Gestion des données manquantes en Analyse en Composantes Principales - Archive ouverte HAL
Article Dans Une Revue Journal de la Société Française de Statistique Année : 2009

Gestion des données manquantes en Analyse en Composantes Principales

Résumé

An approach commonly used to handle missing values in Principal Component Analysis (PCA) consists in ignoring the missing values by optimizing the loss function over all non-missing elements. This can be achieved by several methods, including the use of NIPALS, weighted regression or iterative PCA. The latter is based on iterative imputation of the missing elements during the estimation of the parameters, and can be seen as a particular EM algorithm. First, we review theses approaches with respect to the criterion minimization. This presentation gives a good understanding of their properties and the difficulties encountered. Then, we point out the problem of overfitting and we show how the probabilistic formulation of PCA (Tipping & Bishop, 1997) offers a proper and convenient regularization term to overcome this problem. Finally, the performances of the new algorithm are compared to those of the other algorithms from simulations.
Fichier non déposé

Dates et versions

hal-00455561 , version 1 (10-02-2010)

Identifiants

  • HAL Id : hal-00455561 , version 1

Citer

Julie Josse, François Husson, Jérome Pagès. Gestion des données manquantes en Analyse en Composantes Principales. Journal de la Société Française de Statistique, 2009, 150 (2), pp.28-51. ⟨hal-00455561⟩
404 Consultations
0 Téléchargements

Partager

More