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a b s t r a c t

This paper addresses the problem of separating spectral sources which are linearly

mixed with unknown proportions. The main difficulty of the problem is to ensure the

full additivity (sum-to-one) of the mixing coefficients and non-negativity of sources and

mixing coefficients. A Bayesian estimation approach based on Gamma priors was

recently proposed to handle the non-negativity constraints in a linear mixture model.

However, incorporating the full additivity constraint requires further developments.

This paper studies a new hierarchical Bayesian model appropriate to the non-negativity

and sum-to-one constraints associated to the sources and the mixing coefficients of

linear mixtures. The estimation of the unknown parameters of this model is performed

using samples obtained with an appropriate Gibbs algorithm. The performance of the

proposed algorithm is evaluated through simulation results conducted on synthetic

mixture data. The proposed approach is also applied to the processing of multi-

component chemical mixtures resulting from Raman spectroscopy.
1. Introduction

Blind source separation (BSS) is a signal processing
problem arising in many applications where one is
interested by extracting signals that are observed as
mixtures [1]. Pioneering works dealing with this problem
have focused on the mutual statistical independence of
the sources, which led to the well known independent
component analysis (ICA) [2–5]. However, when the
sources and the mixing coefficients have to satisfy specific
constraints the resulting constrained source separation
problem becomes more complicated. Therefore appropri-
ate separation algorithms have to be developed to handle
IRIT/INP-ENSEEIHT,
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these constraints. When the sources are actually inde-
pendent, ICA provides estimates of the sources and mixing
coefficients which implicitly satisfy these constraints.
However, these algorithms, that try to maximize the
independence between the estimated sources, have not
been designed for correlated sources.

Non-negativity is a physical constraint which has
retained a growing attention during the last decade. For
instance, Plumbley and his co-authors have addressed the
case of non-negative independent sources and proposed
the non-negative independent component analysis algo-
rithm [6]. The case of both non-negative sources and non-
negative mixing coefficients has been handled by using
non-negative matrix factorization (NMF) algorithms [7]
and a Bayesian positive source separation (BPSS) algo-
rithm [8]. By adding a source sparsity constraint, a method
ensuring the sparseness of the sources (referred to as non-
negative sparse coding) has been presented in [9]. A
Bayesian approach allowing one to perform the separation
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1 This condition is also referred to as sum-to-one constraint in the

literature.
of sparse sources has also been proposed in [10] using a
T-student distribution. Cauchy hyperbolic priors have
been introduced in [11] without considering the non-
negativity constraint.

This paper addresses a source separation problem in
the case of linear instantaneous mixtures where the
source signals are non-negative and the mixing coeffi-
cients satisfy non-negativity and full additivity con-
straints. These constraints have been observed in many
applications. These applications include analytical chem-
istry for the analysis of kinetic reactions monitored by
spectroscopy [12] or image processing for the analysis of
hyperspectral images [13]. A Bayesian framework appro-
priate to constrained source separation problem is first
proposed. Prior distributions encoding non-negativity
and full additivity constraints are assigned to the source
signals and mixing coefficients. However, the standard
Bayesian estimators resulting from these priors have no
simple closed form expression. As a consequence, Markov
chain Monte Carlo (MCMC) methods are proposed to
generate samples according to the full posterior distribu-
tion of the unknown parameters. Estimators of the mixing
coefficients and the source signals are then constructed
from these generated samples. The paper is organized as
follows. Section 3 defines a hierarchical Bayesian model
(HBM) for the addressed constrained source separation
problem. In particular, prior distributions are introduced
such that they are concentrated on a simplex and they
satisfy the positivity and full additivity constraints.
Section 4 describes a Gibbs sampling strategy that allows
one to overcome the computational complexity inherent
to this HBM. Simulations conducted on synthetic mixture
data are presented in Section 5. As a consequence, the
performance of the proposed Bayesian estimation algo-
rithm can be appreciated for constrained source separa-
tion problems. The interest of the proposed Bayesian
approach is also illustrated by the analysis of real
experimental data reported in Section 6. Conclusions
and perspectives are reported in Section 7.

2. Problem statement

The linear mixing model studied in this paper assumes
that the observed signal is a weighted sum of M unknown
sources. In the case of spectral mixture data this model
can be expressed by

yi;j ¼
XM
m¼1

ci;msm;j þ ei;j, (1)

where yi;j is the observed spectrum at time/spatial index i

(i ¼ 1; . . . ;N) in the jth spectral band (j ¼ 1; . . . ; L), N is the
number of observed spectra, M is the number of mixture
components and L is the number of spectral bands. The
coefficient ci;m is the contribution of the mth component
in the ith mixture and ei;j is an additive noise modeling
measurement errors and model uncertainties. The linear
mixing model can be represented by the following matrix
formulation:

Y ¼ CSþ E, (2)
where the matrices Y ¼ ½yi;j�i;j 2 R
N�L, C ¼ ½ci;m�i;m 2 R

N�M ,
S ¼ ½sm;j�m;j 2 R

M�L and E ¼ ½ei;j�i;j 2 R
N�L contain, respec-

tively, the observed spectra, the mixing coefficients, the
spectral sources and the additive noise components.
The noise sequences ei ¼ ½ei;1; . . . ; ei;L�

T (i ¼ 1; . . . ;N) are
assumed to be independent and identically distributed
(i.i.d.) according to zero-mean Gaussian distributions with
covariance matrices s2

e;iIL, where IL is the L� L identity
matrix. Note that this last assumption implies that
the noise variances are the same in all the spectral bands.
This reasonable assumption has been considered in many
recent works including [8,11]. It could be relaxed at the
price of increasing the computational complexity of the
proposed algorithm [14].

In the framework of spectral data analysis, it is obvious
from physical considerations that both the mixing
coefficients and the source signals satisfy the following
non-negativity constraints:

sm;j � 0 and ci;m � 0; 8ði;m; jÞ. (3)

Moreover, in many applications, the mixing coefficients
have also to satisfy the full additivity constraint1:

XM
m¼1

ci;m ¼ 1; 8i. (4)

These applications include spectroscopy for the analysis
of kinetic reactions [15] and hyperspectral imagery
where the mixing coefficients correspond to abundance
fractions [16].

The separation problem addressed in this paper
consists of jointly estimating the abundances and the
spectral sources under the non-negativity and the full
additivity constraints. There are several methods allowing
one to address the estimation problem under non-
negativity constraint. These methods include NMF meth-
ods [17] and its variants [1]. From a Bayesian point of view
an original model was proposed in [8] where Gamma
priors are used to encode the positivity of both the sources
and the mixing coefficients. This paper goes a step further
by including the additivity of the mixing coefficients
in the Bayesian model. Note that this constraint allows
one to resolve the scale indeterminacy inherent to the
linear mixing model even if non-negativity constraint
is imposed. Indeed, this full additivity constraint enforces
the ‘1 norm of each concentration vector ci to be equal
to kcik1 ¼

PM
m¼1 jci;mj ¼ 1.

3. Hierarchical Bayesian model

The unknown parameter vector for the source separa-
tion problem described previously is H ¼ ðS;C;r2

e Þ where
S and C are the source and concentration matrices and
r2

e ¼ ðse;1; . . . ;se;NÞ
T

contains the noise variances. Follow-
ing the Bayesian estimation theory, the inference of the
unknown parameters from the available data Y is based on
the posterior distribution f ðHjYÞ, which is related to the
observation likelihood f ðYjHÞ and the parameter priors



f ðHÞ via the Bayes’ theorem

f ðHjYÞ / f ðYjHÞf ðHÞ,

where / means ‘‘proportional to’’. The observation like-
lihood and the parameter priors are detailed in the sequel.

3.1. Observation likelihood

The statistical assumptions on the noise vector ei and
the linear mixing model described in (1) allow one to
write:

yijS; ci;s2
e;i�NðS

Tci;s2
e;iILÞ, (5)

where yi ¼ ½yi;1; . . . ; yi;L�
T, ci ¼ ½ci;1; . . . ; ci;M�

T and Nð�; �Þ
denotes the Gaussian distribution. By assuming the
mutual independence between the vectors e1; . . . ; eN , the
likelihood of Y is

f ðYjC; S;r2
e Þ /

1QN
i¼1 sL

e;i

exp �
XN

i¼1

kyi � STcik
2
2

2s2
e;i

!
, (6)

where kxk2 ¼ ðx
TxÞ1=2 stands for the standard ‘2 norm.

3.2. Parameter priors

3.2.1. Concentrations

In order to ensure the non-negativity and additivity
constraints, the concentrations are assigned a Dirichlet
prior distribution. This distribution is frequently used
in statistical inference for positive variables summing to
one. The Dirichlet probability density function (pdf) is
defined by

Dðcijd1; . . . ; dMÞ ¼
G
PM

m¼1 dm

� �
QM

m¼1 GðdmÞ

YM
m¼1

cdm�1
i;m

!
�1
fci;m�0;

PM

m¼1
ci;m¼1g

ðciÞ, (7)

where d1; . . . ; dM are the Dirichlet distribution parameters,
Gð�Þ is the Gamma function and 1Að:Þ denotes the indicator
function defined on the set A:

1AðxÞ ¼ 1 if x 2 A;

1AðxÞ ¼ 0 otherwise:

(
(8)

According to this prior, the expected value of the mth
spectral source abundance is E½ci;m� ¼ dm=

PM
m¼1dm.

We assume here that the abundances are a priori

equiprobable (reflecting the absence of knowledge regard-
ing these parameters) which corresponds to identical
parameters fdm ¼ 1; 8m ¼ 1; . . . ;Mg. An interesting repar-
ametrization can be introduced here to handle the full
additivity constraint. This reparametrization consists of
splitting the concentration vectors into two parts2:

ci ¼ ½a
T
i ; ci;M �

T, (9)

where aT
i ¼ ½ci;1; . . . ; ci;M�1� and ci;M ¼ 1�

PM�1
m¼1ci;m. It

induces a new unknown parameter vector H ¼ fA; S;r2
eg
2 From a practical point of view, it is interesting to note that the

component of ai to be discarded will be randomly chosen at each

iteration of the algorithm introduced in Section 4.
(the same notation is used for this new parameter vector to
avoid defining new variables). The proposed prior for ai, i ¼

1; . . . ;N is a uniform distribution on the following simplex:

S ¼ ai; ai;m � 0; 8m ¼ 1; . . . ;M � 1;
XM�1

m¼1

ai;m � 1

( )
. (10)

By assuming a priori mutual independence between
the vectors ai, the prior distribution for the matrix A ¼
½a1; . . . ; aN�

T reduces to

f ðAÞ /
YN
i¼1

1SðaiÞ. (11)

3.2.2. Source signals

To take into account the non-negativity constraint, the
two parameter Gamma distribution seems to be a good
candidate thanks to its flexibility, i.e. the pdf has many
different shapes depending on the values of its parameters
(see [8] for motivations). This distribution encodes
positivity and covers a wide range of distribution shapes.3

The assumption of independent source samples leads to a
prior distribution for each spectral source expressed as

f ðsmjam;bmÞ ¼
bam

m

GðamÞ

� �LYL

j¼1

½sam�1
m;j expð�bmsm;jÞ1Rþ ðsm;jÞ�.

(12)

Note that this distribution generalizes the exponential
prior presented in [19,20] and has the advantage of
providing a wider variety of distributions (see also Section
5.5 for additional details regarding the exponential prior).
Finally, by assuming the mutual independence between
the spectral sources, we obtain the following prior
distribution for S:

f ðSja;bÞ ¼
YM
m¼1

f ðsmjam;bmÞ, (13)

where a ¼ ½a1; . . . ;aM�
T and b ¼ ½b1; . . . ;bM �

T are the
source hyperparameter vectors.

3.2.3. Noise variances

Conjugate priors which are here inverse Gamma (IG)
distributions are chosen for each noise variance s2

e;i [21,
Appendix A]:

s2
e;ijre;ce�IG

re

2
;
ce

2

� �
, (14)

where IGða; bÞ denotes the IG distribution with para-
meters a and b. Note that choosing conjugate distributions
as priors makes the Bayesian analysis easier [22, Chapter
2]. By assuming the independence between the noise
variances s2

e;i, i ¼ 1; . . . ;N, the prior distribution of r2
e is

f ðr2
e jre;ceÞ ¼

YN
i¼1

f ðs2
e;ijre;ceÞ. (15)

The hyperparameter re will be fixed to re ¼ 2 whereas ce

is an adjustable hyperparameter as in [23].
3 A more general model would consist of using a mixture of Gamma

distributions as in [18]. However, the Gamma distribution which leads to

a simple Bayesian model has been preferred here for simplicity.



Fig. 1. DAG for the parameter priors and hyperpriors (the fixed

parameters appear in dashed boxes).
3.3. Hyperparameter priors

The hyperparameter vector associated with the prior
distributions previously introduced is U ¼ fa;b;ceg. Ob-
viously, the BSS performances depend on the values
of these hyperparameters. In this paper, we propose to
estimate them within a fully Bayesian framework by
assigning them non-informative prior distributions. This
naturally introduces a second level of hierarchy within the
Bayes’ paradigm, resulting in a so-called hierarchical
Bayesian model [24, p. 299].

3.3.1. Source hyperparameters

Conjugate exponential densities with parameters lam

have been chosen as prior distributions for the hyper-
parameters am [21, Appendix A]:

amjlam�Eðlam Þ. (16)

Conjugate Gamma distributions with parameters
ðabm

;bbm
Þ have been elected as prior distributions for the

hyperparameters bm [21, Appendix A]:

bmjabm
;bbm
�Gðabm

;bbm
Þ. (17)

The fixed hyperparameters fabm
;bbm

; lam gm have been
chosen to obtain flat priors, i.e. with large variances: abm

¼

2;bbm
¼ 10�2 and lam ¼ 10�2.

3.3.2. Noise variance hyperparameters

The prior for ce is a non-informative Jeffreys’ prior
which reflects the lack of knowledge regarding this
hyperparameter

f ðceÞ /
1

ce

1Rþ ðceÞ. (18)

Assuming the independence between the hyperpara-
meters, the prior distribution of the hyperparameter
vector U ¼ fa;b;ceg can be written as

f ðUÞ /
YM
m¼1

½lam expð�lamamÞ1Rþ ðamÞ�

�
YM
m¼1

½babm
�1

m expð�bbm
bmÞ1Rþ ðbmÞ�

1

ce

1Rþ ðceÞ. (19)

3.4. Posterior distribution of H

The posterior distribution of the unknown parameter
vector H ¼ fA; S;r2

eg can be computed from the following
hierarchical structure:

f ðHjYÞ /
Z

f ðYjHÞf ðHjUÞf ðUÞdU, (20)

where f ðYjHÞ and f ðUÞ have been defined in (6) and (19).
Moreover, by assuming the independence between A, S
and r2

e , the following result can be obtained:

f ðHjUÞ ¼ f ðAÞf ðSjr2
s Þf ðr

2
e jre;ceÞ, (21)

where f ðAÞ, f ðSjr2
s Þ and f ðr2

e jre;ceÞ have been defined
previously. This hierarchical structure, depicted in the
directed acyclic graph (DAG) of Fig. 1, allows one to
integrate out the hyperparameters ce and b from the joint
distribution f ðH;UjYÞ, yielding

f ðA; S;r2
e ;ajYÞ /

YN
i¼1

1SðaiÞ

sLþ2
e;i

exp �
kyi � STcik

2

2s2
e;i

!" #

�
YM
m¼1

GðLam þ abm
þ 1Þ

ð
PL

j¼1sm;j þ bbm
Þ
Lajþabm

þ1

" #

�
YM
m¼1

YL

j¼1

sm;j

GðamÞ

0@ 1Aam�1

1RL
þ

ðsmÞ

264
375. (22)

The posterior distribution in (22) is clearly too complex
to derive the classical Bayesian estimators of the unknown
parameters, such as the minimum mean square error
(MMSE) estimator or the maximum a posteriori (MAP)
estimator. To overcome the difficulty, it is quite common
to make use of MCMC methods to generate samples
asymptotically distributed according to the exact poster-
ior of interest [24]. The simulated samples are then used
to approximate integrals by empirical averages for the
MMSE estimator and to estimate the maximum of the
posterior distribution for the MAP estimator. The next
section proposes a Gibbs sampling strategy for the BSS
of the spectral mixtures under the positivity and full
additivity constraints.

4. Gibbs sampler

The Gibbs sampler is an iterative sampling strategy

that consists of generating samples (denoted e�ðtÞ) distrib-
uted according to the conditional distribution of each
parameter. This section describes a Gibbs sampling

strategy generating samples ðeAðtÞ;eSðtÞ; fer2
gðtÞ; eaðtÞÞ asympto-

tically distributed according to (22). The main steps of the
algorithm (denoted as Algorithm 1) are detailed from
Sections 4.1–4.3.

Algorithm 1. Gibbs sampling algorithm for blind spectral
source separation
	
 Initialization:
(1) sample the hyperparameter ecð0Þe from the pdf in (18),
(2) for i ¼ 1; . . . ;N, sample the noise variance fes2

e;ig
ð0Þ

from the pdf in (14),



(3) for m ¼ 1; . . . ;M, sample the hyperparameter eað0Þm

from the pdf in (16),
(4) for m ¼ 1; . . . ;M, sample the hyperparameter ebð0Þm

from the pdf in (17),
(5) for m ¼ 1; . . . ;M, sample the source spectrum esðtÞm

from the pdf in (12).
(6) Set t 1,

	
 Iterations: for t ¼ 1;2; . . . ; do

1. for i ¼ 1; . . . ;N, sample the concentration vector eaðtÞi

from the pdf in (25),
2. sample the hyperparameter ecðtÞe from the pdf in

(26),
3. for i ¼ 1; . . . ;N, sample the noise variance fes2

e;ig
ðtÞ

from the pdf in (27),
4. for m ¼ 1; . . . ;M, sample the hyperparameter eaðtÞm

from the pdf in (28),
5. for m ¼ 1; . . . ;M, sample the hyperparameter ebðtÞm

from the pdf in (29),
6. for m ¼ 1; . . . ;M, sample the source spectrum esðtÞm

from the pdf in (30).
7. Set t t þ 1.
4.1. Generation according to f ðAjS;r2
e ;YÞ

Straightforward computations yield for each observa-
tion

f ðaijS;s2
e;i; yiÞ / exp �

ðai � liÞ
TK�1

i ðai � liÞ

2

" #
1TðaiÞ, (23)

where

Ki ¼
1

s2
e;i

ðST
�M;� � sMuTÞ

T
ðST
�M;� � sMuTÞ

" #�1

;

li ¼ Ki
1

s2
e;i

ðST
�M;� � sMuTÞ

T
ðyi � sMÞ

" #
;

8>>>>><>>>>>:
(24)

with u ¼ ½1; . . . ;1�T 2 RM�1 and where S�M;� denotes the
matrix S from which the Mth row has been removed. As a
consequence, aijS;s2

e;i; yi is distributed according to a
truncated Gaussian distribution on the simplex S:

aijS;s2
e;i; yi�NSðli;KiÞ. (25)

When the number M of spectral sources is relatively small,
the generation of aijS;s2

e;i; yi can be achieved using a
standard Metropolis Hastings (MH) step. By choosing the
Gaussian distribution Nðli;KiÞ as proposal distribution
for this MH step, the acceptance ratio of the MH algorithm
reduces to 1 if the candidate is inside the simplex S and 0
otherwise. For higher dimension problems, the acceptance
ratio of the MH algorithm can be small, leading to poor
mixing properties. In such cases, an alternative strategy
based on a Gibbs sampler can be used (see [25,26]).

4.2. Generation according to f ðr2
e jA; S;YÞ

To sample according to f ðr2
e jA; S;YÞ, it is very con-

venient to generate samples from f ðr2
e ;cejA; S;YÞ by using

the two following steps:
4.2.1. Generation according to f ðcejr
2
e ;A; S;YÞ

The conditional distribution is expressed as the
following IG distribution:

cejr
2
e ;re�IG

Nre

2
;
1

2

XN

i¼1

1

s2
e;i

!
. (26)

4.2.2. Generation according to f ðr2
e jce;A; S;YÞ

After a careful examination of f ðr2
e ;A;cejS;YÞ, it can be

deduced that the conditional distribution of the noise
variance in each observation spectrum is the following IG
distribution:

s2
e;ijce;ai; S; yi�IG

re þ L

2
;
ce þ kyi � ScT

i k
2

2

!
. (27)

4.3. Generation according to f ðSjA;r2
e ;YÞ

This generation can be achieved thanks to the three
following steps, as in [8].

4.3.1. Generation according to f ðajb; S;A;r2
e ;YÞ

From the joint distribution f ðA; S;r2
e ;a;bjYÞ, we can

express the posterior distribution of am (m ¼ 1; . . . ;M) as

f ðamjsm;bmÞ /
YL

j¼1

bam

m

GðamÞ
sam

m;j

� �
e�lamam 1Rþ ðamÞ. (28)

This posterior is not easy to simulate as it does not
belong to a known distribution family. Therefore, an MH
step is required to generate samples eaðtÞm distributed
according to (28). The reader is invited to consult [8] for
more details regarding the choice of the instrumental
distribution in order to obtain a high acceptance rate for
the MH algorithm.

4.3.2. Generation according to f ðbja; S;A;r2
e ;YÞ

Similarly, the posterior distribution of the hyperpara-
meter vector b can be determined by looking at the joint
distribution f ðA; S;r2

e ;a;bjYÞ. In this case, the posterior
distribution of the individual hyperparameter bm

(m ¼ 1; . . . ;M) is the following Gamma distribution:

bmjam; sm�G 1þ Lam þ aam ;
XL

j¼1

sm;j þ bam

0@ 1A. (29)

4.3.3. Generation according to f ðSja;b;A;r2
e ;YÞ

Finally, the posterior distribution of the source ob-
served in the jth spectral band is

f ðsm;jjam;bm;A;r
2
e ;YÞ / sam�1

m;j 1Rþ ðsm;jÞ

� exp �
ðsm;j � mm;jÞ

2

2d2
m

� bmsm;j

" #
,

(30)

with

d2
m ¼

PN
i¼1

c2
i;m

s2
e;i

" #�1

;

mm;j ¼
1

d2
m

PN
i¼1

ci;m�
ð�mÞ
i;j

s2
e;i

;

8>>>>>><>>>>>>:
(31)



where �ð�mÞ
i;j ¼ yi;j �

P
kam ci;ksk;j. The generation of sam-

ples distributed according to (30) is achieved by using an
MH algorithm whose proposal is a positive truncated
normal distribution [8]. The generation according to the
positive truncated Gaussian distribution can be achieved
thanks to an accept–reject scheme with multiple proposal
distributions (see [25,27,28] for details).

5. Experimental results with synthetic data

This section presents some experiments performed
on synthetic data to illustrate the performance of the
proposed Bayesian spectral unmixing algorithm.

5.1. Mixture synthesis

The spectral sources have been simulated to get signals
similar to absorption spectroscopy data. Each spectrum is
obtained as a superposition of Gaussian and Lorentzian
functionals with randomly chosen parameters (location,
amplitude and width) [8]. Fig. 2(left) shows an example
of M ¼ 3 source signals of L ¼ 1000 spectral bands. For
this application, a ‘‘spectral’’ band corresponds to a given
value of the wavelength l (expressed in nanometers).
The mixing coefficients have been chosen to obtain
evolution profiles similar to component abundance varia-
tion in a kinetic reaction, as depicted in Fig. 2 (top, right).
The abundance fraction profiles have been simulated for
N ¼ 10 observation times, which provides N ¼ 10 obser-
vation spectra. An i.i.d. Gaussian sequence has been added
to each observation with appropriate standard deviation
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Fig. 2. Top: example of M ¼ 3 simulated spectral sources where the x-axis corre

the absorbance of the spectra. Bottom, left: abundance evolution profiles. Botto
to have a signal to noise ratio (SNR) equal to 20 dB.
One typical realization of the observed spectra is shown in
Fig. 2 (bottom, right).

5.2. Separation with non-negativity and full additivity

constraints

Fig. 3 summarizes the result of a Monte Carlo
simulation with 100 runs where the mixing matrix has
been kept unchanged, while new sources and noise
sequences have been generated at each run. Fig. 3a shows
a comparison between the true concentrations (cross) and
their MMSE estimates (circles) obtained for a Markov
chain of NMC ¼ 1000 iterations including Nb�i ¼ 200 burn-
in iterations. These estimates have been computed
according to the MMSE principle (i ¼ 1; . . . ;M):

âi ¼
1

Nr

XNr

t¼1

eaðNb�iÞ

i þ t, (32)

where Nr ¼ NMC � Nb�i is the number of iterations used
for the estimation. The estimated abundances are clearly
in good agreement with the actual abundances and the
estimates satisfy the positivity and full additivity con-
straints. By comparing Figs. 2 (left) and 3 (top), it can be
observed that the source signals have also been correctly
estimated.

It is interesting to note that the proposed algorithm
generates samples distributed according to the posterior
distribution of the unknown parameters f ðA; S;r2

e ;ajYÞ.
These samples can be used to obtain the posterior
distributions of the concentrations or the source spectra.
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Fig. 3. Top: simulated (dotted) and estimated (continuous line) source spectra. Bottom: simulated values (cross) and MMSE estimates (circles) of the

abundances. Error bars indicate the estimated 95% confidence intervals from the simulated Markov chain.

Fig. 4. Left (resp. right): posterior distribution of the concentration of the second (resp. third) spectral component in the mixture observed at index time

i ¼ 2 (resp. i ¼ 9). The actual values appear as black bars.
As an example, typical posterior distributions for two
mixing coefficients are depicted in Fig. 4. These posteriors
are in good agreement with the theoretical posterior
distributions in (25), i.e. truncated Gaussian distributions.
5.3. Monitoring sampler convergence

An important issue when using MCMC methods is
convergence monitoring. The Gibbs sampler detailed in
Section 4 generates random samples ðeAðtÞ;eSðtÞ; er2ðtÞ
; eaðtÞÞ

asymptotically distributed according to the posterior
distribution in (22). The quantities of interest, i.e. the
concentration coefficients and the source spectra, are then
approximated by empirical averages according to (32).
However, two essential parameters have to be tuned:
the length NMC of the constructed Markov chain and the
length Nb2i of the burn-in period, i.e. the number of
simulated samples to be discarded before computing the
averages. This section reports some works conducted to
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number (with a burn-in of Nb2i ¼ 200 iterations).
ensure the convergence of the proposed algorithm and the
accuracy of the estimation for the unknown parameters.

First, the burn-in period Nb�i ¼ 200 has been deter-
mined thanks to the popular potential scale reduction
factor (PSRF). The PSRF was introduced by Gelman and
Rubin [29] and has been widely used in the signal
processing literature (see for instance [30–32]). It consists
of running several parallel Markov chains and computing
the following criterion:

r̂ ¼ 1�
1

Nr

� �
1þ

1

ðNr � 1Þ

BðkÞ
WðkÞ

� �
, (33)

where W and B are the within and between-sequence
variances of the parameter k, respectively. Different
choices for k can be used for our source separation pro-
blem. Here, we consider the parameters s2

e;i (i ¼ 1; . . . ;N)
as recommended in [33]. Table 1 shows the PSRF obtained
for the N ¼ 10 observation times computed from M ¼ 10
Markov chains. All these values of

ffiffi
½
p
�r̂ confirm the good

convergence of the sampler since a recommendation for
convergence assessment is

ffiffi
½
p
�r̂o1:2 [34, p. 332].

The Markov chain convergence can also be monitored
by a graphical supervision of the generated samples of
the noise variances. As an illustration, the outputs of
10 Markov chains for one of the parameter s2

e;i are
depicted in Fig. 5. All the generated samples converge to
a similar value after a short burn-in period (200 iterations,
in this example).

Once the number of burn-in iterations has been fixed,
the number of iterations necessary to obtain accurate
estimates of the unknown parameters via (32) has to be
adjusted. This paper proposes to evaluate Nr with appro-
priate graphical evaluations (see [35, p. 28] for motivations).
Fig. 6 shows the reconstruction error associated to the
different spectra defined as

e2
r ðpÞ ¼

1

NL

XN

i¼1

kyi � ðĉi
ðpÞ

Ŝ
ðpÞ
Þ
T
k2, (34)

where ĉi
ðpÞ

and Ŝ
ðpÞ

are the MMSE estimates of the
abundance vector ci and the source matrix S computed
after Nb�i ¼ 200 burn-in iterations and Nr ¼ p iterations.
The number of iterations Nr required to compute the
empirical averages following the MMSE estimator (32) can
be fixed to ensure the reconstruction error is below a
predefined threshold. Fig. 6 shows that a number of
Table 1

Potential scale reduction factors of s2
e;i computed from M ¼ 10 Markov

chains.

Obs. index
ffiffi
½
p
�r̂

1 1.0048

2 1.0013

3 1.0027

4 0.9995

5 1.0097

6 1.0078

7 1.0001

8 0.9994

9 1.0080

10 1.0288
iterations Nr ¼ 500 is sufficient to ensure a good estima-
tion of the quantities of interest C and S.

5.4. Comparison with other BSS algorithms

The proposed Bayesian approach has been compared
with other standard BSS methods. Synthetic mixtures
have been processed by the non-negative ICA (NN-ICA)
algorithm proposed by Plumbley and Oja [36], the
iterative NMF method described in [7] and the Bayesian
positive source separation algorithm introduced in [8].

All these methods do not include the full additivity
constraint. To evaluate the relevance of this additional
constraint, ad hoc re-scaled versions of these methods
have also been considered. Simulations have been con-
ducted by applying the 4 algorithms using 100 Monte
Carlo runs, each run being associated to a randomly
generated source. Table 2 shows the normalized mean
square errors (NMSEs) for the estimated sources and



Table 2
Estimation performance for different BSS algorithms (100 Monte Carlo

runs).

NMSE ðSÞ NMSE ðCÞ Av. diss ðSÞ ð%Þ Time (min)

Proposed approach 0.0071 0.0024 13.9 44

BPSS 0.0121 0.0025 13.4 45

Re-scaled BPSS 0.0126 0.0023 13.4 45

NN-ICA 0.0613 0.0345 20.0 3

Re-scaled NN-ICA 0.0602 0.0384 19.4 3

NMF 0.2109 1.9149 22.6 1

Re-scaled NMF 0.0575 0.0496 24.5 1
abundance matrices as defined in [37]

NMSE ðSÞ ¼
XM
m¼1

ksm � ŝmk
2

ksmk
2

,

NMSE ðCÞ ¼
XN

i¼1

kci � ĉik
2

kcik
2

. (35)

In addition, the estimation performances have been
compared in terms of dissimilarity. Denoted dissð�; �Þ, it
measures how the estimated source spectrum differs from
the reference one [38] and is defined by

dissðsm; ŝmÞ ¼
ffiffi
½

p
�1� corrðsm; ŝmÞ

2, (36)

where corrðsm; ŝmÞ is the correlation coefficient between
sm and its estimate ŝm. Consequently the average dissim-
ilarity over the M sources is reported in Table 2.

These results demonstrate that an ad hoc re-scaling of
the results obtained by NMF techniques is not always an
efficient means to improve the estimation performance.
Indeed, the ad hoc re-scaled version of NMF provides
lower MSEs than the corresponding standard algorithms.
On the other hand, this constraint does not significantly
improve the NN-ICA or the BPSS algorithms. As far as the
Bayesian algorithms are concerned, they clearly provide
better estimation performance than the non-Bayesian
approaches. However, the proposed fully constrained
algorithm clearly outperforms the two BPSS algorithms,
especially regarding the source estimation.

The computation times required by each of these
algorithms are also reported in Table 2 for a MATLAB
implementation on a 2.2 GHz Intel Core 2. This shows that
the complexities of the proposed method and BPSS
algorithms are quite similar and higher than the complex-
ities of the NN-ICA and MNF algorithms. This seems to be
the price to pay to obtain significantly better estimation
performances.

5.5. Modified Bayesian models with other source priors

As it has been mentioned previously, several distribu-
tions can be chosen as priors for the source spectra,
provided these distributions have positive supports. The
previous HBM studied in Section 3.2.2 is based on Gamma
distributions as source priors. However, simpler models
can be obtained for instance by choosing exponential
priors with different scale parameters s2
s;m:

f ðsmjs2
s;mÞ /

YL

j¼1

1

s2
s;m

exp �
sm;j

2s2
s;m

!
1Rþ ðsm;jÞ, (37)

or positive truncated Gaussian distribution with different
hidden variances s2

s;m:

f ðsmjs2
s;mÞ /

YL

j¼1

1

s2
s;m

exp �
s2

m;j

2s2
s;m

!
1Rþ ðsm;jÞ. (38)

The resulting Bayesian algorithms are simpler since only
one hyperparameter s2

s;m has to be adjusted for each source.
For both choices, conjugate IG distributions

IGðrs=2;cs=2Þ are chosen as prior distributions for the
hyperparameters s2

s;m, m ¼ 1; . . . ;M. After integrating out
the hyperparameter vector U ¼ fce;r

2
s g, the posterior

distribution in (22) can be expressed as

f ðA; S;r2
e jYÞ /

YM
m¼1

Tðsm;rs;csÞ1RL
þ

ðsmÞ

�
YN
i¼1

1

sLþ2
e;i

exp �
kyi � STcik

2

2s2
e;i

!
1SðaiÞ

" #
. (39)

The scalar Tðsm;rs;csÞ depends on the prior distribution
used for the source spectra

Tðsm;rs;csÞ ¼

½cs þ ksmk1�
�ðLþrsÞ=2 for exponential priors;

½cs þ ksmk
2
2�
�ðLþrsÞ=2 for truncated

Gaussian priors:

8><>:
(40)

In the Gibbs sampling strategy presented in Section 4,
the generation according to f ðSjA;r2

e ;YÞ in Section 4.3
is finally achieved using the following two steps:
	
 generation according to f ðr2
s jS;A;r

2
e ;YÞ:

s2
s;mjsm�IGðLþ rs;cs þ ksmk

b
‘b
Þ, (41)

where b ¼ 1 for the exponential prior and b ¼ 2
otherwise,

	
 generation according to f ðSjr2

s ;A;r
2
e ;YÞ:

smjr
2
s ;A;r

2
e ;Y�N

þ
ðkm;d

2
mILÞ, (42)

where km and d2
m, similar to (31), are derived following

the model in [8].

Table 3 reports the NMSEs (computed from 100 Monte
Carlo runs following (35)) for the sources and con-
centration matrices estimated by the different Bayesian
algorithms. The results are significantly better when
employing the Gamma distribution, which clearly indi-
cates that the Gamma prior seems to be the best choice to
model the distribution of the sources when analyzing
spectroscopy data.

6. Separation of chemical mixtures monitored by Raman
spectroscopy (RS)

Calcium carbonate is a chemical material used com-
mercially for a large variety of applications such as filler
for plastics or paper. Depending on operating conditions,



Table 3
NMSE for different source priors (100 Monte Carlo runs).

Gamma Truncated Gaussian Exponential

NMSE ðSÞ 0.0071 0.0269 0.0110

NMSE ðCÞ 0.0024 0.0089 0.0029
calcium carbonate crystallizes as calcite, aragonite or
vaterite. Calcite is the most thermodynamically stable of
the three, followed by aragonite or vaterite. Globally, the
formation of calcium carbonate by mixing two solutions
containing, respectively, calcium and carbonate ions takes
place in two well distinguished steps. The first step is the
precipitation one. This step is very fast and provides a
mixture of calcium carbonate polymorphs.4 The second
step (a slow process) represents the phase transformation
from the unstable polymorphs to the stable one (calcite).
The physical properties of the crystallized product depend
largely on the polymorphic composition, so it is necessary
to quantify these polymorphs when they are mixed.
Several techniques based on infrared spectroscopy (IR),
X-ray diffraction (XRD) or Raman spectroscopy can be
used to determine the composition of CaCO3 polymorph
mixtures. However, contrary to XRD and IR, RS is a faster
method since it does not require a sample preparation and
is a promising tool for an online polymorphic composition
monitoring. In our case, the crystallization process of
calcium carbonate is carried out in 5 mol/L NaCl solutions,
which correspond to a real industrial situation. Under the
industrial conditions, the calcite is the desired product.

The main purpose of this experiment is to show how
the proposed constrained BSS method can be used
for processing Raman spectroscopy data to study the
relation between polymorphs and temperature and to
explore favorable conditions for calcite formation in saline
solutions.
6.1. Mixture preparation and data acquisition

Calcium chloride and sodium carbonate separately
dissolved in sodium chloride solutions of the same
concentration (5 mol/L) were rapidly mixed to precipitate
calcium carbonate. A 100 mL solution containing 0.625 M
of Na2CO3 and 5 M of NaCl was added to a 2.5 L solution
containing 0.025 M of CaCl2 and 5 M of NaCl (the
precipitation is carried out under stoichiometric condi-
tions). A preliminary investigation detailed in [39]
suggested that the temperature and the aging time are
the most important factors that can affect the poly-
morphic composition. Therefore the experiments were
operated in a temperature range between 20 and 70 1C
and retaining several aging times of the precipitated
mixture. A sample was collected 2 min after the beginning
of the experiment to determine the polymorphic compo-
sition at the end of the precipitation step. Then, samples
4 The ability of a chemical substance to crystallize with several types

of structures, depending on a physical parameter, such as temperature, is

known as polymorphism. Each particular form is said a polymorph.
were collected at regular time intervals to follow the
polymorph transformation.

Raman Spectra were collected on a Jobin–Yvon T64000
spectrometer equipped with an optical microscope, a
threefold monochromator, and a nitrogen-cooled CCD
camera. The excitation was induced by a laser beam of
argon spectra physic laser stability 2017 at a wavelength
of 514.5 nm. The beam was focused using a long-frontal
�50 objective (numerical aperture 0.5) on an area
of about 3mm2. The laser power on the sample was
approximately 20 mW and the acquisition time was 1 min.
The spectral resolution was 3 cm�1, with a wavenumber
precision better than 1 cm�1. The Raman spectra were
collected at five points, which were randomly distributed
throughout the mixture. The average of all spectra
was considered as the Raman spectrum of the correspond-
ing mixture for the considered temperature value and
aging time. Raman spectra were collected 2 min after the
beginning of the experiment for various temperatures
ranging between 20 and 70 1C in order to determine the
influence of temperature on the polymorph precipitation.
Moreover for each temperature, Raman spectra were
collected at regular time intervals for monitoring phase
transformation. Finally, a total of N ¼ 37 Raman spectra of
L ¼ 477 wavelengths have been obtained.

6.2. Data preprocessing

The Raman spectra of the polymorph mixture are firstly
processed using a background removal approach proposed
in [40]. In this method, the baseline is represented by a
polynomial whose parameters are estimated by minimiz-
ing a truncated quadratic cost function. This method
requires the specification of the polynomial order and
the threshold of the quadratic cost function truncation.
This method was applied for each spectrum separately
with a fifth order polynomial and a threshold chosen
by trial and error. Fig. 7 shows the Raman spectra at the
beginning of the phase transformation step, after back-
ground removal.

6.3. Polymorph mixture separation under non-negativity

and full additivity constraints

The number of sources to be recovered is fixed to
M ¼ 3 according to the prior knowledge on the mixture
composition. The iteration number is fixed to 1000
iterations where the first 200 samples are discarded since
they correspond to the burn-in period of the Gibbs
sampler. Fig. 8 illustrates the estimated spectra using
the proposed approach incorporating the non-negativity
and the full additivity constraints.

From a spectroscopic point of view and according to
the positions of the vibrational peaks, the identification
of the three components is very easy: the first source
corresponds to calcite, the second spectrum to aragonite
and the third one to vaterite. A measure of the dissim-
ilarity between the estimated spectra and the measured
pure spectra of the three components gives 4.56% for
calcite, 0.65% for aragonite and 4.76% for vaterite. These
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results show that the proposed method can be applied
successfully without imposing any prior information on
the shape of the pure spectra.

The evolution of the polymorph proportions versus
temperature is shown in Fig. 9. Pure vaterite is observed
at 20 1C and a quite pure aragonite is obtained at
60 1C. However, between 20 and 60 1C ternary mixtures
are observed. The content of calcite is maximal at
40 1C. Let us now consider the phase transformation
evolution at this temperature value. The concentration
profile versus precipitation time at 40 1C is reported in
Fig. 10. At the beginning of the phase transformation
(2 min), the ternary mixture is composed of 50% vaterite,
35% aragonite and 15% calcite. After 2 h, the vaterite is
transformed to aragonite and calcite. After 7 h, vaterite
and aragonite are almost totally transformed to calcite. So,
aging time promotes the formation of calcite which is in
agreement with some results reported in the literature
[41,42].
6.4. Polymorph mixture analysis using other BSS algorithms

The dataset resulting from this experiment is also used
to compare the performances of standard BSS methods
taking into account the non-negativity constraint and
their re-scaled versions ensuring the full additivity
constraint. Table 4 summarizes the performances of the
considered separation algorithms in terms of normalized
mean square errors, dissimilarity measures and computa-
tion times. It can be noticed that the proposed approach
provides source estimates with better accuracy than the
other methods. In addition to the good estimation quality,
the second advantage of the proposed method is its ability
to scale the sources during the estimation algorithm. Thus
it does not require any post-processing of the estima-
tion results. However, as previously highlighted, the price
to pay for having such results is the computational
times required by the proposed MCMC-based estimation
method.



Table 4
Estimation performance for different BSS algorithms on real spectro-

scopic data.

NMSE (S) Diss (S) Time (s)

Proposed approach 0.0072 3.34 146

BPSS 0.0118 4.87 205

Re-scaled BPSS 0.0124 4.87 205

NNICA 0.1007 11.82 29

Re-scaled NNICA 0.3996 11.82 29

NMF 0.0093 4.25 26

Re-scaled NMF 0.0109 4.25 26
7. Conclusion

This paper studied Bayesian algorithms for separating
linear mixtures of spectral sources under non-negativity
and full additivity constraints. These two constraints are
required in some applications such as hyperspectral
imaging and spectroscopy to get meaningful solutions.
A hierarchical Bayesian model was defined based on priors
ensuring the fulfillment of the constraints. Estimation of
the sources as well as the mixing coefficients was then
performed by using samples distributed according to the
joint posterior distribution of the unknown model para-
meters. A Gibbs sampler strategy was proposed to
generate samples distributed according to the posterior
of interest. The generated samples were then used to
estimate the unknown parameters. The performance
of the algorithm was first illustrated by means of
simulations conducted on synthetic signals. The applica-
tion to the separation of chemical mixtures resulting from
Raman spectroscopy was finally investigated. The pro-
posed Bayesian algorithm provided very promising results
for this application. Particularly, when the computational
times is not a study constraint, the proposed method
clearly outperforms other standard NMF techniques,
which can give approximative solutions faster. Perspec-
tives include the development of a similar methodology
for unmixing hyperspectral images. Some results were
already obtained for the unmixing of known sources.
However, the joint estimation of the mixing coefficients
(abundances) and the sources (endmembers) is a still an
open and challenging problem.
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