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RESOLVENT OF THE LAPLACIAN

ON GEOMETRICALLY FINITE HYPERBOLIC MANIFOLDS

COLIN GUILLARMOU AND RAFE MAZZEO

Abstract. For geometrically finite hyperbolic manifolds Γ\Hn+1, we prove the mero-
morphic extension of the resolvent of Laplacian, Poincaré series, Einsenstein series and
scattering operator to the whole complex plane. We also deduce the asymptotics of
lattice points of Γ in large balls of Hn+1 in terms of the Hausdorff dimension of the
limit set of Γ.

1. Introduction

Analysis of the Laplace operator on (n + 1)-dimensional hyperbolic manifolds which
satisfy a geometric finiteness condition commenced in earnest in the early 1980’s, inspired
by numerous results in the finite volume setting, as well as some extensions of this, by
Roelcke and Patterson, to infinite area geometrically finite surfaces. The paper of Lax
and Phillips [20], see also [21], shows that the spectrum of the Laplacian on such spaces is
equal to [n2/4,∞) ∪ S where S ⊂ (0, n2/4) is a finite set of L2-eigenvalues, each of finite
multiplicity, and also that the essential spectrum is entirely absolutely continuous. One
important geometric motivation in their work was to deduce sharp asymptotics of the
lattice point counting function for a geometrically finite group of isometries Γ of Hn+1,
under certain assumptions on the dimension of the limit set of Γ. This was followed by
an extensive development by many authors concerning the special class of geometrically
finite quotients which are convex cocompact, i.e. where Γ has no parabolic elements.
In particular, the second author and Melrose [24] proved in the more general setting of
asymptotically hyperbolic metrics that the resolvent RX(s) = (∆X − s(n − s))−1 has
a meromorphic continuation with poles of finite rank in s ∈ C \ {n

2 − 1
2N}. Actually,

that paper claimed erroneously that the continuation is meromorphic in all of C. This
was rectified by the first author [10], who proved that the metric must have an even
Taylor expansion at the boundary (in a suitable sense) in order for the resolvent to be
meromorphic with finite rank poles also near n

2− 1
2N. Very recently, Vasy [38] found a new

proof of this meromorphic extension for asymptotically hyperbolic metrics which satisfy
the same evenness condition; in particular, he obtains high frequency (semi-classical)
estimates for RX(s) in the non-trapping case. Guillopé and Zworski [18] gave a simpler
proof of the main result of [24] assuming that the curvature is constant near infinity.
Their technique is reviewed below. This extension of RX(s) was a main step in the
development of scattering theory on these spaces, which is an important area in its own
right, but also a means to prove various trace formulæ, and a fundamental tool to analyze
divisors of Selberg zeta function ZX(s) and lengths of closed geodesics on X. Analysis of
these divisors for convex cocompact hyperbolic manifolds was carried out in great detail
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2 COLIN GUILLARMOU AND RAFE MAZZEO

by Patterson-Perry [30] and Bunke-Olbrich [6]; in this setting, a trace formula relating
poles of the resolvent (called resonances) and lengths of closed geodesics is also known
[32, 13], a sharp asymptotic with remainder for the counting function for lengths of closed
geodesics is given in [13] (earlier versions without estimates on the remainder appear in
[22, 27, 15, 19, 31]), and estimates on the distributions of resonances in C are proved in
[18, 32, 2].

The two-dimensional case is special because the geometry is much simpler, and all of
these results for geometrically finite surfaces are essentially contained in the work of Guil-
lopé-Zworski [17] and Borthwick-Judge-Perry [4]; the book by Borthwick [3] contains a
unified treatment of this material. In higher dimension, the geometry of nonmaximal rank
cusps is more complicated, as we explain below, and this makes the analysis substantially
more delicate. The first work in this generality was by the second author and Phillips
[25], where the spaces of L2 harmonic differential forms were studied and interpreted in
topological terms. Subsequently, Froese-Hislop-Perry [8] proved the existence of a mero-
morphic extension to s ∈ C of the scattering operator and resolvent for geometrically
finite hyperbolic 3-dimensional manifolds, and recently the first author [11] extended this
to higher dimensions when the cusps are ‘rational’ (see below) and gave a bound on the
counting function for resonances. The case left open is when there are nonmaximal rank
cusps with irrational holonomy (this never happens in three dimensions). By contrast
with these analytic approaches, Bunke and Olbrich [7] developed representation theoretic
methods to study the scattering operator in the general geometrically finite setting and
proved its meromorphic extension to C; they do not study the resolvent. Their paper is a
revision of an older treatment they gave of this subject, but contains a substantially new
exposition; their approach is quite technical and may be inaccessible for those without
the representation theory background. In any case, their techniques are of a completely
different nature to ours and it is not simple to even compare the results.

We consider here a general geometrically finite hyperbolic manifold X := Γ\Hn+1 and
give a rather short proof of the meromorphic extension of the resolvent of the Laplacian
∆X to s ∈ C, as well as applications to scattering theory and distributions of lattice
points in H

n+1 in the spirit of Lax-Phillips.

Theorem 1.1. Let X = Γ\Hn+1 be a geometrically finite hyperbolic manifold and ∆X its
Laplacian. Then the resolvent RX(s) := (∆X −s(n−s))−1, defined initially as a bounded
operator on L2(X) for {Re(s) > n/2, s(n − s) /∈ S}, extends to a family of continuous
mappings C∞

0 (X) → C∞(X) which depends meromorphically on s ∈ C, with poles of finite
rank. In addition, RX(s) is bounded on appropriate weighted Sobolev spaces (see Theorem
6.1 for a precise statement).

We also describe fine mapping properties of RX(s) in Re(s) ≥ n/2 (i.e. on the contin-
uous spectrum), which implies a limiting absorption principle in this setting.

1.1. An outline of the proof. The proof relies as usual on a parametrix construction.
It is enough to construct local parametrices with this continuation property near every
point of the conformal boundary at infinity (i.e. Γ\ΩΓ where ΩΓ ⊂ Sn = ∂Hn+1 is the
domain of discontinuity of Γ); this is now standard at all but the ‘cusp points’, and hence
one of the main steps is to prove this continuation when Γ = Γp is a parabolic group
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of nonmaximal rank k < n, which fixes a single point p on Sn = ∂Hn+1. Such a group
contains a maximal abelian subgroup of finite index, so we can reduce to the case where
Γp is abelian. Taking p = ∞ in the upper half-space model, we decompose the model
cusp Xc := Γ∞\Hn+1 as Xc = (0,∞)x × F , where F = Γ∞\Rn is a flat bundle and Γ∞

acts as a discrete group of Euclidean isometries on each horosphere {x = const} ≃ R
n.

In this decomposition, the Laplacian has the form

∆Xc = −(x∂x)
2 + x2∆F +

n2

4
on L2

(
R
+
x ,
dx

x
;L2(F )

)

where ∆F is the flat Laplacian on the flat bundle F . Next, by spectral decomposition we
can reduce ∆F to a parameter, and hence regard ∆Xc as a 2nd order Bessel-type ordinary
differential operator on the half-line (0,∞)x, depending on this parameter. It is standard
to write down an explicit formula for its resolvent kernel RXc(s;x

√
∆F , x

′
√
∆F ) (using

homogeneous solutions of this ODE, which are modified Bessel functions). We define a
functional calculus for ∆F using a rather explicit spectral decomposition of the Laplacian
∆F on the flat bundle; more precisely, we show that it decomposes as a countable direct
sum ∆F =

⊕
I∈I∆I of operators

∆I = −∂2r −
n− k − 1

r
∂r +

m(m+ n− k − 2)

r2
+ b2I on L2(R+

r , r
n−k−1dr)

for some bI ≥ 0, where I = (m, p, v) with m ∈ N0, p ∈ N and v lies in the rank k lattice
Λ∗ dual to the translation part of Γ∞. Such an operator can be recognized as the flat
Laplacian on R

n−k acting on m-th sperical harmonics, but shifted with the constant b2I ,
its spectrum is [b2I ,∞) and is absolutely continuous. The number bI are quite explicit
and behave quite differently if there is an element γ ∈ Γ∞ which is irrational in the
sense that no power of γ is a pure translation on the horospheres, or equivalently, the flat
bundle F has holonomy representation in O(n− k) with infinite image. In the irrational
case, the set {bI}I accumulates at 0. The resolvent kernel RXc(s, x

√
∆F , x

′
√
∆F ) involves

complex powers ∆s
F as the ‘parameter’ ∆F approaches 0. The fact that the spectra of

the ∆I are not bounded away from zero creates fundamentally new complications, which
are the root of the technical difficulties here, and is the reason that the spectral analysis
in this general setting has not been treated analytically before. The difficulty is at low
frequencies in ∆F , and a key observation is that the spectral measure dEI(t) of ∆I − b2I
vanishes approximately like t2m as tց 0. Finally, we use a parametrix construction as in
Guillopé-Zworski [18] to use this resolvent on the model cusp Xc to study the resolvent
on an arbitrarily geometrically finite hyperbolic manifold.

Our method is quite robust: combining the construction here with the parametrices
constructed in [24], it is possible to prove the same result for asymptotically hyperbolic
manifolds (with non-constant curvature) with certain neighbourhoods of infinity isomet-
ric to one of these constant curvature cusps Xc (see Remark 6.2), and with asymptotic
geometry at all other points at infinity ‘conformally compact’; by more classical methods
still, we may also allow maximal rank cusps. In the interests of keeping the presentation
simple and short, we omit any further discussion of these generalizations. The spectral de-
composition for noncompact flat manifolds developed here does not seem to appear in the
literature; our treatment of the general case was inspired by Gilles Carron’s explanation
of the three-dimensional case.
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1.2. Applications. One corollary concerns the Poincaré series and lattice point counting
function for the group Γ. Recall that, given Γ, there exists a number δ = δ(Γ) ∈ (0, n),
called the Poincaré exponent of Γ, such that for any m,m′ ∈ H

n+1, the Poincaré series

Ps(m,m
′) :=

∑

γ∈Γ

e−sd(m,γm′)

(where d(·, ·) = dHn+1(·, ·) is distance in H
n+1) converges for Re(s) > δ; by a famous

result of Patterson [28] and Sullivan [37], this δ is precisely the Hausdorff dimension of
the limit set ΛΓ of Γ.

Corollary 1.2. Let X = Γ\Hn+1 be a geometrically finite hyperbolic manifold, m,m′ ∈
H

n+1 and Ps(m,m
′) the corresponding Poincaré series. Then Ps(m,m

′) extends mero-
morphically from {Re(s) > δ} to s ∈ C and there are constants c, c′ > 0 depending only
on Γ such that as R→ ∞,

(1.1) ♯{γ ∈ Γ; d(m,γm′) ≤ R} ∼ c eδRF (m)F (m′).

Here 0 < F ∈ C∞(Hn+1) is the Γ-automorphic function given in terms of the Poisson
kernel P (m, ζ) and the Patterson-Sullivan probability measure µδ supported on ΛΓ by
F (m) = c′

∫
Sn P (m, ζ)

δdµδ(ζ), and F satisfies Ress=δRX(s) = F ⊗ F ;

This result was known when δ > n/2 by the work of Lax-Phillips [20] (with exponential
error terms), and in the convex cocompact case by Patterson [29] without any condition on
δ. Using Patterson-Sullivan theory, Roblin [34] obtained the asymptotics (1.1) of lattice
points under weaker assumptions than ours, but he does not prove the continuation of
the Poincaré series and his techniques are significantly different. In order to obtain error
terms in (1.1) when δ < n/2, it is necessary to prove that there is a strip in C which is
free of resonances, but currently this is only known in the convex cocompact case [26, 36].

In the final section, we define the Eisenstein series and scattering operator SX(s),
which describe the asymptotic behaviour of generalized eigenfunctions of ∆X near infinity,
and prove their meromorphic continuation to s ∈ C. We also establish several typical
functional equations for these operators and prove that SX(s) is a pseudodifferential
operator acting on the manifold B := Γ\ΩΓ, where ΩΓ := Sn\ΛΓ ⊂ Sn is the domain of
discontinuity of Γ. Thus B is the ‘boundary at infinity’ of X, and is the natural ‘locus’
of scattering. For convex cocompact quotients, B is compact (and the fact that SX is
pseudodifferential is well known), but in the geometrically finite case, B is noncompact
with finitely many ends, each of which corresponds to a cusp of X and is identified with
(the end of) a flat vector bundle over a compact flat manifold. We show that SX(s) is
equal to the sum of the complex power ∆s

B of the Laplacian ∆B and a residual term.
We do not estimate the growth of the counting function of resonances here, but it is

certainly possible to do this using our construction; this will be carried out elsewhere. It
is likely that some Diophantine condition on the irrational elements of Γ may be needed to
show that this counting function has polynomial growth. All this should be a fundamental
step towards proving a Selberg trace formula and the extension of Selberg zeta function
for general geometrically finite groups, and would also have applications to the study of
the length distribution of geodesics.
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1.3. Organization of the paper. We first review the geometry of geometrically finite
hyperbolic quotients, following Bowditch [5], and then recall the parametrix construction
of Guillopé-Zworski [18] for the resolvent when there are no cusps. In §4 we develop
the spectral decomposition of the flat bundle Γ∞ \ Rn, and then use this in §5 to prove
the meromorphic continuation of the resolvent on the model non-maximal rank cusp
Xc = Γ∞\Hn+1. §6 contains our main result, while in §7 we give the finer descriptions of
the resolvent kernel close to the critical line Re(s) = n/2 by using summation over the
group and then prove the meromorphic continuation of Poincaré series and its application
to lattice points counting in Corollary 1.2. In the final section, we consider the scattering
operator and study the Eisenstein series (or Poisson operator).

2. Geometry of geometrically finite hyperbolic manifolds

We view hyperbolic (n+1)-space Hn+1 either as the half-space R+
x ×R

n
y or as the open

unit ball Bn+1 ⊂ R
n+1; its natural smooth compactification H

n+1
= B

n+1
is obtained by

gluing on the unit sphere Sn ⊂ R
n+1. Let Γ be a discrete torsion-free group of isometries

of Hn+1, X := Γ\Hn+1 is a smooth manifold. Note that the action of Γ extends to H
n+1

,
but any element always has fixed points on the boundary at infinity Sn. Ifm ∈ H

n+1, then

the set of accumulation points of the orbit Γ ·m in H
n+1

is a closed subset ΛΓ ⊂ Sn called
the limit set of Γ. Its complement ΩΓ := Sn \ ΛΓ is called the domain of discontinuity,
and Γ acts properly discontinuously in ΩΓ, with quotient B = Γ\ΩΓ.

We now specialize to the setting where Γ is geometrically finite; good references for
this include Bowditch [5] and the monograph by Ratcliffe [33, Chap. 12].

Since Γ\{Id} has no fixed points in H
n+1, any γ ∈ Γ has either one or two fixed points

on Sn; in the former case it is called parabolic, and in the latter, hyperbolic (or sometimes
also loxodromic). In either case, the fixed point set of any γ ∈ Γ lies in ΛΓ. If p is the
fixed point of a parabolic element, then the subgroup Γp ⊂ Γ stabilizing p contains only
parabolic elements, and is called an elementary parabolic group. Conjugating by a suitable
isometry, we may assume that p = ∞ in the upper half-space model. Then, viewing H

n+1

as the half plane R+×R
n with x > 0 the vertical variable, Γ∞ acts isometrically on each

horosphere Ea := {x = a} ≃ R
n with the induced Euclidean metric. It was proved by

Bieberbach, see [5, Sec. 2.2] and [25, Sec. 2], that there is a maximal normal abelian
subgroup Γ′

∞ ⊂ Γ∞ of finite index and an affine suspace Z ⊂ E1 of dimension k, invariant
under Γ∞, such that Γ′

∞ acts as a group of translations of rank k on Z, so that the quotient
T ′ := Γ′

∞\Z is a k-dimensional flat torus. If E1 = Z×Y is an orthogonal decomposition,
with Y ≃ R

n−k and associated coordinates (z, y), then each γ ∈ Γ∞ acts by

γ(x, y, z) = (x,Aγy,Rγz + bγ), bγ ∈ R
k, Rγ ∈ O(n− k), Aγ ∈ O(k),

where for each γ, Rm
γ = Id for some m ∈ N, with m = 1 if γ ∈ Γ′

∞. If there exists

m ∈ N such that γm(x, y, z) = (x, y, z + cγ) for some cγ ∈ R
k, then γ is called rational,

which is equivalent to saying that Rm
γ = Id and Am

γ = Id for some m ∈ N. Otherwise γ is

called irrational. The quotients Γ′
∞\Hn+1 and Γ∞\Hn+1 are both of the form R

+
x ×F and

R
+
x ×F ′ for some flat bundles F → T and F ′ → T ′, where the bases T and T ′ are compact

flat manifolds; here F = Γ∞\E1, F
′ = Γ′

∞\E1 and T = Γ∞\Z. The hyperbolic metric
on H

n+1 descends to a hyperbolic metric gX = (dx2 + gF )/x
2 where gF is a flat metric



6 COLIN GUILLARMOU AND RAFE MAZZEO

on the bundle F induced from the restriction of the hyperbolic metric to the horosphere
{x = 1}.

Using the splitting H
n+1 = R

+ × Z × Y , define

C∞(R) := {(x, z, y) ∈ [0,∞) × Z × Y ;x2 + |y|2 ≥ R} ⊂ H
n+1

;

this is invariant under Γ∞ and is hyperbolically convex. It is called a standard parabolic
region for Γ∞. Similarly, define Cp(R) for any other parabolic fixed point p.

For any parabolic fixed point p, there exists an R > 0 so that the parabolic region
Cp(R) satisfies

Cp(R) ⊂ H
n+1 ∪ ΩΓ, and γCp(R) ∩Cp(R) = ∅ for all γ ∈ Γ \ Γp.

These conditions imply that Cp(R) descends to a set Cp := Γ\(∪γ∈Γγ(Cp(R))). This is
contained in Γ\(Hn+1 ∪ΩΓ) and has interior isometric to the interior of Γ∞\CP (R). The
set Cp is called a standard cusp region associated to (the orbit of) p. The rank of the cusp
is the rank of Γ′

∞.
A geometrically finite hyperbolic quotient is a quotient Γ\Hn+1 by a discrete group

Γ such that Γ\(Hn+1 ∪ ΩΓ) has a decomposition into the union of a compact set K
and a finite number of standard cusp regions. This is more general than requiring that
there exist a convex finite-sided fundamental domain of Γ, although these conditions are
equivalent when n ≤ 3 or if all γ ∈ Γ are rational (see Prop.5.6 and 5.7 in [5]). When
Γ has no elliptic or parabolic elements, then both Γ and the quotient Γ\Hn+1 are called
convex co-compact, and the quotient manifold has no cusp then.

In general, X = Γ\Hn+1 with hyperbolic metric g is a complete noncompact hyperbolic
manifold with nc cusps, where nc is the number of Γ-orbits of fixed points of the parabolic
elements of Γ. The conjugacy class of the parabolic subgroup fixing the jth cusp point is
denoted Γj. By geometric finiteness, X has finitely many ends and there exist a covering
of the ends of X of the form {Ur

j}j∈Jr ∪ {Uc
j}j∈Jc , |Jc| = nc, so that X minus the union

of all these sets is compact, each Ur
j is isometric to a half-ball in H

n+1, and each Uc
j is

isometric to a cusp region Γj\C∞(Rj). We also assume that the Uc
j are disjoint; they are

called cusp neighbourhoods; the Ur
j are called regular neighbourhoods.

We also consider the smooth manifold with boundary X := Γ\(Hn+1 ∪ ΩΓ), which is
noncompact, with finitely many ends, if nc > 0. There is a compactification of X as
a smooth compact manifold with corners, see [25], but we do not need this here. The
boundary ∂X = Γ\ΩΓ is also a noncompact manifold with nc ends; if we denote by x
a boundary defining function of ∂X in X which extends the function x defined in each
Uc
j (as transferred to X via the appropriate isometry), then g∂X := (x2gX)|T∂X defines a

complete metric on ∂X which is flat outside a compact set. Indeed, writing the hyperbolic
metric g in Uc

j as x
−2(dx2+ gFj ), then near the cusp point pj , g∂X is the metric naturally

induced from gFj at x = 0. There is an associated volume form dv∂X . (Note, however,
that this metric is only well-defined up to a positive smooth multiple away from the ends,
and up to a constant multiple in the ends; this does not make any difference for us.)

We conclude this section with the description of several different function spaces which
appear frequently below.
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The first is the standard space C∞
0 (X) of smooth functions compactly supported in

the interior X of X . We also consider C∞
0 (X), which by definition consists of smooth

functions on X with compact support in the (non-compact) manifold X, so in particular
the intersection of the support of such a φ with any Uc

j lies in {x2 + |y|2 ≤ R} for some

R > Rj > 0. The functions in C∞
0 (X) which vanish to infinite order at the boundary ∂X

constitute the space Ċ∞
0 (X).

We next define the L2-based Sobolev spaces on ∂X with respect to the metric g∂X :

HM(∂X) := {f ∈ L2(∂X, dv∂X);∇ℓ
∂X
f ∈ L2(∂X, dv∂X), ∀ℓ ≤M},

and their intersection H∞(∂X) = ∩M≥0H
M (∂X). We also define

H∞(X) := {f ∈ C
∞(X); f |Uc

j
∈ C

∞
b ([0,∞)x,H

∞(Fj)) for all j ∈ Jc},

where we regard each Uc
j as lying in [0,∞)x × Fj ≃ Γj\Hn+1, and where for any Frechet

space E, C∞
b ([0,∞), E) denotes the set of smooth E-valued functions f with all deriva-

tives ∂ℓxf bounded uniformly in x with respect to each semi-norm of E. In particular,
restrictions of functions in this space to ∂X belong to H∞(∂X). Finally we define

Ḣ∞(X) := {f ∈ H∞(X); f = O(x∞) as x→ 0 and f = O(x−∞) as x→ ∞}.

3. The resolvent when Γ\Hn+1 has no cusps

Since our main construction below uses the arguments of Guillopé-Zworski [18] (which
they developed for the case with no cusps), we recall their method now. The construction
is based on two things: the resolvent on H

n+1 and the indicial equation for the Laplacian
near the boundary at infinity.

3.1. Model resolvent. The kernel of the resolvent RHn+1(s) = (∆Hn+1 − s(n− s))−1 of
∆Hn+1 is a function of the distance d(·, ·) on H

n+1 given by [18, Sec 2]

RHn+1(s;m,m′) =
π−

n
2 2−2s−1Γ(s)

Γ(s− n
2 + 1)

cosh−2s
(d(m,m′)

2

)

× F
(
s, s− n

2
+

1

2
, 2s − n+ 1; cosh−2

(d(m,m′)

2

))

where F (a, b, c;u) = 1 + a.b
1.cu+

a(a+1).b(b+1)
1.2.c(c+1) u2 + . . . is the hypergeometric function. This

is holomorphic in s ∈ C when n is even and meromorphic with poles at s ∈ −N0 if n is
odd, and the residues are finite rank operators [18, Lemma 2.2]. There is an equivalent
formula in terms of τ(m,m′) := 1/ cosh(d(m,m′)), see [18, Lemma 2.1]:

(3.1) RHn+1(s;m,m′) =
τ s(m,m′)

π
n
2 2s+1

∞∑

j=0

Γ(s+ 2j)

Γ(s− n
2 + 1 + j)Γ(j + 1)

(2τ(m,m′))2j ;

in the half-space model R+
x ×R

n
y , τ(x, y, x

′, y′) = 2xx′

|y−y′|2+x2+(x′)2 . For all ǫ > 0, this series

converges uniformly in τ ≤ 1− ǫ. Define

(3.2) B := {(x, y) ∈ (0, 1)×R
n;x2+|y|2 < 1}, B := {(x, y) ∈ [0, 1)×R

n;x2+|y|2 < 1},
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viewed as subsets of Hn+1, and its compactification H
n+1

. Let χ ∈ C∞(B), then by (3.1)

(3.3) χ(m)RHn+1(s;m,m′)χ(m′) ∈ (xx′)sC∞(B ×B \ diag)
where diag denotes the diagonal.

Lemma 3.1. Let χ ∈ C∞(B) with compact support in B, let s ∈ C and let Ks be an
operator in B with Schwartz kernel in xNx′sC∞(B×B) for all N ∈ N, and with compact
support in B × B. Then χRHn+1(s)χKs is an operator in B with Schwartz kernel in
(xx′)sC∞(B ×B).

The proof follows by combining the composition result [23, Theo. 3.18] and the descrip-
tion in [24, Prop. 6.2] of the kernel RHn+1(s;m,m′) near the diagonal of the boundary

Sn = ∂H
n+1

.

3.2. Indicial equation for the Laplacian. The Laplacian in the half-space model
R
+
x × R

n
y of Hn+1 is given by

∆Hn+1 = −(x∂x)
2 + nx∂x + x2∆y;

from this one calculates that if F ∈ C∞([0, 1] × R
n), ℓ ∈ N0, then

(3.4) (∆Hn+1 − s(n− s))
xs+2ℓF (x2, y)

2ℓ(n − 2s− 2ℓ)
= xs+2ℓ(F (x2, y) + x2Hs,ℓ(x

2, y)),

whereHs,ℓ ∈ C∞([0, 1]×R
n) depends meromorphically on s and has a single (simple) pole

at n/2− ℓ. Using (3.4) inductively, we see that for each F ∈ C∞([0, 1]×R
n) and N ∈ N0,

there exists Gs,N , Ls,N ∈ C∞([0, 1] × R
n) with Γ(s−n/2+1+N)

Γ(s−n/2+1) Gs,N and Γ(s−n/2+1+N)
Γ(s−n/2+1) Ls,N

holomorphic in s, and such that

(∆Hn+1 − s(n− s))xs+2Gs,N (x2, y) = xs+2F (x2, y) + xs+2+2NLs,N (x2, y).

Using Borel summation, there exist Gs, Ls ∈ C∞([0, 1]×R
n) with Gs/Γ(s−n/2+1) and

Ls/Γ(s − n/2 + 1) holomorphic in s, such that

(∆Hn+1 − s(n− s))xs+2Gs(x
2, y) = xs+2F (x2, y) + Ls(x

2, y)

and Ls(x
2, y) = O(x∞) at x = 0.

3.3. The parametrix construction of Guillopé-Zworski. Now, letX = Γ\Hn+1 be a
convex cocompact hyperbolic manifold. The smooth compactification X = Γ\(Hn+1∪ΩΓ)
is a compact manifold with boundary. Choose a smooth boundary defining function ρ
for ∂X in X. There is a finite open cover {Uj} of X such that X \ ∪jUj is compact in
X and each Uj is identified by an isometry ιj to the half-ball B ⊂ H

n+1 with hyperbolic
metric x−2(dx2 + |dy|2). The sets Uj cover a neighbourhood of the boundary at infinity

∂X and ι∗jx/ρ in Uj is a smooth strictly positive function. Using pull-back by ιj, we
can systematically identify operators on Uj with their counterparts on B. In particular,
denote by Rj(s) the operator obtained in this way from the restriction to B of the

meromorphically extended resolvent RHn+1(s;m,m′). Fix χj , χ̂j ∈ C∞(X) with χ :=∑ℓ
j=1 χj equal to 1 near ∂X , χ̂j supported in Uj and χ̂j = 1 on the support of χj. We

also assume that each χ̂j is smooth as a function of x2 in B.
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Define the initial parametrix Q0(s) :=
∑ℓ

j=1 χ̂jRj(s)χj. This satisfies

(∆X − s(n− s))Q0(s) = χ+K0(s), K0(s) :=

ℓ∑

j=1

[∆X , χ̂j]Rj(s)χj .

The expression (3.1) can be used to deduce that, as a Schwartz kernel on Uj×Uj (identified
with B ×B),

[∆X , χ̂j ]Rj(s)χj(x, y, x
′, y′) = xs+2x′

s
G(s;x, y, x′, y′)

for some function G(s;m,m′) which is smooth in (m,m′) ∈ B2 and meromorphic in s with
poles of finite rank at −N0 if n is odd and no poles if n is even. Moreover, G(s;x, y, x′, y′)
is a smooth function of (x2, y, x′, y′) ∈ ([0, 1] × R

n)2.
As explained in §3.2, this ‘indicial equation’ allows us to inductively solve away terms

in the Taylor expansion in x of the Schwartz kernel of K0(s;x, y, x
′, y′) at x = 0, viewing

the right variable (x′, y′) as a parameter. In other words, for any N > 0 we can construct
a kernel QN,j(s) such that (xx′)−sQN,j(s) is a smooth function of (x2, y, x′, y′) down to
x = 0 and x′ = 0, and

(∆X − s(n− s))QN,j(s) = χj +KN,j(s)

for some KN,j(s) ∈ xs+2Nx′sC∞(Uj ×Uj) (here Uj is the closure in the compactification

X), which are therefore Schwartz kernels of compact operators on ρNL2(X) in {Re(s) >
n/2 − N}. The Taylor expansion at x = 0 of G(s;x, y, x′, y′) is essentially contained in
the series expansion (3.1), and all coefficients are meromorphic with only simple poles at
−N0, with corresponding residues some finite rank operators. Then by §3.2, the poles of
QN,j(s),KN,j(s) are necessarily contained in (n/2−N)∪−N0, but a priori not necessarily
of finite rank. A careful look at the coefficients of the expansion (3.1), and in particular
the 1/Γ(s−n/2+1+j) factor vanishing to first order at s ∈ n/2−1−j−N, shows that the
poles occur only at −N0, are simple, and the residues are finite rank. We omit details and
refer the interested reader to [18, Prop 3.1] for these facts. Finally, choosing η ∈ C∞

0 (X) so

that η(1−χ) = 1−χ, fix s0 ≫ n/2 large and set QN (s) :=
∑ℓ

j=1QN,j(s)+ηRX(s0)(1−χ),
then

(∆X − s(n− s))QN (s) = 1 +KN (s), where

KN (s) :=

ℓ∑

j=1

KN,j(s) + [∆X , η]RX(s0)(1 − χ) + (s0(n − s0)− s(n− s))ηRX(s0)(1− χ)

Then KN (s) ∈ ρs+2Nρ′sC∞(X × X) is the kernel of a compact operator on ρNL2(X)
if Re(s) > n/2 − N . It is shown in [18, Prop 3.1] that for each N ∈ N, if s0 is
large enough and choosing the support of χ sufficiently close to ∂X , then we have
||KN (s0)||ρNL2→ρNL2 < 1/2. The operator QN (s) has Schwartz kernel constructed from

the model resolvent RHn+1(s) and terms in (ρρ′)sC∞(X × X), it is straightforward to
check1 that this is a bounded operator mapping ρNL2(X) to its dual ρ−NL2(X); more-
over, by the discussion above, it is meromorphic with poles of finite rank. Applying the
Fredholm analytic theorem, we deduce that (1+KN (s))−1 exists as a meromorphic family

1This is claimed without proof in [18, Prop 3.1], but is an easy exercise. It also follows from combining
[24, Prop 6.2] with [23, Prop 3.20]
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of bounded operator on ρNL2(X) in {Re(s) > n/2−N}, and thus QN (s)(1 +KN (s))−1

meromorphically extends RX(s) to {Re(s) > n/2 − N}. Since this can be done for all
N ∈ N, the proof is complete.

4. Spectral decomposition when Γ is an elementary parabolic group

We first tackle the spectral analysis of the Laplacian when Γ is a discrete elementary
parabolic subgroup. As before, and using the notation introduced in §2, assume that
the parabolic fixed point is ∞ in the upper half-space model. We use a type of Fourier
decomposition for functions on the flat bundle F = Γ∞\Rn. This proceeds in two stages:
we first obtain a discrete Fourier decomposition of functions on the compact spherical
normal bundle SF , and then couple this with a continuous Fourier-Bessel type decom-
position for functions in the radial variable on the fibres of F ; together these reduce ∆F

to a family of multiplication operators.
Recall from §2 that we have a maximal abelian normal subgroup Γ′

∞ ⊂ Γ∞ of finite
index and an affine k-dimensional subspace Z ⊂ E1 on which Γ′

∞ acts by translations,
where k is the rank of the cusp, and an orthogonal complement Y ≃ R

n−k in E1. Since
[Γ∞ : Γ′

∞] is finite, it suffices to prove the meromorphic continuation of the resolvent on
Γ′
∞\Hn+1; the resolvent on the quotient Γ∞\Hn+1 is then a finite sum of translates of

the resolvent on Γ′
∞\Hn+1. To simplify exposition we assume that Γ∞ = Γ′

∞ and that
X∞ is orientable. Thus Γ∞ is freely generated by k elements γ1, . . . , γk which in terms
of the decomposition H

n+1 = R
+
x × E1, E1 = Y ⊕ Z, act by

γℓ(x, y, z) = (x,Aℓy, z + vℓ), vℓ ∈ R
k, Aℓ ∈ SO(n− k).

In other words, γℓ is identified with the pair (vℓ, Aℓ). Since the Aℓ are orthogonal, the
Euclidean metric on Y descends naturally to a flat metric gF on the fibres of F := Γ∞\E1;
in particular, the unit sphere bundle SF is well-defined.

Since Γ∞ is abelian, {A1, . . . , Ak} is a commuting set of orthogonal matrices, and so
there is an orthogonal decomposition Y ≃ R

n−k ∼= V0 ⊕ . . . ⊕ Vs, with dimV0 = r and
dimVj = 2, j ≥ 1, such that Aℓ acts trivially on V0 and is a rotation by angle θjℓ on Vj
for every j, ℓ. In other words, this decomposition puts each Aj into block form with each
block either the identity or a rotation on each summand Vj .

Altogether, we have now described F as the total space of a vector bundle V over a
compact k-dimensional torus T , where V = V0⊕V1 ⊕ . . .⊕Vs; here V0 is a trivial bundle
of rank r and all the other Vj have rank 2. A function f on F is identified with a function
f(z, y) on Z ⊕ Y which satisfies

f(z + vℓ, y) = f(z,A−1
ℓ y) = f(z, y0, e

−iθ1ℓy1, . . . , e
−iθsℓys), ℓ = 1, . . . , k,

where (y0, y1, . . . , ys) are the components of y with respect to the splitting V0⊕V1⊕. . .⊕Vs,
and each Vj is identified with C when j > 0. We can describe functions f on SF in exactly
the same way.

4.1. Fourier decomposition on SF. The flat Laplacian ∆Y on each fibre Fz ≃ Y
defines an operator on the total space of F which acts fibrewise; its angular part is the
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Laplace operator on Sn−k−1. Let

(4.1) L2(Sn−k−1) =

∞⊕

m=0

Hm

be the usual irreducible decomposition for the action of SO (n − k), so Hm is the space
of spherical harmonics of degree m,

Hm = ker (∆Sn−k−1 −m(m+ n− k − 2)) ;

we also set dimHm = µm.
The vector spaces Hm on each fibre of SF fit together to form a flat vector bundle

Hm −→ T . A section σ of Hm is a function f(z, y) on SF , identified as above with a
function on Z × Sn−k−1 satisfying f(z + vj, ω) = f(z,A−1

j ω) such that for each z ∈ T ,

ω 7→ f(z, ω) ∈ Hm. (This makes sense since the action of SO(n − k) preserves each
Hm.) Now identify Vj ∼= C, j = 1, . . . , s, so that Aj lies in the compact abelian subgroup

K = ×s
j=1U(1), which acts by the identity on the first r components in R

n−k. The

restriction of the irreducible representation of SO(n − k) on Hm to K is a direct sum of
one-dimensional irreducible representations:

(4.2) Hm = L
(m)
1 ⊕ · · · ⊕ L(m)

µm
,

where θ = (θ1, . . . , θs) ↔ (eiθ1 , . . . , eiθs) ∈ K acts on L
(m)
p by exp(iαmp(θ)), p = 1, . . . , µm.

It can be shown that

αmp(θ) =
s∑

ℓ=1

cmpℓθℓ

where the structure constants cmpℓ are all integers determined by the specific represen-

tation L
(m)
p ; the precise formulæ for them are complicated to state and in any case not

important here.

Because the Aj lie in K, each L
(m)
p determines a flat complex line bundle L

(m)
p over T .

By construction, a section f of L
(m)
p corresponds to a function f(z, ω) such that

f(z + vj , ω) = eiαmpjf(z, ω),

where αmpj are defined as

(4.3) αmpj = αmp(θ1j, . . . , θsj)

in terms of the holonomy angles θℓj of F .

The orthogonal projection Πm : L2(Sn−k−1) −→ Hm induces a map, which we still call
Πm, on L2(SF ). Associated to (4.2) are orthogonal subprojectors Πmp, p = 1, . . . , µm, so
that Πm =

⊕
pΠmp. We often write fmp = Πmpf .

If f ∈ L2(F ), then using polar coordinates on each fibre, we write

f(z, y) = f(z, rω) =

∞∑

m=0

µm∑

p=1

fmp(z, r, ω).
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Let {v∗1 , . . . , v∗k} be the basis for the lattice Λ∗ dual to Λ := {∑ ajvj : aj ∈ Z}, i.e.
〈vi, v∗j 〉 = δij for all i, j, and define

fmp(z, r, ω) = e2πi〈z,Amp〉f#mp(z, r, ω), where 2πAmp =
k∑

j=1

αmpjv
∗
j .

Then each f#mp is simply periodic,

f#mp(z + vj , r, ω) = f#mp(z, r, ω), j = 1, . . . , k,

hence standard Fourier series on T gives the decomposition

(4.4) fmp(z, r, ω) =
1

(2π)k

∑

v∗∈Λ∗

f̂mpv∗(r, ω)e
2πi〈z,v∗+Amp〉,

where the f̂mpv∗ are the Fourier coefficients of f#mpv∗ . Clearly

∫

F
|f |2 dV =

∞∑

m=0

µm∑

p=1

∑

v∗∈Λ∗

∫ ∞

0

∫

Sn−k−1

|f̂mpv∗(r, ω)|2 rn−k−1 drdω.

For simplicity below, we write I = (m, p, v∗), so I ranges over the subset

I = {(m, p, v∗) ∈ N× N× Λ∗ : 1 ≤ p ≤ µm},
and denote by ΠI the corresponding orthogonal projector on L2(SF ) and φI(z, ω) the

associated eigenfunction. We also simply write fI instead of f̂I .
The Laplacian ∆F is induced from the standard Laplacian on T ×Y and has the polar

coordinate representation

∆F = −∂2r −
n− k − 1

r
∂r +

1

r2
∆Sn−k−1 +∆T .

For each I = (m, p, v∗) we have

(4.5) (∆F f)I =

(
−∂2r −

n− k − 1

r
∂r +

m(m+ n− k − 2)

r2
+ b2I

)
fI ,

where

(4.6) bI = 2π|Amp + v∗|.
In the following we let ∆I denote the operator on the right in (4.5) acting on the Ith

component.

4.2. The radial Fourier-Bessel decomposition. Using the spectral decomposition on
L2(SF ), we have reduced ∆F to the family of ordinary differential operators {∆I}I∈I.
It follows from standard ODE theory that spec (∆I) = [b2I ,∞), and that this spectrum
is purely absolutely continuous. Our next goal is to describe the continuous spectral
decomposition associated to each ∆I . The fact that the threshold b2I depends on I, and
in particular that the set {b2I} accumulates at 0 if the cusp is irrational is the cause of
the main difficulties below when summing over I. However, for the moment, we are still
analyzing each operator ∆I individually.
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The spectral decomposition for ∆I is determined by its spectral measure, which in
turn is given via Stone’s formula in terms of the resolvent. Thus consider the family of
equations

(∆I − λ)f = 0, λ ∈ C \ [b2I ,∞).

If we conjugate with r−(n−k−2)/2 and set λ = t2 + b2I , then this can be recognized as a
Bessel equation:

∆I − λ = −r−2r−
n−k−2

2

(
(r∂r)

2 −
(n− k − 2

2
+m

)2
+ t2r2

)
r

n−k−2
2 ,

so the space of homogeneous solutions is spanned by Bessel functions (see Appendix)

r−
n−k−2

2 Jn−k−2
2

+m(rt) and r−
n−k−2

2 H
(1)
n−k−2

2
+m

(rt).

The convention here is that Im(t) > 0 when λ ∈ C \ [b2I ,∞), which corresponds to the
choice Im(

√
µ) > 0 when µ ∈ C \ R+. The Schwartz kernel of the resolvent thus has the

explicit expression (H is the Heaviside function)

(4.7)

RI(t; r, r
′) := (∆I − t2 − b2I)

−1

= (rr′)−
n−k−2

2 Jn−k−2
2

+m(rt)H
(1)
n−k−2

2
+m

(r′t)H(r′ − r)

+(rr′)−
n−k−2

2 H
(1)
n−k−2

2
+m

(rt)Jn−k−2
2

+m(r′t)H(r − r′).

From this, Stone’s formula gives the spectral measure of ∆I − b2I as

dEI(t; r, r
′) =

1

iπ
(RI(t; r, r

′)−RI(−t; r, r′)) t dt

=
2

iπ
(rr′)−

n−k−2
2 Jn−k−2

2
+m(rt)Jn−k−2

2
+m(r′t) t dt.

(4.8)

This leads to the spectral resolution of a function fI ∈ L2(R+; rn−k−1dr):

fI(r) =

∫ ⊕

f̃I(r, t) dEI (t), f̃I(r, t) =

∫ ∞

r′=0
fI(r

′) dEI(t, r, r
′)dr′.

In the next subsection we invoke the functional calculus to define functions of ∆I by the
formula

(4.9) G(∆I) =

∫ ∞

0
G(t2 + b2I) dEI(t).

for a suitable class of functions G(t).

5. The resolvent when Γ is an elementary parabolic group

We now turn to the construction and analysis of the resolvent of the Laplacian on
the quotient Xc = Γ∞\Hn+1 ≃ R

+
x × F of hyperbolic space by an elementary parabolic

group Γ∞ fixing ∞ in the half-space model. It is convenient to work with the unitarily
equivalent operator

P = x−n/2∆Xcx
n/2 = −(x∂x)

2 + x2∆F +
n2

4
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acting on L2(R+ × F ; dxx dvF ). This decomposes into components

(5.1) P =
⊕

I

PI ; PI = −(x∂x)
2 + x2∆I +

n2

4
.

where ∆I is the operator of (4.5). These are each symmetric on L2(R+
x ×R

+
r ; r

n−k−1 dx
x dr).

In the following we write

dµ = rn−k−1x−1dxdr.

Using the same ODE formalism as above (i.e. Sturm-Liouville theory), along with (4.9),
we obtain the Schwartz kernel of the resolvent R(s) = (P − s(n− s))−1 of P

R(s; x, rω, z,x′, r′ω′, z′) =
∑

I

∫ ∞

0

(
Ks−n/2

(
x
√
t2 + b2I

)
Is−n/2

(
x′
√
t2 + b2I

)
H(x− x′)

+Ks−n/2

(
x′
√
t2 + b2I

)
Is−n/2

(
x
√
t2 + b2I

)
H(x′ − x)

)

× i
n−k+2m

π2
Jn−k−2

2
+m(rt)Jn−k−2

2
+m(r′t) t dt φI(z, ω)φI (z

′, ω′),

(5.2)

which, we show below, is valid when Re(s) > n/2 as an operator acting on L2.

5.1. Continuation of the resolvent to C in weighted L2 spaces. We now show that
the explicit formula (5.2) is the resolvent R(s) of P in Re(s) > n/2 and that it has a
meromorphic continuation to the entire complex s-plane in weighted spaces.

Proposition 5.1. The resolvent for P is given in {Re(s) > n/2} by the expression
(5.2) as a continuous operator on L2(Xc,

dx
x dvF ). If χ ∈ C∞

0 ([0,∞) × F ), N > 0 and
ρ := x/(x + 1), then the operator χR(s)χ extends from the half-plane Re(s) > n/2 to
Re(s) > n/2 − N as a holomorphic family of bounded operators from ρNL2(dxx dvF ) to

ρ−NL2(dxx dvF ).

Proof. By spectral theory and the fact that the essential spectrum of P is [n2/4,∞) (see
[20]), the resolvent (P −s(n−s))−1 is meromorphic with finite rank poles (corresponding
to the finite set of L2 eigenvalues) in {Re(s) > n/2}. In order to extend the resolvent,
we first show that the expression (5.2) is the actual resolvent in the physical half-plane
{Re(s) > n/2}. To prove the L2 boundedness of (5.2), decompose f ∈ L2(Xc,

dx
x dvF ) as

f =
∑

I fI(x, r)φI(z, ω) where fI(x, r) ∈ L2(R+ ×R
+; dµ). Then

R(s)f(x, rω, z) =
∑

I

(RI(s)fI)(x, r)φI(z, ω)

and it suffices to show that for Re(s) > n/2,

(5.3) ||RI(s)fI ||L2(dµ) ≤ C||fI ||L2(dµ)

for some C independent of I. We thus write

RI(s)fI(x, ·) =
∫ ∞

0
Fs,x,x′(

√
∆I )fI(x

′, ·) dx
′

x′
,
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where

Fs,x,x′(τ) := Ks−n
2
(xτ)Is−n

2
(x′τ)H(x− x′) + Is−n

2
(xτ)Ks−n

2
(x′τ)H(x′ − x).

This function is holomorphic in C as a function of s. By (A.1) and (A.2),

(5.4)

|Ks−n
2
(xτ)| ≤

{
C(xτ)−|Re(s)−n/2| if xτ ≤ 1
Ce−xτ/

√
xτ if xτ > 1

|Is−n
2
(xτ)| ≤

{
C(xτ)Re(s)−n/2 if xτ ≤ 1
Cexτ/

√
xτ if xτ > 1,

for s 6= n/2 (and C depend on s). We thus estimate for Re(s) ≥ n/2

|Fs,x,x′(τ)| ≤





C(min(x, x′)/(max(x, x′))
1
2 if both xτ, x′τ ≥ 1

C(min(x, x′)/max(x, x′))Re(s)−n/2 if both xτ, x′τ < 1

C(x/x′)Re(s)−n/2 if xτ < 1 < x′τ

C(x′/x)Re(s)−n/2 if x′τ < 1 < xτ.

and in particular Ns(x, x
′) := supτ∈R+ |Fs,x,x′(τ)| is a kernel such that for Re(s) > n/2

sup
x∈R+

∫ ∞

0
Ns(x, x

′)
dx′

x′
≤ C, sup

x′∈R+

∫ ∞

0
Ns(x, x

′)
dx

x
≤ C

for some C > 0 depending on s. By Schur’s lemma, it is the kernel of a bounded operator
on L2(dx/x) with norm less or equal to C, which proves (5.3).

Now we study the continuation to s ∈ C. We first decompose the set I of indices mpv∗

as I = I> ∪ I0, where
I ∈ I0 ⇐⇒ bI = 0

for bI as in (4.6). Assume that χ(x, y, z) = ϕ(x)ψ(r) with r = |y|; this is invariant
under Γ∞, hence descends to Xc. Again for f ∈ L2(Xc), f =

∑
I fI(x, r)φI(z, ω) with

fI(x, r) ∈ L2(R+ × R
+; dµ), then for N > 0 fixed, we must show

(5.5) ||χρNRI(s)ρ
NχfI ||L2(dµ) ≤ C||fI ||L2(dµ)

with holomorphic dependance on s, where ρ = x/(1 + x). Note that ρ can be replaced
by x since x is bounded on supp(χ). We write

(χRI(s)χfI)(x, r) =

∫ ∞

0
χ(x, r)Fs,x,x′(

√
∆I )(fIχ) dx

′/x′,

and proceed as above. We estimate

(5.6) |Fs,x,x′(τ)| ≤





C if both xτ, x′τ ≥ 1

Cmax((xx′τ2)Re(s)−n/2, 1) if both xτ, x′τ < 1

Cmax((xτ)Re(s)−n/2, 1) if xτ < 1 < x′τ

Cmax((x′τ)Re(s)−n/2, 1) if x′τ < 1 < xτ.

where C depends on s only. If x, x′ ∈ supp(ϕ), Re(s) > n/2−N and τ ≥ bI , then

(xx′)N |Fs,x,x′(τ)| ≤ C(1 + b
2Re(s)−n
I ), if I ∈ I>.

Hence, by the spectral theorem, since
√
∆I ≥ bI , (xx′)NFs,x,x′(

√
∆I) is bounded on

L2(R+, rn−k−1dr) with norm controlled by C(1 + b
2Re(s)−n
I ).
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The norm blows-up when bI → 0 and Re(s) < n/2, which makes the continuation to
the non-physical half-plane delicate, since we need an estimate which is uniform in I.
The key to controlling the terms for which bI are arbitrarily close (but not equal) to 0 is
that the spectral measure dEI(t) of ∆I − b2I is O(t2m+n−k−2) as t→ 0 if I = mpv∗. This
can be seen from estimate (5.8) below on Bessel functions and even more directly from
the order of vanishing at r = 0 of the regular solutions of the ODE

(
− (r∂r)

2 +
(n− k − 2

2
+m

)2
− r2

)
u(r) = 0.

on [0,∞). The terms for which bI = 0 are dealt with differently by reducing to a lower
dimensional hyperbolic space, in some sense. Let us explain this.

Fix N > 0 and let ǫN := minI∈I>,m≤N bI . Let IN = {I ∈ I> : m ≤ N}. By what we
have just established, if I ∈ IN , then for ǫ > 0 small and Re(s) > n/2−N + ǫ

||xN−ǫψRI(s)χx
NfI ||L2

r
≤
∫ ∞

0
||xN−ǫψFλ,x,x′(PI)x

′N−ǫ
ψfI(x

′, .)||L2
r
|ϕ(x′)|x′ǫ dx

′

x′

≤ C

∫ ∞

0
x′

ǫ|ϕ(x′)|.||fI(x′, .)||L2
r

dx′

x′
≤ C ′||fI ||L2(dµ)

where L2
r := L2(R+, rn−k−1dr) and C ′ = O(CN/ǫNN )) as N → ∞. But ϕ(x)xǫ||fI ||L2(dµ)

is in L2(R+, dx/x) with norm bounded by C||fI ||L2(dµ) so (5.5) is valid uniformly for
I ∈ IN .

The estimates on Fs,x,x′ above also imply that for any I whatsoever,

||(xx′)N 1l[1,∞)(
√

∆I)Fs,x,x′(
√
PI)|| ≤ C

as an operator on L2(rn−k−1dr), so arguing just as above, we see that for all I,

(5.7) ||xNχRI(s) 1l[1,∞)(
√

∆I)χx
Nf ||L2(dµ) ≤ C||fI ||L2(dµ).

The next step, therefore, is to establish the uniform bound for Re(s) > n/2−N + ǫ

||xN−ǫψ 1l(0,1)(
√

∆I)Fs,x,x′(
√

∆I)χx
′N−ǫ

fI(x
′, ·)||L2(rn−k−1dr) ≤ C||fI(x′, ·)||L2(rn−k−1dr)

whenm ≥ N and x, x′ ∈ supp(ϕ). Using (4.8), (4.9) and the bounds (5.6) we can estimate
the Schwartz kernel for m ≥ N

|ψ(r)ψ(r′)(xx′)N−ǫ 1l[0,1](
√

∆I)Fs,x,x′(
√

∆I)(r, r
′)|

≤ C sup
m≥N ;t∈(0,1)

|Jn−k−2
2

+m(rt)Jn−k−2
2

+m(r′t)|(1 + t2Re(s)−n),

again uniformly in x, x′ ∈ supp(ϕ). But now, since r, r′ ≤ C in suppψ and 0 < t < 1, we
have by (A.2)

(5.8) |Jn−k−2
2

+m(rt)| ≤ (rt)
n−k−2

2
+m

Γ(n−k
2 +m)

,



RESOLVENT OF THE LAPLACIAN 17

and hence

|ψ(r)ψ(r′)(xx′)N−ǫ 1l[0,1](
√

∆I)Fs,x,x′(
√

∆I)(r, r
′)|

≤ C sup
m≥N ; t∈(0,1)

(1 + tn−k−2+2m−2N )|ψ(r)ψ(r′)|,

uniformly in x, x′ ∈ suppϕ. This is bounded provided m ≥ N − 1
2(n− k − 2). From this

bound on the Schwartz kernel, we obtain directly that

(5.9) ||xNχRI(s) 1l[0,1](
√

∆I)χx
Nf ||L2(dµ) ≤ C||fI ||L2(dµ).

Notice that the holomorphy in s ∈ {Re(s) > n/2 − N} follows immediately from the
holomorphy of Ks−n

2
(z) and Is−n

2
(z) when z ∈ (0,∞) and the fact that |∂sKs(z)| and

|∂sIs(z)| satisfy the same type of bounds as |Ks(z)|, |Is(z)| by Cauchy’s formula.

It remains finally to deal with the terms with indices in {I = mpv∗ ∈ I0;m ≤ N}.
If I = mpv∗ ∈ I0, then ∆I acting on L2(R+, rn−k−1dr) is unitarily equivalent to the
Laplacian acting on R

n−k but restricted on the subspace L2(R+, rn−k−1dr;Hm) under
the decomposition L2(Rn−k) = ⊕∞

m=0L
2(R+, rn−k−1dr;Hm). In addition, we can rewrite

PI − s(n− s) = −(x∂x)
2 + x2∆I +

(n− k)2

4
− t(n− k − t), with t := s− k/2,

and hence deduce that x
n−k
2 RI(s)x

−n−k
2 is unitarily equivalent, in Re(s) > n/2, to

RHn−k+1(t) := (∆Hn−k+1−t(n−k−t))−1 acting on L2(R+, dx
xn−k+1 ;L

2(R+, rn−k−1dr;Hm)),
with t = s− k/2, under the decomposition

L2(Hn−k+1) = L2(R+,
dx

xn−k+1
;L2(Rn−k)) ≃

∞⊕

m=0

L2
(
R
+,

dx

xn+1
;L2(R+, rn−k−1dr;Hm)

)
.

But it is known [18] that the resolvent xNχRHn−k+1(t)χxN has a meromorphic (resp.
holomorphic) extension if n− k+1 is even (resp. odd), with simple poles at t ∈ −N0 and
finite rank residues. In particular, since χ(x, r) commutes with the decomposition into
spherical harmonics, this implies that xNχRI(s)χx

N has a meromorphic continuation
with the same property (the poles then lie in k/2 − N0). The proof is now complete. �

We also prove a technical lemma which is useful later, the proof of which follows the
same lines as the argument above.

Lemma 5.2. Let χ ∈ C∞
0 ([0,∞)×F ); then for any N ∈ N, there exist operators Mℓ(s) :

C∞
0 (Xc) → L2(F ) such that for any ϕ ∈ C∞

0 (Xc)

(5.10) (χRXc(s)ϕ)(x, y, z) − χ
N∑

ℓ=0

xs+2ℓ(Mℓ(s)ϕ)(y, z) ∈ xRe(s)+2NL2(Xc)

and Γ(s − n/2 + ℓ + 1)Mℓ(s) is meromorphic in s ∈ C, with at most simple poles at
s0 ∈ k/2− N0, and finite rank residues.



18 COLIN GUILLARMOU AND RAFE MAZZEO

Proof. When Re(s) > n/2, x−sRXc(s)ϕ can be written, using (5.2), as

(5.11) (x−sRXc(s)ϕ)(x, ·) = x
n
2
−s

∫ ∞

ǫ
Is−n

2
(x
√

∆F )Ks−n
2
(x′

√
∆F )(x

′)−
n
2ϕ(x′, ·)dx

′

x′

for ǫ > x > 0 if ǫ > 0 is such that supp(ϕ) ⊂ {x > ǫ}. Now, for any N ∈ N and
τ ∈ (0,∞), the modified Bessel function Is−n/2(τ) satisfies

∣∣∣Is−n/2(τ)− (τ/2)s−
n
2

N∑

ℓ=0

2−2ℓτ2ℓ

ℓ! Γ(s − n/2 + ℓ+ 1)

∣∣∣ ≤ Cmin(τ, 1)Re(s)+2N+2eτ

for some C depending on s. Then, by mimicking the proof of Proposition 5.1, we obtain
directly that if we set

Mℓ(s)ϕ =
2−2ℓ

ℓ! Γ(s− n/2 + ℓ+ 1)

∫ ∞

ǫ
ψ∆ℓ

FKs−n/2(x
′
√

∆F )x
′−n

2 ϕ(x′, ·)dx
′

x′
,

then (5.10) holds, where ψ ∈ C∞
0 (F ) and χψ = χ; the integral has meromorphic extension

in s ∈ C as a function in L2(F ) by the same arguments as in the proof of Proposition
5.1. Poles can arise only when I ∈ I0, hence lie in k/2−N0, and their residues have finite
rank. �

5.2. Regularity of the Green kernel up to ∂X. We have now established that the
family of operators RXc(s) has an analytic continuation to C, albeit with a rather minimal
description of the regularity of its integral kernel. Obviously, the structure of this kernel
is standard in any compact set of Xc by usual elliptic regularity, but near infinity it must
be analyzed using a more involved approach. For the analysis in any relatively compact
open set of Xc, we can apply the method explained in §3.3.

To be more precise, let W := {x2 + r2 ≤ R2} ⊂ Xc and its partial closure W 0 =
W ∪ (W ∩ {x = 0}) ⊂ Xc. In what follows, C∞

0 (W 0) denotes the set of smooth functions
with compact support inW 0 (but a priori not compact inW0), and similarly forW 0×W 0.

Proposition 5.3. Fix ψ1, ψ2 ∈ C∞
0 (W 0) with disjoint supports; then ψ2RXc(s)ψ1 has an

integral kernel which lies in xsx′sC∞
0 (W 0 ×W0).

Proof. We actually show something slightly more refined since we give a sharp charac-
terization of the structure of the resolvent kernel in W 0 ×W 0. We use the parametrix
construction explained in §3.3, hence shall be brief and refer the reader to that discussion.
CoverW by finitely many open charts U1, . . . ,Uℓ such thatW ⊂ U := ∪ℓ

j=1Uj , where each

Uj is identified by an isometry ιj to the half-ball B = {(x, y) ∈ R
+ × R

n;x2 + |y|2 < 1}
in H

n+1, like in §3.3. Using ιj, we can systematically identify operators on Uj with

their counterparts on B. Let χj, χ̂j ∈ C∞
0 (W 0) such that χ :=

∑ℓ
j=1 χj is equal to 1

on W 0, χ̂j is supported in Uj and χ̂j = 1 on the support of χj . By the argument of
§3.3, for each N ∈ N, we can construct a kernel QN,j(s),KN,j(s) supported in Uj × Uj

such that (xx′)−sQN,j(s) and x−s−2Nx′−sKN,j(s) are respectively smooth functions on

W 0 ×W 0 \ diag and W 0 ×W 0, meromorphic with finite rank simple poles contained in
−N0, and such that

(∆Xc − s(n− s))QN,j(s) = χj +KN,j(s)
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Finally, set QN (s) :=
∑ℓ

j=1QN,j(s), so that

(∆Xc − s(n− s))QN (s) = χ+KN (s), KN (s) :=

ℓ∑

j=1

KN,j(s),

where KN (s) ∈ xs+2Nx′sC∞
0 (U0×U0) (here U0 := U∪ (U∩{x = 0}) is the partial closure

of U). We can go further and use Borel’s lemma to construct an asymptotic limit Q∞(s)
of the QN , which satisfies

(∆Xc − s(n− s))Q∞(s) = χ+K∞(s), K∞(s) ∈ x∞x′
s
C
∞
0 (U0 × U0)

Exchanging the functions χ̂j and χj and applying the same method yields a right
parametrix, i.e. operators Q′

∞(s) and K ′
∞(s) such that

Q′
∞(s)(∆Xc − s(n− s)) = χ+K ′

∞(s), K ′
∞(s) ∈ xsx′

∞
C
∞
0 (U0 × U0),

where Q′
∞(s) and K ′

∞(s) have the same meromorphic properties as Q∞(s) and K∞(s)
with respect to s.

The error terms K∞(s) and K ′
∞(s) have Schwartz kernels with the properties that, for

any N > |Re(s)− n
2 |, as functions of m,

(5.12)
K∞(s; ·,m) ∈ xsC∞(U0;x

NL2(U0)),

K ′
∞(s;m, ·) ∈ xsC∞(U0;x

NL2(U0))

where L2(U0) is with respect to the hyperbolic measure on Xc. By a standard argument,
R(s) agrees with Q∞(s) up to more regular term: indeed, when Re(s) > n/2,

RXc(s)(∆Xc − s(n− s))Q∞(s) = Q∞(s) = RXc(s)(χ+K∞(s))

Q′
∞(s)(∆Xc − s(n− s))RXc(s) = Q′

∞(s) = (χ+K ′
∞(s))RXc(s),

which shows that

χRXc(s)χ = χQ∞(s)−Q′
∞(s)K∞(s) +K ′

∞(s)RXc(s)K∞(s)

Using Proposition 5.1 and (5.12), the last term on the right hand side extends meromor-
phically to s ∈ C and has Schwartz kernel in (xx′)sC∞(W 0 ×W 0). By Lemma 3.1, the
operator Q′

∞(s)K∞(s) has Schwartz kernel in (xx′)sC∞(W 0×W 0) and we conclude that

(5.13) χRXc(s)χ− χQ∞(s) ∈ xsx′
s
C
∞
0 (U0 × U0).

for all s ∈ C \ −N0. To finish the proof it suffices to note that Q∞(s) is a sum of explicit
terms, each of which are in xsx′sC∞

0 (U0 × U0 \ diag) by (3.3). �

6. Continuation of the resolvent on X

In this section we pass from the ‘local’ result, i.e. the continuation of the resolvent on
the model cusp Xc to its continuation on an arbitrarily geometrically finite quotient X.

As before, let x be a smooth function onX which equals the upper half-space coordinate
x in each cusp neighbourhood Uc

j (these are chosen to be disjoint) and which is a global

boundary defining function on X. We also use ρ = x/(1 + x), which is still a boundary
defining function, but is bounded in the cusp neighbourhoods.

We now prove the following Theorem, which implies Theorem 1.1.
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Theorem 6.1. Let X = Γ\Hn+1 be geometrically finite and RX(s) := (∆X − s(n− s))−1

the resolvent of ∆X , defined as a bounded operator on L2(X) for Re(s) > n/2 and
s(n − s) /∈ σpp(∆X). Fix ψ ∈ C∞

0 (X); then for each N > 0, ψRX(s)ψ : ρNL2(X) →
ρ−NL2(X) extends as a bounded operator meromorphically to {Re(s) > n/2 − N} with
all poles of finite rank.

Proof. We use the regular and cusp neighbourhoods Ur
j and Uc

j , and a corresponding

subordinate partition of unity {χ0, χ
r/c
j } for this cover, with χ0 ∈ C∞

0 (X) and suppχ
r/c
j ⊂

U
r/c
j . We also choose functions χ̂0 ∈ C∞

0 (X), χ̂
r/c
j ∈ C∞(X) with similar supports which

are equal to 1 on the supports of the corresponding ‘unhatted’ functions.
Let Rr

j(s) denote the kernel of the resolvent on H
n+1, restricted to a standard half-ball

B and transferred back to Ur
j , and R

c
j(s) the kernel of the resolvent on the model cusp

Γj\Hn+1 as constructed in the previous section, again transferred back to Uc
j. (Here Γj

is a representative of the conjugacy class of the parabolic subgroup fixing the j-th cusp.)
Fix a large value s0 ≫ n and some ψ ∈ C∞(X) which equals 1 on the supports of ∇χ̂0

and every ∇χ̂r/c
j and with compact support in X̄. As in §4.2, the initial parametrix is

Q0(s) := χ̂0RX(s0)χ0 +
∑

j∈Jr

χ̂r
jR

r
j(s)χ

r
j +

∑

j∈Jc

χ̂c
jR

c
j(s)χ

c
j .

The point of the first term, of course, is to capture the interior singularity of the resolvent,
whereas the other terms also capture the dependence of the parametrix in s near all
boundaries. This satisfies

(∆X − s(n− s))Q0(s)ψ = ψ(1 + ψL0(s)ψ + ψK0(s)ψ)

where

K0(s) :=
∑

j∈Jr

Kr
0,j(s) +

∑

j∈Jc

Kc
0,j(s) with K

r/c
0,j :=

∑

j∈Jr/c

[∆X , χ̂
r/c
j ]R

r/c
j (s)χ

r/c
j ,

L0(s) := [∆X , χ̂0]RX(s0)χ0 + (s0(n− s0)− s(n− s))χ̂0RX(s0)χ0.

Since χ0, χ̂0 are compactly supported, L0(s) is compact on any weighted space ρNL2(X).
The next step is to improve the part coming from the sum of the Kr

0,j(s) as in the

proof of Proposition 5.3. We construct operators Qr
N,j(s) supported in Ur

j × Ur
j which

satisfy

(∆X − s(n− s))Qr
N,j(s) = χr

j +Kr
N,j(s)

with Kr
N,j(s) ∈ xs+2Nx′sC∞(U

r
j × U

r
j). Poles of Qr

N,j(s),K
r
N,j(s) lie in −N0 with finite

rank residues, and furthermore the error terms Kr
N,j(s) are compact on ρNL2.

To improve the parametrix in the cusp neighbourhoods, we use that [∆X , χ̂
c
j ] is a first

order differential operator with coefficients supported in a neighbourhood Vc
j ⊂ U

p
j which

is relatively compact in X. Using the coordinates (x, y, z) in the model cusp,

∆X = −(x∂x)
2 + nx∂x + x2(∆y +∆z),
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we can take χ̂p
j to be a smooth function of (x2, |y|2) (in particular, independent of y/|y|

and z), and hence

(6.1) [∆X , χ̂
c
j] = x2(aj(x

2, y) + bj(x
2, y)∂x + [∆y, χ̂

c
j ](x

2, y))

where aj and bj are smooth as functions of x2 and y. Using Proposition 5.3, we deduce
directly that

Kc
0,j(s) = [∆X , χ̂

c
j ]R

c
j(s)χ

c
j ∈ xs+2x′

s
C
∞(W j ×Wj)

where Wj ⊂ Uc
j is some open set containing supp(χ̂c

j) and W j is its partial closure which
includes its boundary at x = 0.

We now claim that, with m = (x, y, z), there is an expansion as x→ 0 of the form

(6.2) Kc
0,j(s;m,m

′) = ψ(m)
N∑

ℓ=1

xs+2ℓMj,2ℓ(s; y, z,m
′) + O(xRe(s)+2N+1)

for some ψ ∈ C∞
0 (W j) which equals 1 on supp(χ̂c

j), and with coefficient functionsMj,2ℓ(s) ∈
x′sC∞

0 ((W j ∩ {x = 0}) ×W j) such that Γ(s − n/2 + ℓ)Mj,2ℓ(s) is meromorphic in s ∈ C

with at most simple poles at contained in n
2 − 1

2N, and the residues are kernels of some fi-

nite rank operators. Indeed, by Proposition 5.3, we know that x−s−2Kc
0,j(s;m,m

′) has an

expansion at x→ 0 in powers xℓ with coefficients Mj,ℓ(s) ∈ x′sC∞
0 ((W j ∩{x = 0})×W j),

which are meromorphic in s. The Mj,ℓ(s) are Schwartz kernels of some operators, and
uniquely determined by the choice of x, it remains to prove that Mj,2ℓ+1(s) = 0 and that

Γ(s−n/2+ ℓ)Mj,2ℓ(s) has finite rank poles (contained in n
2 − 1

2N). Take any ϕ ∈ C∞
0 (Uc

j)

and ϕ′ ∈ C∞
0 (W j), then Lemma 5.2 shows that x−sϕ′(Rc

j(s)ϕ) ∼ ∑
ℓ x

2ℓNj,2ℓ(s)ϕ at

x = 0, for some operators Nj,2ℓ(s) mapping C∞
0 (Uj) to L2(Uj ∩ {x = 0}) and with

Γ(s−n/2+ ℓ)Nj,2ℓ(s) having only simple poles of finite rank. By the expression in (6.1),
the same is true for x−s−2ϕ′Kc

0,j(s)ϕ (but mapping to H−1 instead of L2) and this proves
the claim.

As before, we solve away the expansion of Kc
j (s;m,m

′) at x = 0: for any k ∈ N0 and

F ∈ C∞(W j) which depends smoothly on x2, we have

(6.3) (∆X − s(n− s))
xs+2kF (x2, y, z)

2k(n − 2s− 2k)
= xs+2kF (x2, y, z) +

xs+2k+2Hk(x
2, y, z)

2k(n− 2s − 2k)

with Hk ∈ C∞(W j) smooth in x2 and independent of s. Combining (6.3) with (6.2) and
the fact that each Γ(s − n/2 − ℓ)Mj,ℓ(s) has at most first order poles with finite rank
residues, we can construct for all N ∈ N an operator Qc

N,j(s) which is holomorphic in

{Re(s) > n/2−N} with Qc
N,j(s)− χ̂c

jR
c
j(s)χ

c
j ∈ xs+2N (x′)sC∞

0 (W j ×W j) and

(∆X − s(n− s))Qc
N,j(s) = χc

j +Kc
N,j(s)

for some Kc
N,j(s) ∈ xs+2Nx′sC∞

0 (W j ×W j) holomorphic in {Re(s) > n/2−N}.
We finally obtain a good parametrix

QN (s) :=
∑

j∈Jr

Qr
N,j(s) +

∑

j∈Jc

Qc
N,j(s) + χ̂0R(s0)χ0



22 COLIN GUILLARMOU AND RAFE MAZZEO

since

(∆X − s(n− s))QN (s)ψ = ψ(1 + ψ(L0(s) +KN (s))ψ) =: ψ(1 + K̃N (s))

with KN (s) =
∑

j∈Jc

Kc
N,j(s) +

∑

j∈Jr

Kr
N,j(s) ∈ xs+2Nx′

s
C
∞
0 (X ×X).

Notice that the support of KN (s) is compactly supported and does not intersect the

cusps in either set of variables. Hence K̃N (s) is compact on ρNL2(X) ⊂ L2(X) and
meromorphic in {Re(s) > n/2 − N} with poles of finite multiplicy. Using standard

arguments, we can modifyQN (s) by a finite rank operator if 1+K̃N (s0) is not invertible, to
make the new remainder invertible, and this can be done without changing the regularity

properties of QN (s), K̃N (s).

We then invoke the analytic Fredholm theorem to show that (1 + K̃N (s))−1 has a
meromorphic extension to {Re(s) > n/2 − N} with poles of finite multiplicity, as an
operator bounded on ρNL2(X). Thus

ψRX(s)ψ = ψQN (s)ψ(1 + K̃N (s))−1

gives the meromorphic extension of the resolvent in s ∈ {Re(s) > n/2−N ; s /∈ n/2−N}.
as an operator from ρNL2(X) to ρ−NL2(X).

As in the proof of Prop. 5.3, we can obtain the extension to all of C directly, rather than
only to any half-plane, using Borel summation to solve away the entire expansion as x→
0, and a standard pseudodifferential parametrix construction to correct the compactly
supported error part L0(s). This yields Q∞(s), with the all same properties as QN (s),
which satisfies

(∆X − s(n− s))Q∞(s)ψ = ψ(1 +K∞(s))

where K∞(s) ∈ ρ∞ρ′sC∞
0 (X×X) is a residual term with support contained in supp(ψ)×

supp(ψ) and (1 + ψK∞(s0)ψ) invertible. By the analytic Fredholm theorem again,

RX(s)ψ = Q∞(s)ψ(1 +K∞(s))−1

and this is meromorphic in s ∈ C with poles of finite multiplicity. Then (1+K∞(s))−1 =
1 + S∞(s) where S∞(s) = −K∞(s) + K∞(s)(1 + K∞(s))−1K∞(s) has a kernel in in
ρ∞ρ′sC∞(X ×X) and has support contained in supp(ψ)× supp(ψ). This gives that

(6.4) RX(s)ψ = Q∞(s)ψ +Q∞(s)ψS∞(s)

and the operator RX(s)ψ has the same mapping properties as Q∞(s)ψ. �

Remark 6.2. Let (X, g) be a manifold which admits a decomposition X = K ∪i∈Jc

Ec
j ∪j∈Jr Er

j where (K, g) is a smooth compact manifold with boundary, (Ec
j , g) are iso-

metric to standard cusp neighbourhoods (and thus have constant curvature) and (Er
j , g)

are isometric to

{(x, y) ∈ R
+ × R

n;x2 + |y|2 ≤ 1} with metric g = (dx2 + h(x2))/x2

where u ∈ [0, 1] → h(u) is a one parameter smooth family of tensors on {|y| ≤ 1}.
Combining this with the parametrix construction from [24] -and [10] for the issue about
the points n/2−N-, the same proof as above yields the meromorphic continuation of the
resolvent R(s) of ∆g to s ∈ C, with poles of finite rank.



RESOLVENT OF THE LAPLACIAN 23

7. Finer description of the resolvent

In Theorem 6.1, we have shown that the resolvent RX(s) continues meromorphically
in s as an operator acting on weighted L2 spaces. As part of this, we obtained detailed
information about the Schwartz kernel RX(s;m;m′) on any compact region K ⊂ X ×X .
We now show how to obtain alternate descriptions of RX(s) valid in certain regions of C
and which are more precise in certain asymptotic regimes: first, we obtain a representation
of RX(s) as a sum of translates by group elements of the free space resolvent, which
converges when Re(s) > (n−1)/2 and provides good asymptotics in the cusp region; after
that, we examine its Fourier analytic description more closely to obtain better information
about asymptotics on ∂X when s lies in the closed half-plane {Re(s) ≥ n/2}.

7.1. The resolvent RX(s) as a sum over Γ. Let Xc = Γ∞\Hn+1 with Γ∞ an ele-
mentary parabolic group of rank k, fixing ∞, with generators (γ1, . . . , γk). As in §2, we
assume (by passing to a finite index subgroup) that each γj acts on (x, y, z) ∈ H

n+1 by

γj(x, y, z) = (x,Ajy, z + vj) where vj ∈ R
k and Aj ∈ SO(n − k). For any γ ∈ Γ∞, we

also write

(7.1) γ(x, y, z) = (x,Aγy, z + vγ)

where vγ is in the lattice generated by the vj and Aγ ∈ SO(n−k). A fundamental domain

for this action is F = R
+ × R

n−k × FT , where FT is a (compact) fundamental Dirichlet
domain for the induced lattice on R

k. We sometimes abuse notation by identifying a
point w ∈ F with its image in Xc. Both x and r = |y| descend to Xc.

Proposition 7.1. If w,w′ ∈ F, then the resolvent kernel RXc(s;w,w
′) can be written as

(7.2) RXc(s;w,w
′) =

∑

γ∈Γ∞

RHn+1(s;w, γw′);

this converges in C∞ (apart from the diagonal singularity) locally on compact sets of F×F

for Re(s) > k/2 and agrees with the continuation of RXc(s;w,w
′) there. If χ ∈ C∞

0 (Xc)
and ψ ∈ C∞

b (Xc) have disjoint supports, then for Re(s) > k/2 and any j ≥ 0 and multi-
indices α, β, there exists C > 0 such that

|∂jx∂αy ∂βz [(xx′)−sψ(w)RXc(s;w,w
′)χ(w′)]| ≤ C(1 + x2 + |y|2)(k−|α|−|β|−j)/2−Re(s).

Proof. If w = (x, y, z), w′ = (x′, y′, z′) ∈ F and d(w,w′) is hyperbolic distance, then

cosh d(w,w′) =
x2 + x′2 + |y − y′|2 + |z − z′|2

2xx′
:=

1

θ(w,w′)
.

Furthermore, by (3.1), the resolvent can be written as

(7.3) RHn+1(s;w,w′) = θ(w,w′)sFs(θ(w,w
′)),

where Fs ∈ C∞([0, 1)) depends holomorphically on s in Re(s) > 0. We use the notation
(7.1). Note that there exists a subset Γ′

∞ ⊂ Γ∞ with Γ∞ \ Γ′
∞ finite and an ǫ > 0 such
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that |z − z′ − zγ |2 ≥ ǫ|zγ |2 for all γ ∈ Γ′
∞ and w,w′ ∈ F. This gives that for γ ∈ Γ′

∞

1

θ(w, γw′)
− 1 =

(x− x′)2 + |y −Aγy
′|2 + |z − z′ − zγ |2

2xx′

≥(x− x′)2 + |y −Aγy
′|2 + ǫ2〈zγ〉2

2xx′
.

This is bounded below uniformly by a positive constant depending on L if x′ ≤ L and so
is θ(w, γw′)− 1. Consequently, for x′ ≤ L, we get

∣∣∣(xx′)−s
∑

γ∈Γ∞

RHn+1(s;w, γw′)
∣∣∣ ≤ C

∑

γ∈Γ′
∞

(
x2 + x′

2
+ |y −Aγy

′|2 + |z − z′ − zγ |2
)−Re(s)

(7.4)

for some C depending on s and L only. If we assume that (w,w′) ∈ F × F are such that

x′2+|y′|2 ≤ L2 and x2+|y|2 ≤ 4L2, then the series on the right in (7.4) converges uniformly
in w,w′ as long as Re(s) > k/2, and for w and w′ subject to these constraints, is bounded

by a constant. If (w,w′) ∈ F×F are such that x′2 + |y′|2 ≤ L2 and x2 + |y|2 > 4L2, then
we obtain the estimate for Re(s) > k/2

∣∣∣(xx′)−s
∑

γ∈Γ∞

RHn+1(s;w, γw′)
∣∣∣ ≤C(1 + x2 + |y|2)−Re(s)

∑

γ∈Γ′

∞

(
1 +

〈zγ〉2
x2 + |y|2

)−Re(s)

≤C(1 + x2 + |y|2)k/2−Re(s)

(7.5)

for some C depending only on s, L, L′. Here we have used the fact that zγ run over

a lattice in R
k to obtain the bound in the second line. The same type of bounds are

easily obtained for derivatives of any order with respect to w,w′ in compact sets of
F × {w′ ∈ F;x′2 + |y′|2 ≤ L2}, we omit the details.

For any χ ∈ L∞(F) supported in x′2+|y′|2 ≤ L2, the operator with kernel (xx′)Re(s)(1+

x2+|y|2)−Re(s)χ(w′) is bounded as an operator on L2(F) for Re(s) > n/2. Therefore, since
the integral kernel Ks(w,w

′) :=
∑

γ∈Γ′

∞

RHn+1(s;w, γw′)χ(w′) is bounded by (7.5), the

operator with kernel Ks(w,w
′) is bounded on L2(F). Moreover Ks(w,w

′) clearly solves
(∆Hn+1−s(n−s))Ks(w,w

′) = 0 for w,w′ in compact sets of F×{w′ ∈ F; (x′)2+|y′|2 ≤ L2}.
There remains to analyze K ′

s(w,w
′) :=

∑
γ∈Γ∞\Γ′

∞

RHn+1(s;w, γw′)χ(w′) which con-

tains the diagonal singularity (at least in the region where (x′)2+ |y′|2 ≤ L2). By the fact
that RHn+1(s) is bounded on L2(Hn+1) for Re(s) > n/2 and that Γ∞ \ Γ′

∞ is finite, it is
clear that K ′

s(m,m
′) is the kernel of a bounded operator on L2(F), moreover it solves, in

the distribution sense, (∆Hn+1 − s(n− s))K ′
s(w,w

′)χ(w′) = δ(w − w′)χ(w′).
Combining the discussions for Ks and K ′

s, we have thus proved that RXc(s)χ has
Schwartz kernel given byKs+K

′
s in Re(s) > n/2, and moreover thatKs(w,w

′)+K ′
s(w,w

′)
is well defined as a locally uniformly converging series on compact sets in (m,m′) away
from the diagonal, as long as Re(s) > k/2. The last statement about the estimate of the
kernel of ψRXc(s)χ is a straightforward consequence of what we have just discussed. �
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Now use the inverted coordinate system (u, v, z) and the polar variable R, where

(7.6) u :=
x

x2 + |y|2 , v :=
−y

x2 + |y|2 , R :=
√
u2 + |v|2 =

1√
x2 + |y|2

.

These functions too descend to Xc, and the cusp itself is at R = 0, while ∂Xc is {u =
0, v 6= 0}. A simple calculation gives that

1

θ(w,w′)
=
u2 + u′2 + |y − y′|2 + (RR′)2|z − z′|2

2uu′
.

Therefore, repeating the same arguments of the proof of Proposition 7.1, we easily obtain
that for any ǫ > 0, there exists C with

(7.7) |(uu′)−sRXc(s;w,w
′)| ≤ C(RR′)−k,

in the region {(u − u′)2 + (|v| − |v′|)2 > ǫ}, with the analogous estimate holding if we
apply any number of derivatives ∂u, ∂v and ∂z.

We can now use this to estimate the kernel of the resolvent on the entire geometrically
finite quotient X.

Corollary 7.2. Let X = Γ\Hn+1 be a geometrically finite quotient, and let k̄ be the
maximum rank of all the nonmaximal rank cusps. Let RX(s) be the meromorphically
continued resolvent of Theorem 6.1. If χ ∈ C∞

0 (X) and ψ ∈ C∞(X) have disjoint support,
then in a cusp neighbourhood Uc

j of a cusp of rank k, and using the inverted coordinates

of (7.6), we have for Re(s) > k̄/2

(7.8)

∣∣∣(uu′)−sψ(w)RX (s;w,w′)χ(w′)
∣∣∣ ≤ C(u2 + |v|2)−k/2,

∣∣∣(uu′)−sψ(w)(u∂u − s)RX(s;w,w′)χ(w′)
∣∣∣ ≤ C(u2 + |v|2)−k/2.

Proof. From (6.4) we can write RX(s)χ = Q∞(s)χ+Q∞(s)χS∞(s) for a suitably chosen
parametrix Q∞(s) and with S∞(s) ∈ ρ∞ρ′sC∞

0 (X×X). By the construction in the proof
of Theorem 6.1, if χ̂c

jR
c
j(s)χ

c
j are the model resolvents in Uc

j , then L(s) := Q∞(s) −∑
j∈Jc χ̂c

jR
c
j(s)χ

c
j has compact support in X ×X . Let ǫ > 0 be small so that χ(w′) has

support in u′2 + |v′|2 > 2ǫ in each cusp neighbourhood, we can then combine the result
in Proposition 5.3 for the region u2 + |v|2 > ǫ far from the cusps and the estimate (7.7)
for the region u2 + |v|2 ≤ ǫ near the cusp to deduce that each ψRc

jχ satisfies (7.8), and

ψL(s) ∈ ρs+2ρ′sC∞
0 (X × X) satisfies this same estimate in Uc

j as well. Finally, using

the residual structure of S∞(s), we obtain the same estimate also for the composition
ψQ∞(s)χS∞(s). �

7.2. Poincaré series. We now review a standard argument which shows that the mero-
morphic continuation of the resolvent RX(s) implies a corresponding extension for the
Poincaré series of Γ:

Ps(m,m
′) :=

∑

γ∈Γ\Id

e−sd(m,γm′), m,m′ ∈ H
n+1.

Here, notice that we have removed the term in the series corresponding to γ = Id, this
obviously does not change any result about meromorphic continuation of Ps and is only
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done for notational simplicity below. Recall that this sum converges to a holomorphic
function in Re(s) > δ, where δ = δ(Γ) ∈ (0, n) equals the Hausdorff dimension of the
limit set of Γ ([28, 37]).

Theorem 7.3. The series Ps(m,m
′) admits a meromorphic continuation to the entire

complex plane.

Proof. To simplify exposition, we suppose that m,m′ ∈ int(F) where F is a fundamental
domain of Γ. Define, for Re(s) > n,

R̃s(m,m
′) := RX(s;m,m′)−RHn+1(s;m,m′) =

∑

γ∈Γ\Id

RHn+1(s;m,γm′).

By Theorem 6.1, this extends meromorphically to C, and (by elliptic regularity) is smooth
in int(F) × int(F). Now, for any N ∈ N, we can write by (3.1)

RHn+1(s;m,m′) =
N∑

j=0

cs,jQ
s+j(m,m′) +Qs+N+1(m,m′)Ls(Q(m,m′))

where Q(m,m′) = e−d(m,m′), and the scalar functions cs,j and Ls ∈ C∞([0, 1)) are mero-
morphic in C with cs,0 6≡ 0. Now sum over translates by γ ∈ Γ \ Id:

Ps(m,m
′) =

c−1
s,0

(
R̃s(m,m

′)−
N∑

j=1

cs,jPs+j(m,m
′)−

∑

γ∈Γ\Id

Qs+N+1(m,γm′)Ls(Q(m,γm′))
)
,

initially at least for Re(s) > n. The infinite series on the right converges to a meromorphic
function in Re(s) > n−N−1. Assuming that Ps(m,m

′) is meromorphic in Re(s) > n−M
for some M ≥ 0, then all terms on the right are meromorphic in Re(s) > n −M − 1,
provided N > M + 1. By induction, this provides the continuation of Ps(m,m

′) to all of
C. �

We recall the result proved by Patterson in [29, Th.1 and 2].

Theorem 7.4 (Patterson). Let X = Γ\Hn+1 be a geometrically finite hyperbolic manifold
and δ > 0 be the exponent of convergence of Poincaré series. Assume that the resolvent
RX(s) extends meromorphically to a neighbourhood of {Re(s) ≥ δ}. Then Γ(s − n/2 +
1)RX(s) has a simple pole at s = δ and no other poles on the line {Re(s) = δ}, there
exists a smooth function F on X such that the residue of Γ(s−n/2+1)RX(s) at δ is the
rank 1 operator F ⊗ F and

♯{γ ∈ Γ; d(m,γm′) ≤ R} ∼ c eδRF (m)F (m′)

as R→ ∞, for some c > 0 depending only on Γ.

Theorems 6.1 and 7.4 imply Corollary 1.2. In [29] the function F is given (up to a
positive multiplicative constant) by F (m) =

∫
Sn P (m, ζ)

δdµδ(ζ) where µδ is a probability
measure supported on the limit set Λ(Γ) of Γ (the so-called Patterson-Sullivan measure)
and P (m, ζ) is the usual Poisson kernel on the ball. In the proof of this result by Patterson,
there is a fundamental argument from ergodic theory to show that there is only one pole
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on the vertical line {Re(s) = δ}. Notice that only when s /∈ n/2−N the point s = δ is a
resonance and the function F is then the resonant state associated to δ, see e.g. [14] for
a discussion in the convex co-compact setting.

7.3. Mapping properties of the resolvent. We now come back to the description of
the resolvent on a cusp neighbourhood using Fourier decomposition, as in §3, to obtain
finer mapping properties of RX(s) all the way up to the critical line, i.e. in the closed
half-plane {Re(s) ≥ n/2}. This is necessary in order to analyze the scattering operator
and prove that it satisfies a functional equation.

LetXc = Γ∞\Hn+1 = R
+×F be a cusp of rank k. We use standard coordinates (x, y, z)

as before, and the Sobolev spaces Hℓ(F ), H∞(F ), and H∞(Xc) = C∞
b ([0,∞);H∞(F )),

as defined at the end of §2. We also use the variable ρ = x/(1 + x), and set

Ḣ∞(Xc) := {u ∈ H∞(Xc) : u = O((x/(1 + x2))∞)}.
Lemma 7.5. Let Re(s− n

2 ) ≥ 0 and f ∈ Ḣ∞(Xc); then RXc(s)f ∈ ρs−
n
2H∞(Xc).

Proof. Using the Fourier decomposition of Section 4.1, any f ∈ H∞(Xc) decomposes as
f =

∑
I fI(x, r)φI(z), φI(z) := exp(2πi〈z, v∗ + Amp〉), where each I = (m, p, v∗), and

fI(x, r) ∈ Πmp(L
2(SF )) for every x and r.

If f ∈ L2(Xc), then R(s)f =
∑

I(RI(s)fI)(x, r)φI(z, ω) =
∑

I uI(x, r)φI(z, ω), where

uI(x, r) =

∫ ∞

x
Iλ(x

√
∆I)Kλ(x

′
√

∆I)fI(x
′, ·)dx

′

x′
+

∫ x

0
Kλ(x

√
∆I)Iλ(x

′
√

∆I)fI(x
′, ·)dx

′

x′
,

(7.9)

and we have set λ := s − n/2. This can be rewritten using the Fourier transform F in
y = rω, with dual variable ξ, as

uI(x, y) =Πmp

∫ ∞

x

∫

Rn−k

eiy.ξIλ(x
√

|ξ|2 + b2I)Kλ(x
′
√

|ξ|2 + b2I)F(fI)(x
′, ξ)dξ

dx′

x′

+Πmp

∫ x

0

∫

Rn−k

eiy.ξKλ(x
√

|ξ|2 + b2I)Iλ(x
′
√

|ξ|2 + b2I)F(fI)(x
′, ξ)dξ

dx′

x′

=u<I + u>I .

(7.10)

Integrating by parts yields

(7.11)

∂αy (u
<
I )(x, y) =∫ ∞

x

∫

Rn−k

eiy.ξ
(
Iλ(x

√
|ξ|2 + b2I)Kλ(x

′
√

|ξ|2 + b2I)F((−∂y)αfI)(x′, ξ)
)
dξ
dx′

x′
,

with a corresponding identity for u>I .

To obtain L2 bounds in y of ∂αy ∂
β
x (ρ−λu<I )(x, y), we must bound

∂β1
x

(
ρ−λIλ(x

√
|ξ|2 + b2I))

)
∂β2

x′ Kλ(x
′
√

|ξ|2 + b2I), β1 + β2 ≤ β

when x ≤ x′. We use the estimates on Bessel functions:

(7.12) |∂αt Kλ(t)| ≤
{
Cαe

−t if t > 1

Cαt
−|Re(λ)|−α if t ≤ 1

, |∂αt (t−λIλ(t))| ≤ Cαe
t,
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valid for t ∈ R
+ and Re(λ) = A ≥ 0: thus when x ≤ x′, we have

(7.13)
∣∣∣∂β1

x

(
ρ−λIλ(x

√
|ξ|2 + b2I)

)
∂β2

x′ Kλ(x
′
√

|ξ|2 + b2I)
∣∣∣ ≤ C〈|ξ|+ bI〉A+βρ′−A−β,

where C depends on A and β. Using (7.11) and (7.13). Using Cauchy-Schwarz in the x′

integral, we immediately obtain the bound

(7.14) ||∂αy ∂βx (ρ−λu<I )(x, y)||L2(dy) ≤ Cmax
β′≤β

∣∣∣
∣∣∣
〈x〉A+ǫ

ρA+β+ǫ
(∆F + 1)

A+β
2 ∂β

′

x ∂
α
y fI

∣∣∣
∣∣∣
L∞

x L2
F

when ǫ > 0, and Re(λ) = A ≥ 0; here C now depends on K,β and A, and we have set
L∞
x L

2
F := L∞(R+;L2(F, dvF )).

The estimates are similar for u>I , so we omit the details. �

The corresponding fact for the resolvent of ∆X is a direct consequence:

Corollary 7.6. Let X = Γ\Hn+1 be a geometrically finite quotient, and let Re(s− n
2 ) ≥ 0

and f ∈ Ḣ∞(X); then RX(s)f ∈ ρs−
n
2H∞(X).

Proof. The proof follows from Lemma 7.13 and the parametrix construction in (6.4), just
as in the proof of Corollary 7.2. The crucial fact is that RX(s) equals Rc

j(s) in the cusp

neighbourhood U
j
c, up to very residual terms. �

8. Scattering theory

Using the estimates and various properties of the resolvent we have obtained above,
we now construct the Eisenstein (or Poisson) and scattering operators. The scheme is
the same as for convex co-compact hyperbolic quotients [30, 9] and for quotients with
rational cusps [12].

8.1. The Poisson operator for a pure parabolic group. The Poisson operator for a
boundary problem, including the asymptotic one considered here, is the mapping which
carries the (asymptotic) boundary value to the solution of the equation in question in the
interior which has this boundary value. For hyperbolic manifolds, the Schwartz kernel
of this operator can be identified with the Eisenstein series for the group, hence in this
setting the Poisson operator is sometimes also called the Eisenstein operator.

Let Xc = Γ∞\Hn+1 with Γ∞ an elementary discrete parabolic group of rank k < n
fixing ∞. The Poisson operator for this space, P c(s), is defined by

(8.1) P c(s)f(x, y, z) =
2−λ+1

Γ(λ)
x

n
2∆

λ
2
FKλ(x

√
∆F )f(y, z), λ = s− n/2.

This evidently satisfies (∆Xc − s(n− s))P c(s)f = 0.

Proposition 8.1. Let λ = s− n/2 and ρ = x/(1 + x). The operator

(8.2) P c(s) : H∞(F ) → ρsH∞(Xc) + ρn−sH∞(Xc)

is a holomorphic family of bounded operators for {Re(λ) ≥ 0;λ /∈ N} and for all β ∈
N0, N ≥ 0, there is C > 0 such that ||∂βx (P c(s)f)(x, ·)||H2N (F ) ≤ Cx

n
2
−Re(λ)||f ||L2 for
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x > 1. If f ∈ H∞(F ), there exist F± ∈ H∞(Xc) such that P c(s)f = ρn−sF− + ρsF+

and

F−|x=0 = f, F+|x=0 = 2−2λΓ(−λ)
Γ(λ)

∆λ
F f.

Proof. The holomorphy in Re(s) ≥ n/2, s /∈ n/2 + N, follows from the holomorphy of
Bessel function Kλ.

To check the estimate for x ≥ 1, fix χ ∈ C∞(R+) which equals 1 in (2,∞) and vanishes
in [0, 1]. Then

(1 + ∆F )
N∂βx (χ(x

√
∆F )Kλ(x

√
∆F )f) = ∂β(χKλ)(x

√
∆F )∆

β
2
F (1 + ∆F )

Nf.

Since supt∈R+
|t±L∂β(χKλ)(t)| <∞ for any L ∈ R, we deduce that for all L ≥ 0

(8.3) ||∂βx (χ(x
√

∆F )P
c(s)f)||H2N (F ) ≤ CLx

n/2−L||f ||HRe(λ)+β+2N−L .

On the other hand, observe that 2−λ+1Kλ(t)/Γ(λ) = t−λG−
λ (t)+t

λG+
λ (t) for some smooth

functions G±
λ on [0,∞) with G−

λ (0) = 1, and hence

(1− χ(x
√

∆F ))P
c(s) = (1− χ(x

√
∆F ))(x

n
2
−λG−

λ (x
√

∆F ) + x
n
2
+λ∆λ

FG
+
λ (x

√
∆F )).

It is straightforward that (1− χ(x
√
∆F ))G

±
λ (x

√
∆F )f ∈ H∞(Xc) and for x > 1

||∂βx ((x2∆F )
λ(1− χ(x

√
∆F ))G

+
λ (x

√
∆F )f)||H2N (F ) ≤ C||f ||L2(F ),

which proves (8.2) and the statement about x > 1 by combining with (8.3). The asymp-
totic limits when x → 0 come from the asymptotic expansion of Kλ(t) at t = 0, which
gives that G+

λ (0) = 1 and G−
λ (0) = 2−λΓ(−λ)/Γ(λ). �

Remark 8.2. The functions F± in the Proposition above have a Taylor expansion at
x = 0 with only even powers of x, this is a consequence of the fact that the functions
G±

λ (z) defined in the proof of this Proposition are smooth functions of z2 ∈ [0,∞).

8.2. Scattering theory on X. We now proceed to define the scattering operator in the
usual way.

Proposition 8.3. Let X = Γ\Hn+1 be a geometrically finite hyperbolic manifold and let
ρ be a function as in Section 6. Suppose that s ∈ {Re(s) > n/2, s 6∈ (n/2+N0), s(n−s) /∈
σpp(∆X)}, and fix any f ∈ H∞(∂X). Then there is a unique solution us ∈ C∞(X) to
the equation (∆X − s(n− s))us = 0 for which us|x≥1 ∈ L2(X), and such that there exist
functions G± ∈ H∞(X) with

us = ρsG+ + ρn−sG−, where G−|ρ=0 = f.

Proof. The problem is solved in each cusp neighbourhood Uc
j using the Poisson operator

P c
j (s) : H

∞(Fj) → C∞(Γj\Hn+1) in each model space Γj\Hn+1 given by (8.1) . Fix cutoff

functions χ̂c
j, χ

c
j and χr

j as above and write φcj = χc
j|x=0; then set

uc =
∑

j∈Jc

χ̂c
jP

c
j (s)φ

c
jf, ur =

∑

j∈Jr

χr
jx

n−sf.
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where in each Ur
j , (x, y) are the coordinates induced by the half-ball (3.2). These satisfy

(∆Xc − s(n− s))uc =
∑

j∈Jc

[∆X , χ̂
c
j ]P

c
j (s)φ

c
jf := qc,

(∆Xc − s(n− s))ur =
∑

j∈Jr

([∆X , χ
r
j ]f + x2χr

j∆yf) := qr.

By Proposition 8.1 and equation (6.1), qc ∈ ρs+2C∞
0 (X) + ρn−s+2C∞

0 (X), while qr ∈
ρ2C∞

0 (X). Remark 8.2 shows that the C∞
0 (X) functions in the expansion of qc are smooth

functions of x2 in Uc
j , while in Ur

j , the function x−s−2qr has an even Taylor expansion in

powers of x if χr
j are taken as functions of (x2, y) in Ur

j . Then, using the indicial equations

(6.3), (3.4) in each of these neighbourhoods, we remove all terms in the expansion of the
remainder terms qc, qr at ρ = 0, just as we did in the resolvent parametrix construction.
This gives a function vs = ρsv+ + ρn−sv− with v± ∈ C∞

0 (X), such that

(∆X − s(n− s))vs ∈ Ċ
∞
0 (X), v−|∂X = f and v± ∈ H∞(X).

Finally, set
us := vs −R(s)(∆X − s(n− s))vs;

the mapping properties of R(s) from Corollary 7.6 and the expansion of the terms in-
volving Pc(s) from Proposition 8.1 show that this is indeed a solution to the problem.

We conclude by proving uniqueness. First note that, using the indicial equations (3.4)
and (6.3), the expansion of a solution of the problem at x = 0 is determined entirely
by G+|x=0 and G−|x=0. Therefore, if w is the difference of two such solutions, then
(∆X − s(n − s))w = 0 and w ∈ L2(X). Since Re(s) > n/2 and s /∈ σpp(∆X), we have
w = 0, which concludes the proof. �

We can now define the Poisson operator for {s ∈ C; Re(s) > n/2, s /∈ n
2 + N} by

PX(s)f = us, where us is the solution obtained in Proposition 8.3. With ρ as in Section
6, and for this range of s, we see that

(8.4) PX(s) : H∞(∂X) −→ ρsH∞(X) + ρn−sH∞(X).

The next result shows that this extends to the closed half-plane:

Proposition 8.4. The operator PX(s), which is holomorphic in {s ∈ C; Re(s) > n/2, s /∈
n
2 + N}, admits a meromorphic continuation to the entire complex plane as an operator

C∞
0 (∂X) → C∞(X). Moreover,

PX(s) : H∞(∂X) → ρsH∞(X) + ρn−sH∞(X), if Re(s) ≥ n/2,

Proof. The existence of the meromorphic continuation will follow from a slight variant of
the construction of PX(s).

Fix any f ∈ C∞
0 (∂X) and construct (using the indicial equation in each chart and Borel

summation) a function Φ(s) ∈ ρn−sC∞
0 (X) which satisfies

(∆X − s(n− s))Φ(s) ∈ Ċ
∞
0 (X), with ρs−nΦ(s)

∣∣
ρ=0

= f.

Now use the resolvent to solve away this error term. This leads to the formula

PX(s)f := Φ(s)−RX(s)(∆X − s(n− s))Φ(s).
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The right hand side obviously continues meromorphically to C with finite rank poles. The
fact that this lies in ρn−sC∞

0 (X) + ρsH∞(X) when Re(s) ≥ n/2 follows from Corollary
7.6. �

Lemma 8.5. The integral kernel of PX(s) is related to the integral kernel of RX(s) by

PX(s;m, b′) = (2s − n)[ρ(m′)−sRX(s;m,m′)]|m′=b′ , m ∈ X, b′ ∈ ∂X.

Proof. This relationship is derived almost exactly as in the convex cocompact case; we
sketch it for the convenience of the reader. Combining Green’s formula and the equation
(∆X − s(n− s))RX(s;m,m′) = δ(m−m′), we obtain

PX(s)f(m) = Φ(s;m)− lim
ǫ→0

∫

x(m′)≥ǫ
RX(s;m,m′)(∆X − s(n− s))Φ(s;m′) dvg(m

′)

= lim
ǫ→0

∫

x(m′)=ǫ

(
∂n′RX(s;m,m′)Φ(s;m′)−RX(s;m,m′)∂n′Φ(s;m′)

)
dvg(m

′);

here ∂n′ is the inner unit normal to {x(m′) = ǫ} acting on them′ variable and x is a global
defining function of ∂X as in Section 6 (and ρ = x/(1+x)). Note too that the integration
is over a compact set K in X because Φ(s) ∈ C∞

0 (X). It is not hard to check that in terms
of local coordinates (x, y), ∂n′ = x∂x + αx2∂x +

∑
i βix∂yi with α, βi ∈ C∞

0 (X). Hence
considering the asymptotic expansions of RX(s;m,m′) and Φ(s;m′) and their derivatives
with respect to ∂n′ as x(m′) → 0, we obtain

PX(s)f(m) = (2s − n)

∫

∂X
[x(m′)−sRX(s;m,m′)]|m′=b′f(b

′)dv∂X(b′),

as desired. �

Combining this Lemma with Proposition 5.3 we obtain that

(8.5) PX(s) ∈ ρsC∞((X × ∂X) \ diag∂X),

where diag∂X := {(b, b) ∈ ∂X × ∂X}. Moreover, Corollary 7.2 gives that for all m ∈ X,

(8.6) P (s;m, ·) ∈ L2(∂X, dv∂X), if Re(s) > k̄/2,

where k̄ is the maximum of the ranks of all nonmaximal rank cusps of X. Indeed, using
the coordinates (v, z) from (7.6) on the boundary of a cusp neighbourhood Uc

j ∩ {x = 0}
of a rank k cusp, the measure on ∂X equals |v|2kdvdz, and PX(s;m, v) = O(|v|−k) as
|v| → 0.

The resolvent and Poisson kernels are also related by a functional equation.

Lemma 8.6. There is an identity

RX(s;m,m′)−RX(n− s;m,m′) =

1

(2s − n)

∫

∂X
PX(s;m, b)PX (n− s;m′, b) dv∂X (b).

(8.7)

which holds for any m,m′ ∈ X when |Re(s)− n/2| < 1/2.
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Proof. The proof is much the same as the one of Proposition 2.1 in [16] or Theorem 1.3
in [8]. Use the coordinates (u, v, z) from (7.6) in each cusp neighbourdhood Uc

j; thus u

is a boundary defining function of ∂X in Uc
j ∩ X. We extend it to a global boundary

defining function, still denoted u, for ∂X on all of X. For ǫ > 0 small, we use Green’s
formula as in [16, Prop 2.1] to get
(8.8)

RX(s;m,m′)−RX(n− s;m,m′) =

−
∫

u(b)=ǫ

(
RX(s;m, b)∂nRX(n− s; b,m′)− ∂nRX(s; b,m′)RX(n− s; b,m′)

)
dvg(b),

where ∂n is the inner unit normal to {u = ǫ}. The metric in each regular neighbourhood
Ur
j has the form g = (du2 + h0 + O(u))/u2, where h0 is a metric on ∂X , while in each

cusp neighbourhood Uc
j it appears as

g =
du2 + |dv|2 + (u2 + |v|2)2|dz|2

u2
.

Thus ∂n equals u∂u in cusp neighbourhoods and u∂u + αu2∂u +
∑

i βiu∂yi , with α, βi ∈
C∞
0 (∂X), in regular neighbourhoods.
Introduce a partition of unity to localize to these different neighbourhoods. From the

Lemma 8.5, the structure of RX(s) in Ur
j and its symmetry RX(s;m, b) = RX(s; b,m),

we obtain the contribution to the integrand from {u = ǫ} ∩ Ur
j in the limit as ǫ → 0 is

given by2 (2s − n)−1PX(s;m, b)PX (n− s;m′, b)dv∂X (b). Applying analogous arguments,
using Lemma 8.5, Corollary 7.2 and dominated convergence (the measure restricted on
{u = ǫ} is dvg = (ǫ2 + |v|2)kdvdz and so PX(s;m, ·) ∈ L2 on this hypersurface), we find
that the contribution from the cusp neighbourhoods is exactly the same. �

We can now define the scattering operator SX(s) : H∞(∂X) → H∞(∂X) for Re(s) ≥
n/2 and s /∈ n/2 + N by

(8.9) SX(s)f := G+|∂X
where G+ ∈ H∞(X) is the function appearing defined in Propositions 8.3 and 8.4 for
the expansion of PX(s)f at ∂X . From Theorem 6.1 and the construction of PX(s)f , the
operator SX(s) has a meromorphic continuation as a continuous operator C∞

0 (∂X) →
C∞(∂X) to C \ (n/2 + N) with finite rank poles.

Lemma 8.7. The Schwartz kernel of SX(s) is given by

SX(s; b, b′) = [ρ(m)−sPX(s;m, b′)]|m=b, b, b′ ∈ ∂X.

Furthermore, for any ϕ ∈ C∞
0 (∂X), ϕSX(s)ϕ is a classical pseudodifferential operator of

order 2s− n.

2Notice that (u/x)|∂X = |v|2 and the terms involving extra powers of |v| from writing PX(s), PX(n−s)

as weighted restrictions to ∂X cancel out with the extra powers of |v| coming from writing the volume
measure dvg(b) in terms of dv∂X = dvolh0

.
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Proof. The first statement follows from the relationship SX(s)f = limx→0(x
−sPX(s)f)

when Re(s) < n/2 and the meromorphic extension. That SX(s) is pseudodifferen-
tial follows from the parametrix construction in the proof of Prop. 5.3 and from the
formula of the models Rj(s) in Uj constructed in §3.3: indeed by [30, Prop 4.12],
[(x(m)x(m′))−sRj(s,m,m

′)](m,m′)=(y,y′) = fs(y)fs(y
′)|y − y′|−2s for some smooth func-

tions fs in the chart Uj defined in the proof of Prop. 5.3. �

Lemma 8.8. For Re(s) = n/2 and s 6= n/2, there are identities

PX(s) = PX(n− s)SX(s), SX(n − s)SX(s) = SX(s)SX(n− s) = Id.

Proof. By Lemma 8.7, the Schwartz kernel of SX(s) in {Re(s) < n/2} lies in L1
loc(∂X ×

∂X), and from Corollary 7.2, we also have SX(s; b, ·) ∈ L2(∂X \ Bǫ(b), dv∂X ) for all

b ∈ ∂X , where Bǫ(b) is a ball of small radius ǫ > 0 in ∂X . Now fix m ∈ X, b ∈ ∂X and
Re(s) ∈ ((n−1)/2, n/2), and multiply (8.7) by (2s−n)ρ(m′)−s and let m′ → b. By (8.5),
(8.6) and the decay and regularity properties of S(s; b, b′) stated above, we deduce that

PX(s;m, b) =

∫

∂X
PX(n− s;m, b′)SX(s; b, b′) dv∂X (b′).

In particular, the integral converges. From the symmetry of the resolvent, we also have
SX(s; b, b′) = SX(s; b′, b), so PX(s) = PX(n − s)SX(s) for Re(s) ∈ ((n − 1)/2, n/2) as
operators C∞

0 (∂X) → C∞(X). However, this extends to |Re(s) − n/2| ≤ 1/2 meromor-
phically, in view of the mapping properties of S(s) and P (s). The functional equation
for S(s) is an easy consequence: one has for Re(s) = n/2 (and s 6= n/2)

PX(n− s) = PX(s)SX(n− s) = PX(n− s)SX(s)SX(n− s)

as operators on H∞(∂X), but PX(n− s) is injective on H∞(∂X) by construction. �

Appendix A. Bessel functions

We gather some definitions and estimates regarding Bessel functions; all of this can be
found in [1, Chap. 9]. For α ∈ R, ν ∈ C and z ∈ R

+, the Bessel (resp. modified Bessel)

functions Jα,H
(1)
α (resp. Iν ,Kν) are defined by

(A.1)

Jα(z) :=

∞∑

m=0

(−1)m

m!Γ(m+ α+ 1)
(
z

2
)2m+α, H(1)

α (z) :=
(J−α(z)− e−απiJα(z))

i sin(απ)

Iν(z) :=
∞∑

m=0

1

m!Γ(m+ ν + 1)
(
z

2
)2m+ν , Kν(z) :=

π

2

(I−ν(z)− Iν(z))

sin(νπ)
.

They are independent solutions of the Bessel (resp. modified Bessel) equation on R
+,

z2∂2zu + z∂zu + (z2 − α2)u = 0 (resp. z2∂2zu + z∂zu − (z2 + ν2)u = 0). For ν ∈ C and
α ∈ R, we have
(A.2)

|Jα(z)| ≤
2−αzα

Γ(α+ 1)
, ∀z, α > 0; |Jα(z)| = O(

1√
z
) and |H(1)

α (z)| = O(
1√
z
), as z → ∞,

|Iν(z)| = O(
ez√
z
), and |Kν(z)| = O(

e−z

√
z
), as z → ∞
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where the constants in each O(·) depend on ν, α.
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