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ABSTRACT

This paper addresses the problem of spectral unmixing when
positivity and additivity constraints are imposed on the mix-
ing coefficients. A hierarchical Bayesian model is introduced
to satisfy these two constraints. A Gibbs sampler is then pro-
posed to generate samples distributed according to the pos-
terior distribution of the unknown parameters associated to
this Bayesian model. Simulation results conducted with syn-
thetic data illustrate the performance of the proposed algo-
rithm. The accuracy of this approach is also illustrated by
unmixing spectra resulting from a multicomponent chemical
mixture analysis by infrared spectroscopy.

Index Terms— Spectral unmixing, non-negativity, addi-
tivity, Bayesian inference, Monte Carlo methods.

1. INTRODUCTION

Linear regression models are widely used in signal process-
ing applications. The popularity of linear regression may be
justified by the variety of existing algorithms allowing one to
estimate the unknown model parameters. However, the es-
timation problem is more complicated when the mixing co-
efficients or/and the regressors have to satisfy specific con-
straints. Constraints which have recently received much at-
tention in the literature include monotony [1], positivity [2]
or sparsity [3]. This paper studies linear regression models
where the mixing coefficients satisfy positivity and additivity
constraints. These constraints are for example required for the
analysis of spectral mixture data, i.e. in multicomponent ma-
terial analysis by spectroscopy [2] or hyperspectral imaging
[4].

The estimation of constrained linear regression parame-
ters can be achieved by solving constrained optimization prob-
lems. One typically defines an appropriate cost function such
as the least squares or weighted least squares criteria and one
minimizes this cost function by ensuring that the constraints
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and GdR-ISIS.

are satisfied. This strategy has been for instance used suc-
cessfully for the unmixing of hyperspectral images yielding
the well known fully constrained least squares algorithm [5].
However, Bayesian estimators also offer nice alternatives for
fitting constrained linear regression models. Prior distribu-
tions can be defined in order to satisfy the linear regression
constraints. The model parameters are then classically es-
timated from their posterior distribution. The posterior dis-
tribution can also be used to provide information about the
uncertainties of the parameter estimates such as confidence
intervals. Bayesian estimators for linear regression problems
with monotony, positivity or sparsity constraints have been re-
cently studied in [1–3]. This paper studies Bayesian estima-
tors for linear regression parameters with positivity and ad-
ditivity constraints. The regression coefficients are assigned
prior distributions defined on a simplex. A Metropolis-within-
Gibbs algorithm is then studied to generate samples accord-
ing to the full posterior of regressors and mixture coefficients.
The proposed methodology is similar to the algorithm devel-
oped in [6]. However, it allows one to estimate the mixture
spectra, contrary to the algorithm in [6] which assumed that
the spectra were identified beforehand.

The paper is organized as follows. Section 3 defines a
hierarchical Bayesian model (HBM) for the proposed blind
unmixing problem. In particular, prior distributions concen-
trated on a simplex and satisfying the positivity and additivity
constraints are introduced. Section 4 describes a Gibbs sam-
pling strategy that allows one to overcome the computational
complexity inherent to this HBM. Simulation results and con-
clusion are reported in Section 5 and 6.

2. PROBLEM STATEMENT

The linear mixture model is defined as:

yi,j =
M∑
m=1

ci,msm,j + ei,j , (1)

where yi,j is the observed spectrum at time indexi (i =
1, . . . , N ) in the jth spectral band (j = 1, . . . , L), N is the



number of samples,M is the number of mixture components
andL is the number of spectral bands. The coefficientci,m
is the contribution of themth component in theith mixture
andei,j is an additive noise modeling measurement errors and
model uncertainties. The noise sequencesei = [ei,1, . . . , ei,L]T

are assumed to be independent and identically distributed (i.i.d.)
according to zero-mean Gaussian distributions with variances
σ2

e,i. Standard matrix notations used for theN observations
in theL spectral bands yield:

Y = CS + E, (2)

whereY = [yi,j ]i,j ∈ RN×L, C = [ci,m]i,m ∈ RN×M ,

S = [sm,j ]m,j ∈ RM×L andE = [ei,j ]i,j ∈ RN×L. Due
to obvious physical considerations, the concentrationsci =
[ci,1, . . . , ci,M ]T and the spectrasm = [sm,1, . . . , sm,L]T, for
m = 1, . . . ,M , have to satisfy positivity constraints. More-
over, some applications such as kinetic reactions [7] require
that the mixing coefficients are subjected to additivity con-
straints. The blind unmixing problem addressed in this paper
consists of estimating jointly the concentration matrixC and
the spectral sourcesS under the following positivity and ad-
ditivity constraints:{

sm,j > 0 andci,m > 0, ∀(i,m, j),∑M
m=1 ci,m = 1 ∀i. (3)

A Bayesian model was proposed in [2] to perform the
blind unmixing under positivity constraints on the source spec-
tra and the mixing coefficients. This paper goes a step further
by including the additivity constraint in the Bayesian model.
Note that this constraint allows one to resolve the scale inde-
terminacy inherent to blind source separation problems.

3. HIERARCHICAL BAYESIAN MODEL

3.1. Likelihood

The statistical properties of the noise vectorei and the linear
mixing model described in (1) allow one to write:

yi ∼ N
(
STci, σ2

e,iIL
)
,

whereyi = [yi,1, . . . , yi,L]T, N (·, ·) denotes the Gaussian
distribution andIL is theL×L identity matrix. By assuming
the independence between the vectorse1, . . . , ei, the likeli-
hood ofY is:

f
(
Y|C,S,σ2

e

)
∝ 1∏N

i=1 σ
L
e,i

exp

[
N∑
i=1

−
∥∥yi − ScT

i

∥∥2

2σ2
e,i

]
,

(4)
whereσ2

e =
[
σ2

e,1, . . . , σ
2
e,N

]T
, ‖x‖2 = xTx stands for the

standard̀ 2 norm and∝ means “proportional to.”

3.2. Parameter priors

3.2.1. Concentration coefficients

Using the additivity constraints introduced in (3), the regres-

sion vectors can be writtenci =
[
aT
i , ci,M

]T
with aT

i =
[ci,1, . . . , ci,M−1] andci,M = 1 −

∑M−1
m=1 ci,m. The natural

priors forai, i = 1, . . . , N , are uniform distributions on the
following simplex1:

S =

{
ai

∣∣∣∣∣ai,m ≥ 0, ∀m = 1, . . . ,M − 1,
M−1∑
m=1

ai,m ≤ 1

}
.

(5)
By assuming thea priori independence between the vectors
ai, the prior distribution for the mixing matrixA = [a1, . . . ,aN ]T

reduces to:

f (A) =
N∏
i=1

1S(ai), (6)

where1S(·) denotes the indicator function defined onS.

3.2.2. Spectral sources

Several distributions with positive support can be chosen as
prior distribution for a spectral source, provided that the con-
straints in (3) are satisfied. However, for computation reasons,
choosing a conjugate prior is judicious when no additional
information is available. Therefore, our proposed model is
initially based on a truncated Gaussian prior. In section 5,
simulation results obtained with this Gaussian prior will be
compared to results obtained with an exponential prior, which
seems to be more appropriate to incorporate information like
sparsity.

A truncated Gaussian prior distribution is assigned to each
spectral sourcesm denoted as:

sm
∣∣σ2

s,m ∼ N+(0L, σ2
s,mIL), (7)

where0L is the vector made ofL zeros andN+ (u,V ) de-
notes the positive truncated Gaussian distribution with mean
vectoru and covariance matrixV . The probability density
function (pdf) of this multivariate truncated distribution de-
notedφ+(·|θ,Σ) satisfies the relation:

φ+(x|θ,Σ) ∝ φ(x|θ,Σ)1RL
+
(x), (8)

whereφ(·|θ,Σ) is the pdf of the usual multivariate Gaussian
distribution defined onRL with mean vectorθ and covariance
matrix Σ. By assuming the independence between the spec-
tral sourcessm (m = 1, . . . ,M ), the prior distribution forS
can be written:

f
(
S
∣∣σ2

s

)
=

M∏
m=1

φ+(sm|0L, σ2
s,mIL), (9)

with σ2
s =

[
σ2

s,1, . . . , σ
2
s,M

]T
.

1Note that this choice is equivalent to choose Dirichlet distributions
DM (1, . . . , 1) as prior distributions forci (i = 1, . . . , N ).



3.2.3. Noise variances

Conjugate priors which are here inverse Gamma (IG) distrib-
utions are chosen forσ2

e,i:

σ2
e,i |ρe, ψe ∼ IG

(
ρe

2
,
ψe

2

)
, (10)

whereIG
(
ρe
2 ,

ψe
2

)
denotes the inverse Gamma distribution

with parametersρe2 and ψe
2 . By assuming the independence

between the noise variancesσ2
e,i, i = 1, . . . , N , the prior dis-

tribution ofσ2
e is:

f
(
σ2

e |ρe, ψe

)
=

N∏
i=1

f
(
σ2

e,i |ρe, ψe

)
. (11)

The hyperparameterρe will be fixed toρe = 2 whereasψe is
an adjustable hyperparameter as in [8].

3.3. Hyperparameter priors

A conjugate IG distribution is chosen as prior distribution for
each varianceσ2

s,m:

σ2
s,m |ρs, ψs ∼ IG

(
ρs

2
,
ψs

2

)
, (12)

By assuming a priori independence between the different vari-
ances, the hyperprior ofσ2

s expresses as:

f
(
σ2

s |ρs, ψs

)
=

M∏
m=1

f
(
σ2

s,m |ρs, ψs

)
. (13)

The parametersρs andψs will be adjusted in order to obtain
a vague hyperprior.

The prior forψe is a non-informative Jeffrey’s prior which
reflects the lack of knowledge regarding this hyperparameter:

f (ψe) =
1
ψe

1R+(ψe). (14)

Assuming the independence between the different hyperpara-
meters, the hyperparameter prior distributionΦ =

{
σ2

s , ψe

}
can be written:

f (Φ) ∝
M∏
m=1

[
1

σρs+2
s,m

exp
(
− ψs

2σ2
s,m

)]
1
ψe

1R+(ψe). (15)

3.4. Posterior distribution of Θ

The posterior distribution of the unknown parameter vector
Θ =

{
A,S,σ2

e

}
can be computed from the following hier-

archical structure:

f(Θ|Y) ∝
∫
f(Y|Θ)f(Θ|Φ)f(Φ)dΦ, (16)

wheref
(
Y
∣∣Θ) andf (Φ) have been defined in (4) and (15).

Moreover, by assuming the independence betweenA, S and
σ2

e , the following result can be obtained:

f
(
Θ
∣∣Φ) = f (A) f

(
S
∣∣σ2

s

)
f
(
σ2

e

∣∣ρe, ψe

)
, (17)

wheref (A), f
(
S
∣∣σ2

s

)
andf

(
σ2

e

∣∣ρe, ψe

)
have been defined

previously. This hierarchical structure allows one to integrate
out the hyperparameter vectorΦ =

{
ψe,σ

2
s

}
from the joint

distributionf (Θ,Φ|Y), yielding:

f
(
A,S,σ2

e

∣∣Y) ∝ M∏
m=1

[[
ψs + ‖sm‖2

]−L+ρs
2

1RL
+
(sm)

]

×
N∏
i=1

1S(ai)
N∏
i=1

( 1
σ2

e,i

)L
2 +1

exp

[
−
∥∥yi − ScT

i

∥∥2

2σ2
e,i

] .
4. GIBBS SAMPLER

Generating random samples according tof
(
A,S,σ2

e

∣∣Y) is
achieved by a Gibbs sampler whose main steps at each itera-
tion are detailed below.

4.1. Generation according tof
(
A|S,σ2

e ,Y
)

Straightforward computations yield for each observation:

f
(
ai
∣∣S, σ2

e,i,yi
)
∝ exp

[
− (ai − µi)

T Λ−1
i (ai − µi)

2

]
1T(ai),

where:
Λi =

[
1
σ2

e,i

(
S− sMuT

)T (
S− sMuT

)]−1

,

µi = Λi

[
1
σ2

e,i

(
S− sMuT

)T
(yi − sM )

]
,

(18)

with u = [1, . . . , 1]T ∈ RM−1. As a consequence,ai
∣∣S, σ2

e,i,yi
is distributed according to a truncated Gaussian distribution
on the simplexS:

ai
∣∣S, σ2

e,i,yi ∼ NS (µi,Λi) . (19)

When the number of chemical components is relatively small,
the generation ofai

∣∣S, σ2
e,i,yi can be achieved using a stan-

dard Metropolis Hastings (MH) step. If the proposal distribu-
tion of this MH step is the Gaussian distributionN (µi,Λi),
the acceptance ratio of the MH algorithm reduces to1 if the
candidate is inside the simplexS and0 otherwise. For higher
dimension problems, the acceptance ratio of the MH algo-
rithm can be small, leading to poor mixing properties. In such
cases, an alternative strategy based on a Gibbs sampler can be
used (see [9] and [10]).



4.2. Generation according tof
(
σ2

e |A,S,Y
)

This generation can be achieved thanks to the two following
steps:

4.2.1. Generation according tof
(
ψe

∣∣σ2
e ,A,S,Y

)
The conditional distribution is expressed as the following IG
distribution:

ψe

∣∣σ2
e , ρe ∼ IG

(
Nρe

2
,
1
2

N∑
i=1

1
σ2

e,i

)
(20)

4.2.2. Generation according tof
(
σ2

e |ψe,A,S,Y
)

From f
(
σ2

e ,A, ψe

∣∣S,Y), it can be shown that the condi-
tional distribution of the noise variance in each observation
spectrum is the following IG distribution:

σ2
e,i |ψe,ai,S,yi ∼ IG

(
ρe + L

2
,
ψe +

∥∥yi − ScT
i

∥∥2

2

)
.

4.3. Generation according tof
(
S
∣∣A,σ2

e ,Y
)

To sample according tof
(
S
∣∣A,σ2

e ,Y
)
, it is very convenient

to generate samples fromf
(
σ2

s ,S
∣∣A,σ2

e ,Y
)

by using the
following steps:

4.3.1. Generation according tof
(
σ2

s

∣∣S,A,σ2
e ,Y

)
Looking at the joint distributionf

(
A,S,σ2

e ,σ
2
s |Y

)
, the fol-

lowing result can be obtained, for each source spectrum,m =
1, . . . ,M :

σ2
s,m

∣∣sm ∼ IG

(
L+ ρs

2
,
ψs + ‖sm‖2

2

)
. (21)

4.3.2. Generation according tof
(
S
∣∣σ2

s ,A,σ
2
e ,Y

)
Straightforward computations show that the posterior distri-
bution of each source spectrumf

(
sm
∣∣σ2

s ,A,σ
2
e ,Y

)
, m =

1, . . . ,M , is the following truncated Gaussian distribution:

sm
∣∣σ2

s ,A,σ
2
e ,Y ∼ N+

(
λm, δ

2
mIL

)
, (22)

with


λm = δ2m

[∑N
i=0

εi,m

η2
i,m

]T
,

δ2m =
[∑N

i=0
1

η2
i,m

]−1

,
and


ε0,m = 0L,

εi,m = yi−S−mcT
i,−m

ci,m
,

η2
0,m = σ2

s,m,

η2
i,m = σ2

e,i

c2i,m
,

(23)
and whereS−m (resp.ci,−m) denotes the matrixS (resp. the
vectorci) where themth column (resp. themth coefficient)
has been removed.

5. ILLUSTRATIONS

5.1. Synthetic data

This section presents some simulation results illustrating the
performance of the proposed Bayesian blind unmixing pro-
cedure. The spectral sources used in the mixtures are simu-
lated to get observed signals similar to real spectrometric data.
Each spectrum is obtained as a superposition of Gaussian and
Lorentzian shapes with different and randomly chosen para-
meters (location, amplitude and width). The mixing coeffi-
cients are also chosen to get evolution profiles similar to ki-
netic reactions. Figure 1 shows an example ofM = 3 source
signals ofL = 1000 spectral bands. The abundance evolution
profiles are simulated forN = 15 observation times. An i.i.d.
Gaussian sequence is added to each observation to obtain a
signal to noise ratio (SNR) equal to20dB in each mixture.

Fig. 1. Example of simulated spectral sources.

Fig. 2. Simulated (cross) and estimated (circles) mixing coef-
ficients with positive Gaussian (a) and exponential (b) priors
on the sources.

Figure 2 summarizes the result of100 Monte Carlo runs
for which the mixing matrix is kept unchanged while new
sources and noise sequences are generated at each simula-
tion. Figure 2-a shows a comparison between the true con-
centrations and their minimum mean square error (MMSE)
estimates obtained for a Markov chain ofNMC = 1000 itera-
tions includingNb-i = 500 burn-in iterations. The proposed
Bayesian model has also been implemented with exponential
priors for the spectral sources . The results obtained with such
priors are shown in Figure 2-b. It can be firstly noticed that
the estimated mixing coefficients satisfy positivity and addi-
tivity constraints, whatever the source prior. Moreover, an
improvement in the abundance estimation accuracy is noted
when using an exponential source prior. One may conclude



that the exponential prior seems more adequate for absorption
spectra since this prior allows one to encode sparsity more ef-
ficiently than the Gaussian prior.

5.2. Application to infrared absorption spectra

To validate the algorithm with real data, an experiment has
been performed on mixture data obtained from near infrared
(NIR) spectroscopy measurements. Three known chemical
species (cyclopentane, cyclohexane and n – pentane) are mixed
experimentally with monitored concentrations. These species
have been chosen for two main reasons: their available spec-
tra in the NIR frequency bands are highly overlapping. In
addition, as these species are inert solvents, they do not inter-
act when they are mixed, which ensures that no new compo-
nent appears. Figure 3 shows the pure spectra of the chemical
species.

Fig. 3. Measured pure spectra of the mixed alcanes.

The results of concentration matrix estimation are reported
in figure 4. It can be noticed that the abundance fraction pro-
files are estimated correctly, while a small difference between
the actual abundances and the estimated ones can be noted.
This is explained by the baseline that can be observed in the
actual spectra in the spectral domain ranging from2.4µm
to 3.5µm. As a consequence, the component spectra in the
NIR region are less parsimonious than those used in subsec-
tion 5.1.

Fig. 4. True (cross) and estimated (circles) mixing coeffi-
cients using exponential priors on the sources.

6. CONCLUSION

This paper addresses the problem of unmixing linear mixtures
whose regression coefficients satisfy additivity and positivity
constraints. A hierarchical Bayesian model is defined with
appropriate priors ensuring the model constraints. Estimation
of the sources as well as the mixing coefficients is then per-
formed by using samples distributed according to their joint
posterior, generated by using a Gibbs sampling strategy. The
application to spectroscopic signal analysis seems very promis-
ing. Indeed, the results conducted on synthetic and real data
show that the proposed unmixing algorithm allows one to per-
form the separation under the additivity and positivity con-
straint efficiently. However the estimation can be improved
by using more elaborated prior on the sources. This will be
one of our future investigation.

7. REFERENCES

[1] M.-H. Chen and J. J. Deely, “Bayesian analysis for a con-
strained linear multiple regression problem for predicting the
new crop of apples,”J. of Agricultural, Biological, and Envi-
ronmental Stat., vol. 1, no. 4, pp. 467–489, Dec. 1996.

[2] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and
C. Carteret, “Separation of non-negative mixture of non-
negative sources using a Bayesian approach and MCMC
sampling,”IEEE Trans. Signal Processing, vol. 54, no. 11, pp.
4133–4145, Nov. 2006.

[3] C. Févotte and S. J. Godsill, “A Bayesian approach for blind
separation of sparse sources,”IEEE Trans. Audio, Speech, Lan-
guage Processing, vol. 14, no. 6, pp. 2174–2188, Nov. 2006.

[4] N. Keshava and J. F. Mustard, “Spectral unmixing,”IEEE Sig-
nal Processing Magazine, vol. 19, no. 1, pp. 44–57, Jan. 2002.

[5] D. C. Heinz and C.-I Chang, “Fully constrained least-squares
linear spectral mixture analysis method for material quantifi-
cation in hyperspectyral imagery,”IEEE Trans. Geosci. and
Remote Sensing, vol. 29, no. 3, pp. 529–545, March 2001.

[6] N. Dobigeon and J.-Y. Tourneret, “Spectral unmixing of hyper-
spectral images using a hierarchical Bayesian model,” inProc.
IEEE Int. Conf. Acoust., Speech, and Signal (ICASSP), Hon-
olulu, Hawaii, USA, April 2007, pp. 1209–1212.

[7] A. de Juan and R. Tauler, “Chemometrics applied to un-
ravel multicomponent processes and mixtures: Revisiting lat-
est trends in multivariate resolution,”Analytica Chimica Acta,
vol. 500, no. 1–2, pp. 195–210, Dec. 2003.

[8] E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald,
“Bayesian curve fitting using MCMC with applications to sig-
nal segmentation,”IEEE Trans. Signal Processing, vol. 50,
no. 3, pp. 747–758, March 2002.

[9] C. P. Robert, “Simulation of truncated normal variables,”Sta-
tistics and Computing, vol. 5, no. 2, pp. 121–125, June 1995.

[10] N. Dobigeon and J.-Y. Tourneret, “Efficient sampling
according to a multivariate Gaussian distribution truncated on
a simplex,” IRIT/ENSEEIHT/T́eSA, Tech. Rep., March 2007.
[Online]. Available: http://www.enseeiht.fr/˜dobigeon


