) and {w, w̃} is a fixed point of mapping Ĝm:

{w, w̃} = Ĝm(w, w̃) ⇐⇒ w = Ĝ1
m(w, w̃) and w̃ = Ĝ2

m(w, w̃) (76)

The problem is then to find an optimal fixed point {w, w̃} ∈ V ×V of operator
Ĝm and to define the associated time functions by {λ, λ̃} = T̂m(w, w̃). Such a
fixed point verifies

J(w, w̃) = 2L̂m({w, w̃}, T̂m(w, w̃)) =≪ wTm(w, w̃), wTm(w, w̃) ≫ (77)

where functional J : V × V → R+ has been defined in (70). Then, thanks
to the definition 18, we search for an optimal fixed point {wm, w̃m}, where
optimality is characterized by

J(wm, w̃m) = max
w̃∈V

min
w∈V

J(w, w̃) (78)

5.3 Interpretation as a pseudo eigenproblem

First, let us note that if {w, w̃} ∈ V×V is a fixed point of Ĝm, then {αw, βw̃} ∈
V × V is also a fixed point of Ĝm, for all α, β ∈ R\{0}. This result comes from
the following homogeneity properties of mappings Ĝ1

m and Ĝ2
m: ∀α, β ∈ R\{0},

Ĝ1
m(αw, βw̃) = αĜ1

m(w, w̃), Ĝ2
m(αw, βw̃) = βĜ2

m(w, w̃) (79)

Then, if {w, w̃} = Ĝm(w, w̃), we have

Ĝm(αw, βw̃) =
{
Ĝ1(αw, βw̃), Ĝ2(αw, βw̃)

}
=
{
αĜ1(w, w̃), βĜ2(w, w̃)

}
= {αw, βw̃}

We conjecture that fixed point problem (76) can still be interpreted as a
pseudo eigenproblem. If {w, w̃} is a fixed point of Ĝm, w is interpreted as
an eigenfunction, associated with eigenvalue minw∈V J(w, w̃). The optimal
fixed point {wm, w̃m} is associated with the dominant eigenvalue, defined by
J(wm, w̃m) = maxw̃∈V minw∈V J(w, w̃).
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This interpretation is motivated by the following analysis of a particular case.
In the general case, further mathematical investigations are necessary in order
to better understand this non classical problem.

5.4 The POD as a degenerate case of the Minimax PGD

Let us consider the case where bilinear form B on tensor product space V ⊗T
can be written as the product of a bilinear form BS on V and of a bilinear
form BT on T , i.e. ∀λ, λ̃ ∈ T and ∀w, w̃ ∈ V,

B(wλ, w̃λ̃) = BS(w, w̃)BT (λ, λ̃) (80)

Let B : V ⊗ T → V ⊗ T , BS : V → V and BT : T → T be the operators
associated with bilinear formsB, BS and BT respectively. Equation (80) means
that operator B admits an order 1 separated representation B = BS ⊗ BT .

Proposition 24 If bilinear form B satisfies (80), {w, w̃} is a fixed point of
Ĝm if and only if w is an eigenfunction of eigenproblem:

σw = Gm(w), (81)

where operator Gm is defined by Gm(w) =< u − um−1, < u − um−1, w >V>T ,
where u = B−1ℓ is the solution of the problem, and

w̃ = αB∗
S

−1(w) (82)

where α ∈ R\{0} is an arbitrary scalar and B∗
S denotes the adjoint operator of

BS. The optimal set of functions, defined by definition 18, is associated with
the dominant eigenvalue of operator Gm.

PROOF. Let em = u− um−1. The following expressions hold:

Ĝ1
m(w, w̃) = BS(w, w̃)BT (BS(em, w̃), BS(em, w̃))−1BT (em, BS(em, w̃)) (83)

Ĝ2
m(w, w̃) = BS(w, w̃)< w,w >−1

V B∗
S

−1(w) (84)

(76) can be rewritten as follows:

w = Ĝ1
m(w, Ĝ2

m(w, w̃)), (85)
w̃ = Ĝ2

m(w, w̃) (86)

Equation (85) gives σm(w)w = Gm(w), where σm(w) = <w,Gm(w)>V
<w,w>V

is the clas-
sical Rayleigh quotient associated with the symmetric eigenproblem (81). w
then verifies equation (85) if and only if it is an eigenfunction of correlation
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operator Gm. From homogeneity property (79) of operator Ĝ2
m (which is triv-

ially observed in equation (84)), equation (86) implies equation (82) with an
arbitrary scalar α ∈ R\{0}.

Finally, let us prove that the optimal set is associated with the dominant
eigenvalue of this problem. We have Tm(w, w̃) = BS(w, w̃)−1BS(em, w̃) and
therefore, functional J , defined in (70), writes:

J(w, w̃) =≪ wTm(w, w̃), wTm(w, w̃) ≫
= < w,w >V< w,B∗

S(w̃) >−2
V << em,B∗

S(w̃) >V , < em,B∗
S(w̃) >V>T

=< w,w >V< w,B∗
S(w̃) >−2

V < B∗
S(w̃), Gm(B∗

S(w̃)) >V (87)

We then have

min
w∈V

J(w, w̃) = J(B∗
S(w̃), w̃) = < B∗

S(w̃), Gm(B∗
S(w̃)) >V

< B∗
S(w̃),B∗

S(w̃) >V
= σm(B∗

S(w̃)) (88)

⇒ max
w̃∈V

min
w∈V

J(w, w̃) = max
w̃∈V

σm(B∗
S(w̃)) = max

w∈V
σm(w) (89)

so that the optimal set of functions is associated with the dominant eigenfunc-
tion of eigenproblem (81). 2

Equation (81) is a classical deflated version of the eigenproblem (26) which
defines the Proper Orthogonal Decomposition associated with the (separated)
metric ≪ ·, · ≫. Let wm denote the rightmost eigenfunction of operator Gm

associated with eigenvalue σm = σm(wm). Let w̃m = B∗
S

−1(wm) and let λm =
Tm(wm, w̃m) =< wm, wm >−1

V < u − um−1, wm >V . The couple (wm, λm) is
optimal in the sense that it minimizes the error ∥u−um−1 −wλ∥2, where ∥ · ∥
is the norm associated with ≪ ·, · ≫, which is the chosen metric.

With this progressive construction of the decomposition um = ∑m
i=1 wiλi, we

can classically prove that functions {wi}m
i=1 (resp. {λi}m

i=1) are orthogonal with
respect to inner product < ·, · >V (resp. < ·, · >T ). Operator Gm writes

Gm(w) =< u,< u,w >V>T −
m−1∑
i=1

σi
1

< wi, wi >V
wi < wi, w >V (90)

Gm has the same eigenfunctions of operator G(w) =< u,< u,w >V>T and the
rightmost eigenvalue σm of Gm is the mth rightmost eigenvalue of G (eigen-
functions {wi}m−1

i=1 of Gm are associated with zero eigenvalues).

The above results prove that the Minimax PGD leads to the same decompo-
sition as the classical POD for rank-one operator B = BS ⊗ BT , even if BS

and BT do not define inner products on V and T . Let us recall that it was not
the case of the classical Galerkin-based PGD introduced in section 4.1.2. An
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important point is that the obtained decomposition is optimal with respect to
the a priori chosen metric ≪ ·, · ≫.

5.5 Power iterations algorithm

We now propose the Algorithm 4 for the progressive construction of the Min-
imax PGD. Different interpretations can be given to this algorithm. First, it
is a fixed point algorithm on operator Ĝm = Ŝm ◦ T̂m, which can be inter-
preted as a power iterations algorithm for the capture of the dominant eigen-
function of the associated pseudo eigenproblem. In the case where B has the
separation property (80), this algorithm exactly coincides with a power iter-
ations algorithm for capturing the dominant eigenfunction of classical eigen-
problem (81). Then, in this case, the decomposition um obtained with Al-
gorithm 4 corresponds to a classical POD. Starting from the definition 18,
Algorithm 4 can also be seen as an algorithm which alternates the solution of
arg maxλ̃ minλ L̂m({w, w̃}, {λ, λ̃}) = T̂m(w, w̃) for fixed {w, w̃} and the solu-
tion of arg maxw̃ minw L̂m({w, w̃}, {λ, λ̃}) = Ŝm(λ, λ̃) for fixed {λ, λ̃}.

Algorithm 4 (D-PGD-P(∗)) (Power iterations algorithm (with up-
date))
1: for m = 1 to mmax do
2: Initialize λ, λ̃
3: for k = 1 to kmax do
4: Compute {w, w̃} = Ŝm(λ, λ̃)
5: Normalize w and w̃
6: Compute {λ, λ̃} = T̂m(w, w̃)
7: Check convergence of (wλ) and (w̃λ̃)
8: end for
9: Set wm = w and w̃m = w̃

10: (without update) Set λm = λ
(with update) Compute Λm = T (Wm, W̃m)

11: Set um = Wm · Λm and check convergence
12: end for

The application of mapping Ŝm (step 4), defined by (68), is decomposed into
two steps. First, for given time functions (λ, λ̃), we compute a space function
w = Sm(λ, λ̃) by solving a classical time-independent PDE. Secondly, we com-
pute a space function w̃ = S̃(w;λ, λ̃) by solving an adjoint time-independent
PDE. The application of mapping T̂m (step 6), defined by (69), is also de-
composed into two steps. First, for given space functions (w, w̃), we compute
a time function λ = Tm(w, w̃) by solving an ordinary differential equation
in time (forward equation in time). Secondly, we compute a time function
λ̃ = S̃(λ;w, w̃) by solving an adjoint ordinary differential equation in time
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(backward equation in time). For computational aspects related to the appli-
cation of these mappings, see appendices A and B.

Remark 25 In practice, for the initialization (step 2 of algorithm 4), we ran-
domly generate λ and we let λ̃ = λ.

Following the arguments of sections 4.1.4 and 4.1.5, which also hold for Mini-
max PGD, we propose to include an update of time functions Λm (step 10 of al-
gorithm 4). This update can significantly improve the accuracy of the PGD um

and often provides a good approximation of the optimal PGD which could be
obtained by searching simultaneously the whole set of space and time functions
(see numerical examples). This updating step consists in applying the mapping
T : (V)m × (V)m → (T )m, which maps space functions Wm = {wi}m

i=1 ∈ (V)m

and W̃m = {w̃i}m
i=1 ∈ (V)m into time functions Λm = T (Wm, W̃m) ∈ (T )m

defined by

B(Wm · Λm, W̃m · Λ̃∗
m) = L(W̃m · Λ̃∗

m) ∀Λ̃∗
m ∈ (T )m (91)

The decomposition um = Wm · T (Wm, W̃m) is then a Petrov-Galerkin projec-
tion of the solution u, defined by

um ∈ Vm ⊗ T , B(um, vm) = L(vm) ∀vm ∈ Ṽm ⊗ T (92)

where Vm = span(Wm) and Ṽm = span(W̃m).

6 Numerical examples

Several numerical examples will illustrate and compare the behavior of the
different definitions of Proper Generalized Decompositions: Galerkin or min-
imal residual PGDs, progressive or optimal PGDs. It will also illustrate the
behavior of the new Minimax Galerkin PGD.

6.1 Preliminaries

Definitions of PGDs and associated algorithms. For the different
definitions of the PGDs um, we use the notation

(α)PGD-β or D-(α)PGD-β (93)

The letter α indicates the initial formulation on which the PGD method is
applied: α=G for Galerkin formulation or α=R for Minimal Residual formu-
lation. The letter β indicates the algorithm which is used for the construction
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of the PGD, each algorithm being associated with a different definition of the
PGD: β=P for progressive PGD constructed with power iterations algorithm,
β=P∗ for progressive PGD with update constructed with power iterations
algorithm with update, β=S for optimal PGD constructed with subspace iter-
ations algorithm. Finally, the additional letter D before the definition indicates
that the Minimax formulation of the PGD is used. For the definition of the
Minimax PGD, we use the classical inner product in L2(Ω) ⊗ L2(I), defined
for u, v ∈ L2(Ω) ⊗ L2(I) by

≪ u, v ≫ = ≪ u, v ≫L2(Ω)⊗L2(I)=
∫

I

∫
Ω
u(x, t)v(x, t) dx dt

We denote by ∥ · ∥L2(Ω)⊗L2(I) the associated norm. The Proper Orthogonal
Decomposition (POD) of the reference solution is also computed with respect
to this classical L2 metric.

For optimal PGDs, constructed with subspace iterations algorithm, conver-
gence curves will be limited to low orders m because of limited computational
ressources (limitation due to the application of mapping S). It reflects the fact
that this optimal PGD is unaccessible for practical applications.

Parameters of algorithms. Default values for the parameters of algo-
rithms are chosen such that the algorithm captures the associated PGD with
a good accuracy: we use a convergence criterium of 10−2 for stopping power
and subspace iterations and we set the maximum number of iterations kmax

to 4.

Approximation and error indicator. For approximation space VN ⊂ V ,
we use classical finite elements or spectral finite elements. For the approxima-
tion space TP ⊂ T , we use piecewise polynomials of degree p on a uniform
partition of I = (0, T ). The reference solution u is the classical Galerkin ap-
proximation, which is the solution of (13). We introduce the following error
indicator between the reference solution and a separated representation um of
order m:

εm =
∥u− um∥L2(Ω)⊗L2(I)

∥u∥L2(Ω)⊗L2(I)
(94)

Computational costs. In these numerical examples, we focus on conver-
gence properties of PGD definitions and not on their relative computational
efficiencies. Let us just mention that for constructing a decomposition of a
given order m, Galerkin PGD and Minimax Galerkin PGD give similar com-
putational costs (see appendix A), much lower than with minimal residual
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PGD. Let us also mention that PGD algorithms share nice computational
properties. Computational times are unaffected by the non uniformity of the
time discretization or the time-dependence of the operator, contrary to tradi-
tional incremental schemes.

6.2 Example 1: pure diffusion

We consider a pure diffusion problem defined on Ω×I, with Ω = (0, 1)× (0, 1)
and I = (0, 1):

u̇− µ∆u = f on Ω × I (95)
u = 0 on ∂Ω × I (96)
u = 0 on Ω × {0} (97)

with f(x, y, t) = 1 + 2xt and µ = 1. At the space level, we introduce a regular
mesh of Ω with triangular linear finite elements and N = 1, 354 nodes. At the
time level, we use a degree p = 0 piecewise polynomial approximation on 100
uniform intervals. The reference solution u is shown on Figure 1.

Figure 1. Example 1. Reference solution u(t) at instants t = iT/4, for i = 0 (left)
to i = 4 (right)

Analysis of PGDs. Convergence curves of the different PGDs are illus-
trated on Figure 2 (Galerkin PGDs on figure 2(a) and Minimal Residual PGDs
on Figure 2(b)). We observe that optimal PGDs ((G)PGD-S or (R)PGD-S) are
very close to the POD. We observe that progressive Galerkin PGDs have also
good convergence properties and that the update significantly improves the
convergence. Let us note that in this example, D-(G)PGD has quite the same
properties as (G)PGD. Finally, we observe that (R)PGD gives a slower con-
vergence (and also leads to much higher computational costs) than Galerkin
PGDs.

Figure 3 illustrates the first 6 modes of the POD and of the (G)PGD-P∗. We
observe that the first 4 modes are very similar. It illustrates the fact that PGD
method allows the a priori construction of reduced basis which are very similar
to the a posteriori POD reduced basis. In fact, we generally observe such a
similarity between the dominant modes obtained with POD and (G)PGD-P ∗.
However, we clearly observe that the subsequent modes are quite different.
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Figure 2. Example 1. Convergence of PGDs.
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Figure 3. Example 1. Modes wi and λi of um, for i = 1 (left) to i = 6 (right).

Properties of algorithms. In this example, we briefly analyze the proper-
ties of PGD algorithms and motivate the selection of their default parameters.
Figure 4 shows the convergence curves of progressive PGDs (constructed by
power iterations algorithms) for different values of parameter kmax. In these
numerical tests, we choose a very low convergence criterium for power itera-
tions such that we exactly perform kmax power iterations. Each PGD algorithm
is run 5 times. Since power iterations are initialized randomly and since we
perform a low number of iterations, we should obtain different curves for each
PGD, as it can be observed for kmax = 1. However, we observe that these
curves are almost superimposed for kmax = 3. It reveals that for all m, only
3 power iterations are sufficient for capturing accurately the dominant couple
(wm, λm). Let us note that these results indicate that the PGDs obtained with
these algorithms are unaffected by the randomness of the initialization. How-
ever, for the progressive (R)PGD without update, we observe that the curves
are not exactly superimposed for kmax = 6. It reveals a slower convergence of
power iterations in the case of the Minimal Residual PGD.

Influence of the diffusion parameter. Figure (5) shows the influence of
the diffusion parameter µ on the convergence properties of POD, (G)PGD and
D-(G)PGD. We observe similar behaviors for D-(G)PGD-P∗ and (G)PGD-P∗,
with a slight superiority of D-(G)PGD-P∗ for each value of µ. We also observe
that for µ → ±∞, decompositions um converges very quickly and tends to be
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Figure 4. Example 1. Influence of parameter kmax of power iterations algorithms.
Each PGD algorithm is run 5 times. Power iterations are initialized randomly.

exact with only m = 2. In fact, as mentioned in remark 7, that corresponds
to two limit cases where the operator is a rank-one operator (i.e. having sep-
aration property (41)) and therefore, the exact solution admits a separated
representation of order 2 which is exactly captured by PGD algorithms (Min-
imax or not).

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

m

ε m

 

 

µ=10−6

µ=10−4

µ=10−2

µ=1

µ=102

µ=104

µ=106

(a) POD

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

m

ε m

 

 

µ=10−6

µ=10−4

µ=10−2

µ=1

µ=102

µ=104

µ=106

(b) (G)PGD-P∗

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

m

ε m

 

 

µ=10−6

µ=10−4

µ=10−2

µ=1

µ=102

µ=104

µ=106

(c) D-(G)PGD-P∗

Figure 5. Example 1. influence of diffusion parameter µ on the convergence of PGDs
and POD.

6.3 Example 2: pure diffusion, manufactured solution

We consider the same operator and discretization as in example 1, except
for the definition of the right-hand side f . We set f = B(u), where u is
the following manufactured solution (see figure 6), which admits an exact
separated representation of order 5:

u = sin(πx) sin(πy)t+ 1
2

sin(πx) sin(2πy)(1 − t) + 1
2

sin(2πx) sin(πy) sin(πt)

+ 1
3

sin(2πx) sin(2πy) sin(2πt) + 1
5

sin(4πx) sin(4πy) sin(4πt) (98)

On figure 7, we illustrate the convergence curves of PGDs. On figures 7(a) and
7(b), we observe that optimal PGDs (Galerkin or Minimal Residual) are very
close to the POD and that the subspace iterations algorithm allows to capture
the exact solution for m = 5. We also observe that progressive PGDs do not
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Figure 6. Example 2. Reference solution u(t) at instants t = iT/9, for i = 0 (top
left) to i = 9 (bottom right)

lead to the exact decomposition in m = 5 modes. However, progressive PGDs
with update almost capture the exact solution for m = 5. In this example, we
still observe that the Minimax Galerkin PGD is very similar to the Galerkin
PGD.
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Figure 7. Example 2. Manufactured solution with separation order 5. Convergence
of PGDs.

6.4 Example 3: advection-diffusion

We consider the following advection-diffusion problem defined on Ω × I, with
Ω = (0, 1) × (0, 1) and I = (0, 1):

u̇− µ∆u+ c · ∇u = 0 on Ω × I (99)
u = 0 on ∂Ω × I (100)
u = u0 on Ω × {0} (101)

with µ = 10−3, u0(x, y) = exp(− (x− 2
3 )2+(y− 1

2 )2

0.072 ) and c(x, y, t) = 10π(−y+ 1
2 , x−

1
2). At the space level, we use a uniform cartesian mesh with 8×8 quadrangular
spectral elements of degree 8. It corresponds to a dimension N = 3, 249 for VN .
At the time level, we use a degree p = 1 piecewise polynomial approximation
on 300 uniform intervals. The reference solution u is shown on Figure 8.
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Figure 8. Example 3. Reference solution u(t) at instants t = iT/9, for i = 0 (top
left) to i = 9 (bottom right)

Analysis of PGDs. On figure 9, we observe the convergence of the different
PGDs. Figure 9(a) illustrates that the optimal Galerkin PGD is still very close
to the POD. On figure 9(b), we observe that classical progressive PGDs are
very far from this optimal decomposition. Very slow convergences are observed
for progressive (G)PGD and (R)PGD without update and the convergence
is only slightly improved when the update is performed. This example is an
illustration where classical PGDs fail at constructing a priori a good separated
representation um. However, this limitation is cured by the newly proposed
progressive Minimax Galerkin PGD, which gives a satisfactory convergence
when update is performed (D-(G)PGD-P∗).
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Figure 9. Example 3. Convergence of PGDs.

Figure 10 illustrates the first 12 modes of the POD and progressive PGDs. We
observe (as expected)that the POD modes present shorter and shorter length
scales. We also observe that (G)PGD-P∗ and (R)PGD-P∗ capture a reduced
basis of modes which is very different from the one obtained with POD (and
far less pertinent). However, we observe that D-(G)PGD-P∗ allows the capture
of reduced bases of modes presenting almost the same spatial and temporal
features as the POD reduced basis.
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Figure 10. Example 3. Modes wi and λi of um, for i = 1 (top left) to i = 12 (bottom
right).

Properties of algorithms. As done for the example in section 6.2, we
here briefly study the behavior of PGD algorithms for different values of pa-
rameter kmax (maximum number of power iterations). Figure 11 indicates that
for each progressive PGD algorithm, a very low number of power iterations
(kmax ≈ 3) is sufficient to capture the dominant couple (wm, λm). However,
we note that for (G)PGD-P (without update of time functions), a coarse ap-
proximation of the dominant couple (with kmax = 1) leads to a divergence of
the decomposition. (G)PGD-P∗ (with update) does not diverge but presents
a strange property. Indeed, the decomposition um obtained with kmax = 1
(coarse approximation of the dominant couples) is better than the converged
(G)PGD-P∗. The Minimax PGD seems to circumvent these robustness issues.

Influence of the diffusion parameter. We now consider problems with
different ratios between diffusion and advection terms, from pure advection
(µ = 0) to high diffusion (µ = 10−1). On figure 12(a), we observe that in order
to obtain an accurate POD of the solution, more and more modes are required
when decreasing the diffusion, which reveals a richer spectral content of the
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Figure 11. Example 3. Influence of parameter kmax on power iterations algorithms.
Each PGD algorithm is run 3 times. Power iterations are initialized randomly.

solution for low diffusion problems. On figure 12(b), we observe that for high
diffusion problems, (G)PGD-P∗ works but converges slowly. For zero diffusion,
(G)PGD-P∗ has a very slow convergence. Finally, on figure 12(c), we observe
that the Minimax Galerkin PGD works pretty well regarded to the expected
optimal decomposition (the POD), whatever the diffusion value.
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Figure 12. Example 3. Influence of the diffusion µ on the convergence of POD and
progressive PGDs.
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6.5 Example 4: advection-diffusion-reaction

We consider the following advection-diffusion-reaction problem, taken from
[33], defined on Ω × I, with Ω = (0, 1) × (0, 1) and I = (0, 0.03):

u̇− µ∆u+ c · ∇u+ σu = f on Ω × I (102)
u = 0 on ∂Ω × I (103)
u = 0 on Ω × {0} (104)

with µ = 1, σ = 10, c = 250(y− 1
2 ,

1
2 − x) and f(x, y, t) = 100 IΩ1(x, y), where

IΩ1 is the indicator function of a subdomain Ω1 = (0.7, 0.8)× (0.7, 0.8). At the
space level, we use a regular mesh of Ω with triangular linear finite elements
and N = 2, 774 nodes. At the time level, we use a degree p = 0 piecewise
polynomial approximation on 100 uniform intervals. The reference solution u
is shown on Figure 13.

Figure 13. Example 4. Reference solution u(t) at instants t = iT/4, for i = 0 (left)
to i = 4 (right)

Analysis of PGDs. On figure 14, we observe the convergence of the differ-
ent PGDs. Figure 14(a) illustrates that the optimal Galerkin PGD is very close
to the POD. On figure 14(b), we first observe that progressive PGDs based
on a Minimal Residual formulation give poor convergence properties (with or
without update), such as the progressive Galerkin PGD without update. We
also observe that the best convergence properties are obtained with the Mini-
max Galerkin PGD. We notice that D-(G)PGD-P (without update) is similar
to the classical (G)PGD-P∗ (with update), which is a very nice property of
the Minimax PGD.

Table 1 indicates for each PGD the order m (or dimension of reduced ba-
sis) required to obtain a desired precision ϵm = 10−2. It illustrates that the
Minimax PGD leads to the construction of quasi-optimal reduced basis.
Table 1
Example 4. Minimal order m such that ϵm < 10−2 for (α)-β PGDs

(G)-S (G)-P (G)-P∗ (R)-P (R)-P∗ D-(G)-P D-(G)-P∗

m 8 28 12 >100 23 11 9
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Figure 14. Example 4. Convergence of PGDs.

Figure 15 illustrates the first 10 modes of the POD and of progressive PGDs.
We observe that the modes of the progressive Minimax Galerkin PGD are very
close from the ones of POD. It illustrates that this Minimax PGD extracts
more rapidly the spectral content of the solution, compared to other PGDs.
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Figure 15. Example 4. Modes wi and λi of um, for i = 1 (top left) to i = 10 (bottom
right).
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6.6 Example 5: advection-diffusion-dispersion

We consider the following advection-diffusion-dispersion problem defined on
Ω × I, with Ω = (0, 1) × (0, 1) and I = (0, 1):

u̇− ∇(D∇u) + c · ∇u = 0 on Ω × I (105)
u = 0 on ∂Ω × I (106)
u = 0 on Ω × {0} (107)

where c(x, y, t) = 3π(−y+ 1
2 , x− 1

2), f(x, y) = exp(− (x− 3
4 )2+(y− 1

2 )2

0.072 ) and where
D is a dispersion-diffusion tensor defined by

D = µId + ∥c∥ (αlc̃⊗ c̃+ αt(Id − c̃⊗ c̃)) , c̃ = c

∥c∥
(108)

where Id is the identity tensor, µ = 10−4 is the effective diffusion, αl = 10−1 is
the longitudinal dispersion and αt = 10−4 is the transversal dispersion. At the
space level, we use a regular mesh of Ω with triangular linear finite elements
and N = 5, 127 nodes. At the time level, we use a degree p = 1 piecewise
polynomial approximation on 100 uniform intervals. The reference solution u
is shown on Figure 16.

Figure 16. Example 5. Reference solution u(t) at instants t = iT/4, for i = 0 (left)
to i = 4 (right)

Analysis of PGDs. On figure 17, we observe the convergence of the differ-
ent PGDs. Figure 17(a) illustrates that the optimal Galerkin PGD is still very
close to the POD. On figure 14(b), we note that progressive PGDs based on
a Minimal Residual formulation give poor convergence properties, such as the
progressive Galerkin PGD without update. With the update, D-(G)PGD-P∗

leads to a decomposition which is close to the optimal one. We also notice
that D-(G)PGD-P (without update) is better than the classical (G)PGD-P∗

(with update). It is a very nice property of the Minimax PGD.

Table 2 indicates for each PGD the order m required to obtain a desired
precision ϵm = 10−3. It reveals that for classical progressive Galerkin or Min-
imal Residual PGDs, the updating of time functions is necessary to obtain
satisfactory reduced basis. However, the Minimax PGD leads to the construc-
tion of quasi-optimal reduced basis with or without update of time functions.
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Figure 17. Example 5. Convergence of PGDs.
For this desired precision, D-(G)PGD-P∗ allows to construct a reduced order
model with a dimension two times lower than (G)PGD-P∗ and 3 times lower
than (R)PGD-P∗.
Table 2
Example 5. Minimal order m such that ϵm < 10−3 for (α)-β PGDs

(G)-S (G)-P (G)-P∗ (R)-P (R)-P∗ D-(G)-P D-(G)-P∗

m 8 >150 18 >150 33 13 10

Figure 18 illustrates the first 10 modes of the POD and of the progressive
PGDs. We still observe that the modes of the progressive Minimax Galerkin
PGD are very close from the ones of POD. Classical (G)PGD-P∗ clearly fails at
capturing accurately the upper spectrum of the solution. Figure 19 illustrates
the first 10 dual modes (w̃i, λ̃i) of D-(G)PGD-P∗.

6.7 Example 6: canister

This example is taken from [33] and represents the transport of pollutant inside
an active carbon filter. The concentration of pollutant u satisfies the following
advection-diffusion-reaction problem defined on Ω × I, with I = (0, 2) and
Ω = Ω1 ∪ Ω2 (see figure 20(a)):

u̇− µ∆u+ c · ∇u+ σu = 0 on Ω × I (109a)

with µ = 0.01, σ = 0.01IΩ1 + 10IΩ2 . The advection field c = ∇ψ, where
ψ is a potential which is obtained by solving a Laplace equation on Ω. For
boundary conditions, we impose u = 1 on Γ1 and u = 0 on Γ2. On the
complementary part of the boundary ∂Ω\(Γ1 ∪ Γ2), we impose homogeneous
Neumann boundary conditions. The initial condition u0 is such that u0 = 1
on Γ1 and 0 elsewhere in Ω.

At the space level, we use a regular mesh of Ω with triangular linear finite
elements and N = 2, 826 nodes (figure 20(b)). At the time level, we use a
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Figure 18. Example 5. Modes wi and λi of um, for i = 1 (top left) to i = 10 (bottom
right).
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Figure 19. Example 5. Modes w̃i and λ̃i of D-(G)PGD-P∗, for i = 1 (top left) to
i = 10 (bottom right).

degree p = 1 piecewise polynomial approximation on 100 uniform intervals.
The potential ψ is computed on the same finite element mesh. The solution
ψ, and the corresponding advection flow c = ∇ψ, are shown on figure 20(c).
The reference solution u is shown on Figure 21.

Analysis of PGDs. On figure 22, we observe the convergence of the differ-
ent PGDs. As in the other examples, Figure 22(a) illustrates that the optimal
Galerkin PGD is still very close to the POD. Figure 22(b) illustrates the su-
periority of the Minimax strategy for the progressive construction of PGD.
Indeed, D-(G)PGD-P and D-(G)PGD-P∗ lead to very similar decompositions,
close to the optimal one. Let us note that the fact that D-(G)PGD-P (with-
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Figure 20. Example 6. Geometry (a), finite element mesh (b) and potential flow c
(c)

Figure 21. Example 6. Reference solution u(t) at instants t = iT/9, for i = 0 (top
left) to i = 9 (bottom right)

out update) gives an almost optimal decomposition is a very nice property of
the Minimax PGD. The progressive PGDs based on a Minimal Residual for-
mulation give poor convergence properties, such as the progressive Galerkin
PGD without update. Classical (G)PGD-P∗ (with update) gives intermediate
results.
Let us emphasize that the PGD method allows to build a priori a very low
dimensional reduced order model which represents very accurately the solu-
tion (precision 10−3 with a dimension m ≈ 30 for D-(G)PGD-P∗ and m ≈ 50
for (G)PGD-P∗).

Figure 23 illustrates the first 6 modes of the POD and D-(G)PGD-P∗. Figure
24 illustrates the first 6 dual modes (w̃i, λ̃i) of D-(G)PGD-P∗.

Time-dependent advection flow. We consider the same problem as pre-
viously except for I = (0, 4) and the advection flow c which is now time-
dependent. We take c(t) = α(t)c0 where c0 is the previously used time-
independent advection velocity (shown on figure 20(a)), and α(t) = 2 − t(1 −
t/4). Figure 25 still illustrates the superiority of the Minimax PGD for the
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Figure 22. Example 6. Convergence of PGDs.
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Figure 23. Example 6. Modes wi and λi of um, for i = 1 (left) to i = 6 (right).
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7 Conclusion

We have introduced different possible definitions of Proper Generalized De-
compositions (PGD) for the a priori construction of separated variables rep-
resentation of the solution of time-dependent PDEs. For each definition of
PGD, a dedicated algorithm has been proposed. The different definitions are
based on a Galerkin or a Minimal Residual formulation of the evolution prob-
lem. For each formulation, different variants of PGD have been proposed,
which correspond to progressive or simultaneous (optimal) constructions of
the decomposition. We have also proposed an innovative definition of PGD,
called Minimax PGD, which can be interpreted as a Petrov-Galerkin model
reduction technique. This new PGD preserves the computational advantages
of Galerkin PGD (compared to Minimal Residual PGD) and improves the
convergence properties of the decomposition with respect to a chosen metric.

The numerical examples have illustrated that an optimal PGD, constructed
by a subspace iterations algorithm, have quite the same convergence proper-
ties as a classical a posteriori POD. However, in the context of the solution
of time-dependent PDEs, an optimal PGD is not of practical interest since
its construction requires the solution of systems of coupled PDEs whose com-
putational costs are prohibitive for large scale applications. Then, progressive
PGDs, which are of practical interest, have been compared to this optimal
PGD or to an optimal a posteriori POD. We have illustrated that the pro-
gressive Galerkin PGD often gives good convergence properties, better than
the progressive minimal residual PGD, which is more robust but also more
computationally expansive. We have also illustrated that the newly proposed
Minimax Galerkin PGD (or Petrov-Galerkin PGD) significantly improves the
convergence properties of classical progressive Galerkin PGDs. In particular,
for some problems, we have observed that the progressive Minimax PGD al-
lows the a priori construction of a decomposition close to an optimal POD.
Significant computational savings can then be expected for large scale appli-
cations.

PGD methods constitute promising alternative computational techniques for
solving a large class of problems defined in tensor product spaces. In the con-
text of time-dependent PDEs, computational costs are not affected by the
time-dependence of the operator or the non uniformity of the time discretiza-
tion. However, further mathematical analyses and numerical experiments are
still necessary. For some problems where an a posteriori POD tells us that
a few modes are sufficient to describe the solution, the different PGD defi-
nitions proposed in this article may fail at capturing these modes. A better
understanding of the underlying pseudo eigenproblem could allow us to pro-
pose improved progressive PGD definitions and more efficient algorithms for
the capture of quasi optimal decompositions.
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Future works will be devoted to the extension of the newly proposed PGD
for the construction of multi-dimensional separated representations. Another
important perspective concerns the introduction of robust error indicators for
the adaptive construction of PGD decompositions.

A Computational aspects of Proper Generalized Decomposition
algorithms

A.1 Preliminaries

We consider that bilinear and linear forms a and ℓ in equation (3) admit the
following separated representations: ∀w,w∗ ∈ V

a(w,w∗; t) =
ma∑
i=1

αi(t)ai(w,w∗), ℓ(w∗; t) =
mℓ∑
i=1

γi(t)ℓi(w∗) (A.1)

where ai and ℓi are time-independent bilinear and linear forms on V, and
where αi and γi are real-valued time functions. For convenience, we introduce
the following notations:

a0(w,w∗) = m(w,w∗), α0 = 1, ℓ0(w∗) = m(u0, w
∗), γ0 = 1 (A.2)

If a space discretization VN ⊂ V is introduced (see section 2.5), matrix A(t)
and vector f(t), defined in section 2.5, admit the following separated repre-
sentations:

A(t) =
ma∑
i=1

αi(t)Ai, f(t) =
mℓ∑
i=1

γi(t)fi (A.3)

and for convenience, we define the matrix A0 = M and the vector f0 = Mu0,
which are respectively associated with bilinear form a0 and linear form ℓ0. We
introduce the following notations: for v, ṽ ∈ TP ,

(v, ṽ)I =
∫

I
v(t)ṽ(t) dt (A.4)

(v̇, ṽ)I =
∫

I
v̇(t)ṽ(t) dt+ v(0+)ṽ(0+) (A.5)

=
r∑

k=1

∫
Ik

v̇(t)ṽ(t) dt+
r−1∑
k=1

(v(t+k ) − v(t−k ))ṽ(t+k ) + v(0+)ṽ(0+) (A.6)
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A.2 Application of mappings

A.2.1 Computing w = Sm(λ, λ̃) or w = Sm(λ) (spatial problem).

First of all, let us note that mapping Sm(λ) associated with the Galerkin PGD
(defined by equation (33)) corresponds to mapping Sm of Minimax Galerkin
PGD (defined by (61a)) for λ̃ = λ, i.e. Sm(λ) ≡ Sm(λ, λ). Let um−1(x, t) =∑m−1

i=1 wi(x)λi(t). For given λ, λ̃ ∈ T , w = Sm(λ, λ̃) is the solution of the
following problem:

Bλ(w,w∗) = Lm
λ (w∗) ∀w∗ ∈ V (A.7)

where Bλ and Lm
λ are bilinear and linear forms on V defined by

Bλ(w,w∗) = B(wλ,w∗λ̃) =
ma∑
i=0

αλ
i ai(w,w∗) (A.8)

Lm
λ (w∗) = L(w∗λ̃) −B(um−1, w

∗λ̃) =
mℓ∑
i=0

γλ
i ℓi(w∗) −

ma∑
i=0

m−1∑
j=1

αλ,j
i ai(wj, w

∗)

(A.9)

where

αλ
0 = (λ̇, λ̃)I , αλ

i = (αiλ, λ̃)I for i = 1 . . .ma, (A.10)
γλ

0 = (γ̇0, λ̃)I = λ̃(0+), γλ
i = (γi, λ̃)I for i = 1 . . .mℓ, (A.11)

αλ,j
0 = (λ̇j, λ̃)I , αλ,j

i = (αiλj, λ̃)I for i = 1 . . .ma, j = 1 . . .m− 1. (A.12)

When using a spatial discretization, problem (A.7) can be rewritten as the
following system of equations: find w ∈ RN such that

(
ma∑
i=0

αλ
i Ai

)
w =

mℓ∑
i=0

γλ
i fi −

ma∑
i=0

m−1∑
j=1

αλ,j
i Aiwj (A.13)

A.2.2 Computing λ = Tm(w, w̃) or λ = Tm(w) (time problem).

First of all, let us note that mapping Tm(w) associated with the Galerkin
PGD (defined by equation (34)) corresponds to mapping Tm(w, w̃) of Minimax
Galerkin PGD (defined by (61b)) for w̃ = w, i.e. Tm(w) ≡ Tm(w,w). Let
um−1(x, t) = ∑

i=1 wi(x)λi(t). For given w, w̃ ∈ V , λ = Tm(w, w̃) is the solution
of the following problem:

Bw(λ, λ∗) = Lm
w (λ∗) ∀λ∗ ∈ T (A.14)
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where Bw and Lm
w are bilinear and linear forms on T defined by

Bw(λ, λ∗) = B(wλ, w̃λ∗) = αw
0 (λ̇, λ∗)I +

ma∑
i=1

(αw
i λ, λ

∗)I (A.15)

Lm
w (λ∗) =L(w̃λ∗) −B(um−1, w̃λ

∗)

=
mℓ∑
i=1

(γw
i , λ

∗)I + γw
0 λ

∗(0+) −
m−1∑
j=1

αw,j
0 (λ̇j, λ

∗)I

−
ma∑
i=1

m−1∑
j=1

(αw,j
i λj, λ

∗)I (A.16)

where

αw
i (t) = αi(t)ai(w, w̃) for i = 0 . . .ma (A.17)
γw

i (t) = γi(t)ℓi(w̃) for i = 0 . . .mℓ (A.18)
αw,j

i = αi(t)ai(wj, w̃) for i = 0 . . .ma, j = 1 . . .m− 1. (A.19)

Problem (A.14) then appears as a time weak formulation of the following
ordinary differential equation: find λ(t) such that

αw
0 λ̇(t) +

(
ma∑
i=1

αw
i (t)

)
λ(t) =

mℓ∑
i=1

γw
i (t) −

m−1∑
j=1

αw,j
0 λ̇j(t) −

ma∑
i=1

m−1∑
j=1

αw,j
i (t)λj(t)

(A.20)

αw
0 λ(0) = γw

0 −
m−1∑
j=1

αw,j
0 λj(0) (A.21)

The initial condition writes m(wλ(0), w̃) = m(u0 − ∑m−1
j=1 wjλj(0), w̃), and

corresponds to a weak imposition of the initial condition um−1(0)+wλ(0) = u0,
which is projected on w̃ with respect to inner product m(·, ·).

A.2.3 Computing w̃ = S̃(w;λ, λ̃) (adjoint spatial problem).

For given w ∈ V and given λ, λ̃ ∈ T , w̃ = S̃(w;λ, λ̃) is the solution of the
following problem:

Bλ(w∗, w̃) = L̃λ,w(w∗) ∀w∗ ∈ V (A.22)

where Bλ and L̃λ,w are bilinear and linear forms on V . Bλ is defined by equation
(A.8) and L̃λ,w is defined by

L̃λ,w(w∗) =< w∗, < λ, λ >T w >V (A.23)

Remark 26 Let us note that for given λ, λ̃ ∈ T , bilinear form Bλ is the
same as bilinear form of problem w = Sm(λ, λ̃). Then, after the computation
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of w = Sm(λ, λ̃), the bilinear form Bλ can be directly reused (without additional
computational efforts) for the solution of w̃ = S̃(w;λ, λ̃).

When using a spatial discretization, problem (A.22) can be rewritten as the
following system of equations: find w̃ ∈ RN such that

(
ma∑
i=0

αλ
i AT

i

)
w̃ =< λ, λ >T MVw (A.24)

where MV ∈ RN×N is the matrix associated with inner product < ·, · >V on
VN .

A.2.4 Computing λ̃ = T̃ (λ;w, w̃) (adjoint time problem).

For a given λ ∈ T and given w, w̃ ∈ V , λ̃ = T̃ (λ;w, w̃) is the solution of the
following problem:

Bw(λ∗, λ̃) = L̃w,λ(λ∗) ∀λ∗ ∈ T (A.25)

where Bw and L̃w,λ are bilinear and linear forms on T . Bw is defined by
equation (A.15) and L̃w,λ is defined by

L̃w,λ(λ∗) =< λ∗, < w,w >V λ >T (A.26)

Remark 27 Let us note that for given w, w̃ ∈ V, bilinear form Bw is the same
as bilinear form of problem λ = Tm(w, w̃). Then, after the computation of
λ = Tm(w, w̃), the bilinear form Bw can be directly reused (without additional
computational efforts) for the solution of λ̃ = T̃ (λ;w, w̃).

Let λ̄ ∈ T be defined by (λ∗, λ̄)I =< λ∗, λ >T ∀λ∗ ∈ T (for < ·, · >T =
(·, ·)I , we simply have λ̄ = λ). Then, problem (A.25) appears as a time weak
formulation of the following ordinary differential equation (backward in time):
find λ̃(t) such that

− αw
0

˙̃λ(t) +
(

ma∑
i=1

αw
i (t)

)
λ̃(t) =< w,w >V λ̄(t) (A.27)

αw
0 λ̃(T ) = 0 (A.28)

Let us note that in equation (A.25), the final condition is taken into account in
a weak sense. In practice, when using time discontinuous Galerkin approxima-
tion, this problem is solved by using a backward in time incremental scheme.
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A.2.5 Computing Λm = T (Wm, W̃m) or Λm = T (Wm) (time problem).

First of all, let us note that mapping T (·) associated with the Galerkin PGD
(defined by equation (48)) corresponds to mapping T (Wm, W̃m) of Minimax
Galerkin PGD for W̃m = Wm, i.e. T (Wm) ≡ T (Wm,Wm). For given Wm, W̃m ∈
(V)m, Λm = T (Wm, W̃m) is the solution of the following problem:

BW (Λm,Λ∗
m) = LW (Λ∗

m) ∀Λ∗
m ∈ (T )m (A.29)

where BW and LW are bilinear and linear forms on (T )m defined by

BW (Λm,Λ∗
m) =

m∑
i,j=1

B(λiwi, λ
∗
j w̃j) =

m∑
i,j=1

αw,i,j
0 (λ̇i, λ

∗
j)I +

m∑
i,j=1

ma∑
l=1

(αw,i,j
l λi, λ

∗
j)I

(A.30)

LW (Λ∗
m) =

m∑
j=1

L(λ∗
j w̃j) =

m∑
j=1

mℓ∑
l=1

(γw,j
l , λ∗

j)I +
m∑

j=1
γw,j

0 λ∗
j(0+) (A.31)

where

αw,i,j
l (t) = αl(t)al(wi, w̃j) for l = 0 . . .ma (A.32)
γw,j

l (t) = γl(t)ℓl(w̃j) for l = 0 . . .mℓ (A.33)

Problem (A.29) appears as a time weak formulation of the following set of
ordinary differential equations: find Λm(t) = (λi(t))m

i=1 ∈ (T )m such that for
j = 1 . . .m,

m∑
i=1

αw,i,j
0 λ̇i(t) +

m∑
i=1

(
ma∑
l=1

αw,i,j
l (t)

)
λi(t) =

mℓ∑
l=1

γw,j
l (t) (A.34)

m∑
i=1

αw,i,j
0 λi(0) = γw,j

0 (A.35)

The initial condition writes m(∑m
i=1 wiλi(0), w̃j) = m(u0, w̃j), and corresponds

to a weak imposition of the initial condition um(0) = u0, which is projected
on span(W̃m) with respect to inner product m(·, ·).

B Algebraic formulation of Proper Generalized Decomposition al-
gorithms

In this appendix, we describe the computational aspects of PGD from an fully
algebraic point of view, after the introduction of space and time discretizations.
The notations of appendix A are used.
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B.1 Preliminaries

A time function λ ∈ TP is identified with a vector λ = (λ1, . . . , λP ) ∈ RP such
that λ(t) = ∑P

i=1 ψi(t)λi, where TP = span{ψi}P
i=1. For all (λ, λ̃) ∈ TP × TP ≃

(λ, λ̃) ∈ RP × RP , time derivatives and integrals are interpreted in algebraic
terms in the following way:

(λ̇, λ̃)I = λ̃
T Dτ λ, (λ, λ̃)I = λ̃

T Mτ λ (B.1)
(αlλ, λ̃) = λ̃

T Aτ,lλ for l = 1 . . .ma (B.2)
(γl, λ̃)I = λ̃

T fτ,l for l = 1 . . .mℓ (B.3)
(B.4)

where matrices Dτ , Mτ , Aτ,l ∈ RP ×P and vectors fτ,l ∈ RP are defined by

(Dτ )ij = (ψ̇j, ψi)I , (Mτ )ij = (ψj, ψi)I , (B.5)
(Aτ,l)ij = (αlψj, ψi)I for l = 1 . . .ma, (B.6)
(fτ,l)i = (γl, ψi)I for l = 1 . . .mℓ (B.7)

For the Minimax PGD, we introduce an inner product ≪ ·, · ≫ on V ⊗ T
whose restriction on VN ⊗ TP can be represented by matrices MV ∈ RN×N

and MT ∈ RP ×P : for (w, w̃) ∈ VN × VN ≃ (w, w̃) ∈ RN × RN and (λ, λ̃) ∈
TP × TP ≃ (λ, λ̃) ∈ RP × RP ,

≪ wλ, w̃λ̃ ≫=< w, w̃ >V< λ, λ̃ >T = (w̃T MVw)(λ̃T MT λ) (B.8)

B.2 Algebraic reformulation in tensor product spaces

The fully discretized problem writes: find u ∈ RN ⊗ RP such that(
M ⊗ Dτ +

ma∑
l=1

Al ⊗ Aτ,l

)
· u =

mℓ∑
l=0

fl ⊗ fτ,l (B.9)

where f0 ⊗ fτ,0 takes into account the initial condition, with f0 = Mu0 and
fτ,0 ∈ RP such that ∀λ̃ ∈ TP , λ̃

T fτ,0 = (γ̇0, λ̃)I = λ̃(0+) (we recall that
γ0 = 1). For simplification, we let A0 = M and Aτ,0 = Dτ . The tensor
product approximation of order m writes:

um =
m∑

i=1
wi ⊗ λi, wi ∈ RN , λi ∈ RP

Remark 28 For the PGD based on a minimal residual formulation, we start
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with the following equation, instead of (B.9):
(

ma∑
l=0

ma∑
l′=0

(AT
l Al′) ⊗ (AT

τ,lAτ,l′)
)

· u =
ma∑
l=0

mℓ∑
l′=0

(AT
l fl′) ⊗ (AT

τ,lfτ,l′) (B.10)

B.3 Application of mappings

B.3.1 Computing w = Sm(λ, λ̃) or w = Sm(λ) ≡ Sm(λ, λ).

For given λ, λ̃ ∈ TP , computing w = Sm(λ, λ̃) ≃ w ∈ RN requires the solution
of the following system of equations:

(
ma∑
l=0

(λ̃T Aτ,lλ)Al

)
w =

mℓ∑
l=0

(λ̃T fτ,l)fl −
m−1∑
i=1

ma∑
l=0

(λ̃T Aτ,lλi)Alwi (B.11)

B.3.2 Computing λ = Tm(w, w̃) or λ = Tm(w) ≡ Tm(w,w).

For given w, w̃ ∈ VN , computing λ = Tm(w, w̃) ≃ λ ∈ RP requires the solution
of the following system of equations:

(
ma∑
l=0

(w̃T Alw)Aτ,l

)
λ =

mℓ∑
l=0

(w̃T fl)fτ,l −
m−1∑
i=1

ma∑
l=0

(w̃T Alwi)Aτ,lλi (B.12)

B.3.3 Computing w̃ = S̃(w;λ, λ̃).

For a given w ∈ VN and given λ, λ̃ ∈ TP , computing w̃ = S̃(w;λ, λ̃) ≃ w̃ ∈ RN

requires the solution of the following system of equations:
(

ma∑
l=0

(λ̃T Aτ,lλ)AT
l

)
w̃ = (λT MT λ)MVw (B.13)

B.3.4 Computing λ̃ = T̃ (λ̃;w, w̃).

For a given λ ∈ TP and given w, w̃ ∈ VN , computing λ̃ = T̃ (λ;w, w̃) ≃ λ̃ ∈ RP

requires the solution of the following system of equations:
(

ma∑
l=0

(w̃T Alw)AT
τ,l

)
λ̃ = (wT MVw)MT λ (B.14)
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B.3.5 Computing Λm = T (Wm, W̃m) or Λm = T (Wm) ≡ T (Wm,Wm).

For given Wm, W̃m ∈ (V)m, identified with matrices W,W̃ ∈ RN×m, Λm =
T (Wm, W̃m) ≃ Λ ∈ Rm ⊗ RP is the solution of the following problem:(

ma∑
l=0

(W̃T AlW) ⊗ Aτ,l

)
· Λ =

mℓ∑
l=0

(W̃T fl) ⊗ fτ,l (B.15)
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