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Abstract 

Eight calibration transfer methods based on the removal of orthogonal signal were compared for the 

standardization of whole soybean protein and oil models. Dynamic orthogonal projection (DOP), 

transfer by orthogonal projection (TOP), error removal by orthogonal subtraction (EROS), orthogonal 

signal correction (OSC), and orthogonal projections to latent structures (O-PLS) as well as the 

modification and extension of some of these methods were compared in the transfer of models in intra 

and inter brand situations using two Foss Infratecs and two Bruins OmegAnalyzerGs. For each brand, a 

master was designated and its models transferred onto the second unit of its network and the two units 

of the second brand. Calibration models were transferable from brand to brand with similar or better 

__________________________ 
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precision than when each instrument was calibrated on its own calibration set (for Infratec 1229, the 

relative predictive determinant (RPD) increased in intra and inter-brand calibration transfer situations 

from 10.42 to 11.45 and 10.57, with DOP and EROS respectively) . Performance of each method was 

different across parameters, instruments, and validation sets. DOP modifications on the determination 

of the difference matrix showed promising results while TOP and EROS extensions to include 

variability specifically present in certain crop years did not bring any beneficial effects. 

 

Keywords: Orthogonal signal correction (OSC), Orthogonal PLS (O-PLS), Dynamic orthogonal 

projection (DOP); Transfer by orthogonal projection (TOP); Error removal by orthogonal subtraction 

(EROS); near infrared spectroscopy  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1. Introduction 1 
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Near infrared spectroscopy (NIRS) is a fast, non destructive, and inexpensive analytical tool 

involving limited or no sample preparation. For the past thirty years, NIRS has been used in numerous 

applications from the screening and quality control of food and feed products [1,2,3] to pharmaceutical 

and chemical processes control [4,5]. Near infrared spectra are the results of the absorption of 

overlapping bands from different chemical families requiring information extraction from complex and 

highly collinear databases. Chemometrics methods are used to build calibration models describing the 

relationship between the spectral data (X matrix) and the dependent variable of interest (Y matrix) 

measured by reference method. 

One of the factors impacting the development and the use of regression models is the lack of 

robustness [6]. “The robustness/ruggedness of an analytical procedure is a measure of its capacity to 

remain unaffected by small, but deliberate variations in method parameters and provides an indication 

of its reliability during normal usage” [7]. The robustness of a model can be stressed over time by 

changes not only in the sample (temperature, composition, and presentation), but also by instrumental 

disturbances, aging, and by inter-instrument variability that impacts transfer ability to other units. 

Several correction strategies have been implemented to cope with the influence of these 

external parameters. Optical methods aim at modifying the spectra collected on secondary units to 

match those collected by the master unit. The model developed on the master unit is then used to 

perform predictions on the secondary units. Direct and piecewise direct standardization [8] and the 

Shenk and Westerhaus patented algorithm [9] are some examples of optical methods. These techniques 

use a set of transfer samples to perform the spectral matching. 

  



A second approach is to adapt predictions using a slope and an offset or a simple bias 

correction. These parameters are obtained by a linear regression between predictions made on the 

secondary unit and the reference values on a selected set of transfer samples by the same model. This is 

a widely used technique. Most, if not all, instrument firmware or software support these corrections. 
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While the two approaches did not aim at enhancing model robustness but rather bypass external 

parameters, a third approach, commonly named robust models, creates models themselves able to deal 

with this external variability. There are three ways to develop robust models: (i) optimizing calibration 

sample set, (ii) optimizing the feature selection, and (iii) preprocessing the signal. 

 

1.1 Optimization of sample sets 

 

For a calibration to predict a wide variability of experimental conditions, it is possible to 

develop exhaustive calibration sets. These sets contain samples scanned at different temperatures, with 

different sample presentations, on different instruments, and with a large variety in genetic and 

environmental sources [10]. During the calibration process, the influence of external parameters is 

automatically built into the prediction model. The model may present lower predictive abilities, but is 

able to give reliable predictions in conditions where more restrictive models would be inaccurate. 

An alternative to exhaustive calibration models is local modeling. Local chemometrics regroup 

regression methods that select among the pool of samples available in the calibration set samples that 

are closer to the one to predict. Local methods may perform better and be more robust than exhaustive 

models, but have the disadvantage of not presenting a fixed set of regression coefficients. Algorithms 

exit for local modeling such as locally weighted regression [11,12], LOCAL [13], and CARNAC-D 

[14,15]. 

  



1.2 Feature selection 1 
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Robustness can also be achieved by selecting, among the variables available, only those 

relevant to the parameter of interest. Variable selection has been successfully applied to NIRS by 

exhaustive search, simulated annealing [16], genetic algorithms [17,18,19,20], interval-partial least 

squares [21], and particle swarm optimization [22]. For model transfer, the search for isonumeric 

wavelengths – not subject to axis shift – was also implemented [23]. In the present study, the issue of 

correspondence of wavelength axis was not addressed since both brands show the same range and 

resolution. The reduction of the dimensionality of the X matrix results in more parsimonious models 

[24], including less noise, and less subject to overfitting. 

 

1.3 Signal pretreatment 

 

Another possibility to achieve model robustness is to use preprocessing methods. Smoothing 

(Savitzky-Golay smoothing and derivatives [25]), scattering correction (standard normal variate (SNV) 

[26], and multiplicative scatter correction [27]) has been widely used to remove noise and other 

unwanted signal. 

A new approach to signal pretreatment are the orthogonal methods. They are based on the 

theory that the column space of the X matrix (all possible linear combinations of column vectors) is 

“the sum of two subspaces, among which only one contains information useful for the model “[28]. 

There exists two ways of estimating the “uninformative” subspace: (i) by using the space orthogonal to 

the Y matrix and (ii) by estimating the space where external factors have a significant influence. The 
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former can be considered as being part of the calibration model development while the latter is similar 

to pretreatment methods. 

 The first approach contains techniques such as orthogonal signal correction (OSC) [29] and 

orthogonal projections to latent structures (O-PLS) [30]. These two techniques remove, from the X 

matrix, factors that are not correlated to the Y matrix. Loadings of these factors are later subtracted 

from the X matrix before calibration development. These techniques require the orthogonalization of 

every sample to be predicted in the future. 

 The second approach estimates the space in which external parameters are and removes it from 

the X matrix. External parameter orthogonalisation (EPO) [28], independent interference reduction 

(IIR) [31], transfer by orthogonal projection (TOP) [32], dynamic orthogonal projection (DOP) [33], 

and error removal by orthogonal subtraction (EROS) [34] are methods that estimate interferences by 

using a set of samples measured in the different conditions of interest to create a difference matrix 

representing external factors. The difference matrix between interfering and non-interfering conditions 

is decomposed in principal components and the first few loadings are removed from X. A calibration 

model is developed with the new preprocessed X matrix. The advantage over OSC and O-PLS methods 

is that new samples do not need to be orthogonalized. Regression coefficients reflect the removal of 

external interferences from the calibration data. The correction is embedded into the model, which will 

not take into account the perturbation (which can either be or not present) in the new spectra to be 

predicted. 

 

 Due to the novelty of these methods, the literature does not provide extensive results. Their 

performance in calibration transfer procedure has not been studied. In this study, we have evaluated the 

ability of orthogonal projection techniques to enhance model transferability in a network of four near 
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infrared units from two brands. To evaluate their effect, validation results were compared with 

piecewise direct standardization, exhaustive calibration, and post-regression slope and bias correction. 

 

2. Theory 

 

Orthogonal signal correction and O-PLS, for the category of orthogonal methods using the Y 

matrix, as well as DOP, TOP, and EROS for techniques using only the X matrix, were evaluated. The 

subtraction of the influential subspace from the original X matrix ( 0X ) is performed by  8 

*
0 0 -X X C=  (1) 9 

where C is a correction matrix. *
0X  is then used to develop prediction models. The difference between 

the various orthogonal techniques depends on the way C is calculated. 
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2.1 Orthogonal signal correction 

 

Orthogonal signal correction uses the NIPALS algorithm [35] to decompose X into scores t (by 

principal component analysis (PCA)). These scores are orthogonalized to Y to obtain  and a weight 

factor w is calculated ( ) with 

newt

0 neww X t−= 0X −  being a generalized inverse. New scores t are determined 

with t and the loading vector p is estimated (

17 

Xw= ( )0 /T T
newp t X tt= ). The correction matrix C is 

finally estimated byC t . The operation can be repeated until the desired number of corrections has 

been applied to

18 

p=19 T

0X . More details about OSC algorithm can be found in Ref. [29]. 20 

21  

  



2.2 Orthogonal projections to latent structures 1 
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Orthogonal projections to latent structures uses also the NIPALS algorithm to obtain weight 

factor w and loading factor p necessary to calculate an orthogonal weight factor wortho 

( ).w( )/T T
orthow p w p w w⎡= − ⎣ ortho is then used to approximate orthogonal scores 

( ) which are used to determine orthogonal loadings 

(

(0 / T
ortho ortho ortho orthot X w w w=

( )0 /T T T
ortho ortho ortho orthop t X t t= ). Similarly to OSC, the correction matrix is estimated by . 

The projection can be repeated until satisfaction using 

T
ortho orthoC t p=7 

*
0X to replace 0X . Ref. [30] provides more 

details about the O-PLS decomposition. 
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2.3 Transfer by orthogonal projection 

 

Transfer by orthogonal projection uses standards measured on both units (or in different 

conditions, for instance, temperature) to determine an interference matrix. Transfer samples are run on 

both instruments. The difference between the same samples scanned on different instruments is used to 

form a matrix D. A principal component analysis is performed on D and the first k loadings are used to 

form the matrix Pk. The influential space is then calculated using 0
T

k kX P P  . Equation 1 becomes  17 

( )*
0 0

T
k kX X I P P= −  (2) 18 

19 

20 

21 

where I is the identity matrix. TOP can be extended to more than two instruments [32]. 

 

 

  



2.4 Error removal by orthogonal subtraction 1 
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Error removal by orthogonal subtraction presents again a different way to calculate C. A 

difference matrix D is obtained in the same way as in TOP; but instead of calculating P based on the 

first PCA loadings of D, the PCA decomposition is performed onto the matrix W which represents the 

variability between replicate measurements. W is defined as  where D((
1

/
m

T
i i

i

W D D r m
=

= ∑ i is the 

difference matrix for sample i, r the pooled within-sample covariance matrix of the spectra and m is the 

number of samples. 

 

2.5 Dynamic orthogonal projection 

 

In calibration transfer situations, a few spectra collected on the secondary unit only are used to 

create virtual standards. They are created using a kernel function based on the calibration set (X0 and 

Y0 matrices) and the reference value of samples collected on secondary unit (Yt matrix). Virtual 

standards are estimated by  with  0
ˆ

tX AX= ( )0tiij y ja F Y=  where 
tiyF is a kernel function centered on 

for the i

15 

16 tiy th sample and the jth variable. The difference matrix D is estimated by taking the difference 

between tX and . A PCA is done on D and the first k loadings are used to form the matrix P. 

Orthogonalization is performed similarly as in TOP (equation 2). The kernel function used is a 

Gaussian kernel. A detailed discussion of the optimization of the method is provided in Ref. [33]. 

ˆ
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3. Material and methods 1 
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3.1 Sample, spectral collection and reference analysis 

 

Approximately 630 whole soybean samples collected and scanned during crop years 2002 to 

2005 were included in the calibration set. The network of instruments was composed of two Foss 

Infratec Grain Analyzers (1229 and 1241 – s/n 553075 and 12410350 respectively) (FOSS North 

America, Eden Prairie, MN, USA) and Bruins OmegAnalyzerGs (s/n: 106110 and 106118) (Bruins 

Instruments, Puchheim, Germany). Both are transmittance instruments with a spectral range from 850 

nm to 1048 nm at 2 nm increment. OmegAnalyzerGs scan 741 wavelengths from 730 nm to 1100 nm. 

A software option reduces the spectra to the same 100 data points as the Infratec units. A pathlength of 

30 mm was used. 

Samples were run at room temperature. Each sample was run simultaneously on the four 

instruments. In the final database, the number of samples was not the same for all four units: a sample 

identified as an outlier for one unit could be reasonably predicted by another unit. Also, not all 

instruments had the possibility to scan smaller samples without changing the number of subscans. This 

situation was considered closer to a field experiment than reducing to exactly the same samples in all 

four calibration sets. 

 Protein content was determined by combustion (AOAC 990.03), oil content was determined by 

ether extract (AOCS Ac 3-41), both by Eurofins Scientific, Inc., Des Moines, IA, USA. Summary 

statistics for the calibration sets are presented in Table 1. 

 

 

  



3.2 Validation sets 1 
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Two validation sets were used. The first set contained a “known” variability. It included 20 

samples selected over years (up to 2005) by the Grain Quality Laboratory, Ames, IA, USA. These 

samples were not part of the calibration set and were selected/updated annually to be good predictor 

samples for the slope and bias standardization procedure of the laboratory’s instruments. These 

samples had four or more reference measurements per parameter. The second set was created using 

forty samples from crop year 2006 and came from an origin intentionally different from the samples 

present in the calibration set (genetically and geographically). This set presented the prediction models 

with “unknown” variability. Scan conditions and determination of the reference values were similar to 

samples in the calibration set. Summary statistics for the validation sets are also presented in Table 1. 

 

3.3 Calibration procedure 

 

(i) Spectral pretreatment and outlier detection 

Raw spectral data were corrected for baseline and scattering effect by calculating their second 

derivative spectra using the Savitzky-Golay algorithm (25-point window and 3rd-order polynomial). 

Each sample was normalized to the sum of the absolute value of absorbance for all variables 

(wavelength) for the given sample. Each variable was scaled to zero mean and unit standard deviation. 

The detection of outliers was performed on the fully pretreated spectra by removing from the 

calibration set samples presenting a Hotelling T2 and a Q residual value larger than the 95% confidence 

interval. 

 

  



(ii) Calibration and validation procedures 1 
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 Partial least squares (PLS) regression was used to develop all prediction models. In PLS, the 

original matrix is compressed into latent variables that maximize the covariance between the reference 

values and all possible linear functions of the spectral data [36]. The number of latent variables was 

optimized using leave one out cross validation. 

 

(iii) Model evaluation and comparison parameters 

The performance of the prediction models was evaluated on the two validation sets. Relative 

predictive determinant (RPD) was used to measure precision. RPD is the ratio of standard deviation of 

the reference values to the standard error of prediction (SEPc) – the standard deviation of the 

differences between predicted and reference values of the validation set corrected for bias. RPD 

represents how well the calibration model predicts the validation set and is evaluated with the scale 

provided by Williams [37]. Bias, the average difference between predicted and reference values, 

measured the predictive fidelity of the models. 

 

3.4 Selection of transfer set 

 

For orthogonal methods using transfer samples (TOP, EROS, and DOP), a set of twenty 

standardization samples was created. In order to choose a representative and well predicted set of 

samples, the following procedure was done. Ten subsets of twenty samples each were randomly 

selected from the calibration set. Their protein, and oil concentration ranges were checked to match the 

ranges of the remaining calibration samples. A new random subset was created if the ranges were not 

adequate. A calibration for each parameter was developed without one subset at a time and the subset 

  



taken apart was predicted with the calibrations models (similar to block cross validation). The subset 

that presented the lowest SEPc and bias for both parameters (equally weighted) was chosen as the 

standardization set. It was then removed from the calibration set. 
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3.5 Experimental 

 

After calibrating each instrument on its own calibration set to determine benchmark results, a 

master unit was identified for each instrument brand network. Models of these master units were used 

to evaluate the ability of the five selected orthogonal methods to transfer these calibration models in 

intra and inter-brand situations. Piecewise direct standardization (PDS) (tested with window size of 1, 

3, 5, and 7), slope and bias, and exhaustive calibration models including the spectral data from both 

masters units were compared to the performances of orthogonal methods. More details about these 

common standardization methods can be found in Ref. [38]. 

Since samples in the calibration set were collected over four years, an attempt to model 

instrumental changes over those years was done. Instrument aging differently, if the inter-annual 

variability could be removed, the transfer of calibration models might be made easier. A set of twenty 

samples scanned every year by the Grain Quality Laboratory for control purposes, different from 

calibration, validation, and standardization sets, was used to perform TOP and EROS. These samples 

had the particularity to have been scanned the same years calibration samples were collected and 

reflected instrumental variations over the years. They were used to form the difference matrix D. They 

were called TOP 4years and EROS 4years. 

A modification to DOP was also evaluated. Instead of taking into consideration only the 

parameter of interest (protein or oil) when creating the virtual standards, both parameters were used 

  



either at the same time or one after the other to form the matrix D. They were respectively named DOP 

2y block and DOP 2y sequential. In DOP 2y block, the D matrix was formed by concatenating 

difference spectra for protein and for oil while in DOP 2y sequential, the calibration set was first 

orthogonalized for differences in protein, then for differences in oil. This was an attempt to increase the 

robustness of models by considering more variability than present for one parameter alone. 
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 Methods optimization (choice of the number of PLS latent variables, of loadings to include in 

P, and of the width of the kernel function for DOP) was done by using the set of parameters that best 

predicted both validation sets. A set of coefficients may have performed better on one set than on 

another, but this option was a way to limit overfitting and enhance robustness. Table 2 summarizes the 

different standardization compared in this study. 

 All calculations were performed on MATLAB R2007b (The MathWorks, Natick, MA). PLS 

models as well as DS and PDS standardization methods were developed with the PLS_toolbox 4.2.1 

(Eigenvector Research, Wenatchee, WA). 

 

4. Results and discussion 

 

4.1 Benchmark results 

 

Table 3 presents the validation results when each instrument is calibrated on its own calibration 

set. Fearn [39] presented a technique originally proposed by Pitman in 1939 to compare regression 

techniques when predicting the same validation set. This method compares the two sets of prediction 

errors with a t-test to determine the significance of the difference. For the prediction of the validation 

set of known variability (set 1), Foss Infratec 1241 and Bruins OmegAnalyzerG (s/n: 106118) were 

  



significantly more precise within their brand (α = 0.05). For the second validation set, results were 

similar across instruments except for the prediction of oil where OmegAnalyzerG (s/n: 106110) 

provided a better SEP than OmegAnalyzerG 106118 (α = 0.05). In terms of fidelity, no clear pattern 

could be observed. Because of their better precision and equivalent accuracies, Foss Infratec 1241 and 

Bruins OmegAnalyzerG (s/n: 106118) were designated masters of their respective instrument brand 

network. 
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4.2 Intra-brand calibration transfer 

 

Figure 1 presents, for each parameter and brand network, validation results on both validation 

sets. Performances of models developed on master units and transferred onto secondary unit are 

compared with their respective master units. Dotted lines serve as reference for master results since 

they were unchanged (and were omitted on the figure) by all orthogonal methods except O-PLS and 

OSC. 

Validation sets were different for protein (α = 0.05; t-test for mean comparison) but not for oil. 

The limited range for protein in validation set 2 was most likely responsible for these results along with 

new variability brought in by 2006 crop year. 

For protein, TOP and EROS gave significantly lower RPDs than other techniques for validation 

set 1 (true for both brands) (α = 0.05; t-test for mean comparison). The seven other methods did not 

give different results. For the validation set 2, there was no difference. For oil and both validation sets, 

there were also no significant differences (α = 0.05; t-test for mean comparison). Even though results 

were not significant, not all methods behaved the same way. Tables 4 and 5 summarize the 

performance of the methods. Many of them gave better precisions than original models (table 4). A 

  



couple of situations provided secondary units with better performances than the master unit (table 5). 

This is an indication that removing the uninformative space representing the difference between 

instruments can have a beneficial effect. This also shows that not all methods are appropriate for all 

parameters and samples. A strong validation strategy must confirm the appropriateness of the method 

to the situation of interest. It is interesting to notice that TOP 4years and EROS 4years did not perform 

better than other methods even though they were designed to remove the variability through years. 

Sequential and block DOPs performed well, especially for the Bruins network, while DOP did not do 

well for that same network. The inclusion of more variability into the difference matrix helped to 

remove the external information. Validation set 1 was less well predicted than validation set 2. This 

could be explained by the fact that, since the validation set 1 and the calibration set are very close, too 

much informative dimensions were removed, limiting the predictive ability of the model. However, the 

model robustness was enhanced when predicting samples different from those in the calibration set. 

This was particularly true for oil. This could mean that orthogonal methods trend to remove 

informative information causing model to underfitting the data. This can be beneficial or a significant 

constraint depending on the application. 
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In the present situation, TOP and EROS, as well as TOP 4years and EROS 4years respectively 

gave the same results. Figure 2 presents the first four loadings of the D matrix between Infratec 1229 

and Infratec 1241, after a PCA decomposition obtained from TOP (figure 2.a) and EROS (figure 2.b). 

Both methods provided the same correction space. In TOP, the internal difference within classes (a 

class being a sample collected on several instruments) is used to form a matrix whose variance is 

analyzed while in EROS, the variance for each class is calculated, summed, and that sum is analyzed. 

  



In situations where classes are the same, TOP and EROS provide the same results. TOP/EROS and 

TOP/EROS 4years will be used from now and on to represent these methods. 
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4.3 Inter-brand calibration transfer 

 

Figures 3 and 4 respectively present, for each parameter and validation set, the performances of 

an Infratec model to be transferred onto Bruins units and vice-versa. For both situations (Infratec 1241 

and OmegAnalyzerG 106118 master of the global network), and for both parameters, there is always a 

method that will provide satisfactory calibration transfer results. The transfer of calibration models 

across brands is possible and provides results as good as or better than if models were developed on 

their own calibration sets. 

 

For Foss Infratec 1241 master of the Bruins OmegAnalyzerG network, there were no significant 

results for protein and validation set 1, but DOP, DOP 2y block, and OSC performed the best. For 

validation set 2, only TOP/EROS provided as good results as the original model with all six other 

methods significantly less precise (α = 0.05). For oil and validation set 1, TOP/EROS, DOP 2y 

sequential and DOP 2y block provided significantly lower RPDs than other methods while TOP/EROS 

4years, and OSC provided OmegAnalyzerG 106118 with significantly higher results (α = 0.05; t-test 

for mean comparison). Finally, DOP 2y block performed again less precisely than other orthogonal 

methods (α = 0.05; t-test for mean comparison). 

For Bruins OmegAnalyzerG 106118 master of the Foss Infratec network (Figure 4), there was 

no significant difference for both parameters and validation sets. Depending on the situations, different 

  



methods performed better than others, but this was not consistent from parameter to parameter and 

validation set to validation set. 
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4.4 Comparison with classical standardization methods 

 

Table 6 compares calibration transfer results from the best orthogonal methods for each 

validation set, exhaustive calibration results, piecewise direct standardization, and slope and bias 

correction, for intra-brand calibration transfer. The best performing orthogonal methods were found by 

averaging results from both validation sets for the same parameter. 

Secondary units performed globally better than when they were calibrated on their own 

calibration set except for PDS that was proven to give significantly higher errors in Ref. [38]. Simple 

methods performed as well as orthogonal methods. Exhaustive calibration models were overall the 

best, but creating a calibration set including all variability is not always possible. The use of orthogonal 

methods is a viable alternative for model transfer, in intra and inter-brand situations. For inter-brand 

situations, similar trends were observed (data not shown).  

The choice of transfer samples might be responsible for the present situation. While they were 

chosen as being best predictors, which most likely influenced slope and bias results, they might not 

have been completely appropriate for orthogonalization. Seeking standardization samples that optimize 

orthogonal methods might be a better option. 

 

 

 

 

  



4.5 Evolution of the fidelity 1 
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Improving or maintaining model precision is only part of the calibration transfer work. Keeping 

the fidelity (mean difference between predicted and reference values) as good as on the master unit is 

also challenging. In this study, intra-brand calibration transfer scenarios did not impact fidelity. Models 

performed as accurately on the master unit as on the secondary units. However, in inter-brand 

scenarios, orthogonal methods improved model fidelity which was not the case for exhaustive 

calibration methods and slope and bias ones (data not shown). This may signify that a two-step 

calibration transfer process may be needed: one to maintain precision and a second to correct for bias 

loss. 

 

4.6 Orthogonal methods in calibration transfer 

 

The comparison of OSC, O-PLS, TOP/EROS, and DOP showed that performances were 

instrument, parameter, and situation dependent. While OSC and O-PLS appeared more consistent, they 

require the correction of validation samples, which is not always possible for on-line applications. 

However, for off-line and compatible on-line applications, they remain two methods of choice for the 

reduction of the uncorrelated part to Y. DOP and TOP/EROS were proven to be two strong 

competitors. For users willing to switch from classical methods (PDS, Slope and Bias) to orthogonal 

methods, they are good candidates since they use standardization samples and are not as complex to 

understand as OSC and O-PLS methods. They also have the advantage to not require the modification 

of the validation samples. Their implementation will be possible on almost all instrument brands. 

  



In the present study, DOP and its modifications appeared to perform better than TOP/EROS. 

The creation of virtual standards was more suitable than scanning transfer samples on both units. The 

noise generated with the virtual standards was most likely reduced and the orthogonal space removed 

from X was more representative of the inter-instrument differences. Virtual standards include 

information from a lot more samples from the calibration set than only using standardization samples 

that might poorly represent the variability encountered. Even-though more complex in its 

implementation than TOP/EROS, DOP requirement for normality in the distribution of the reference 

values can be stretched when tuning the kernel function. The possibility to combine the information of 

several parameters to estimate D provided an additional space for interference identification without 

increasing the number of transfer samples scanned on the secondary unit. 
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5. Conclusions 

 

This study compared the use of orthogonal methods with other common standardization 

techniques for the transfer of calibration models between instrument of the same brand and across 

brands. Orthogonal methods performed similarly to secondary units when calibrated on their own 

calibration sets. While no method consistently outperformed others, no beneficial effect was observed 

when using samples scanned at different periods of time to model instrumental variations (TOP/EROS 

4years). Modifications to DOP provided good results and orthogonal methods using information in the 

Y matrix (O-PLS and OSC) performed better than most of other methods. O-PLS and OSC require 

however the transformation of the validation samples and may not be suitable for all instrumental 

setups. 

  



The transfer of calibration models from brand to brand was possible, with an improvement of 

initial model precision. A control of model fidelity must be performed to ensure proper predictions. 

The two validation strategies demonstrated the necessity to evaluate the transferred models with future 

variability. 
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Figure 1. Validation of the standardization methods in an intra-brand situation (Infratec 1241 is the 

master unit for Infratec 1229; OmegAnalyzerG (s/n: 106118) is the master unit for OmegAnalyzerG 

(s/n: 106110)). Dashed and dotted lines correspond to benchmark performances for validation set 1 and 

2 respectively. 
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Figure 2. Loading vectors of the difference matrix D between Infratec 1229 and Infratec 1241 from a 

TOP decomposition (figure 2.a) and an EROS decomposition (figure 2.b). 
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Figure 3. Validation of the standardization methods in an inter-brand situation with Foss Infratec 1241 

master of the network. Bars represent secondary units while triangles are the performances of the 

master unit. Dotted lines correspond to benchmark results. 
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Figure 4. Validation of the standardization methods in an inter-brand situation with Bruins 

OmegAnalyzerG s/n 106118 master of the network. Bars represent secondary units while triangles are 

the performances of the master unit. Dotted lines correspond to benchmark results. 
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Table 1. Summary statistics of the calibration and validation sets. 

 

      

Parameter Instruments 
(serial) n 

Average 
Concentration 

(%) 

Range 
(%) 

Standard 
Deviation 

(%) 
      

Protein (13% moisture basis)     
 Infratec 1229 (s/n: 553075) 638 36.06 29.74 - 46.50 2.80 
 Infratec 1241 (s/n: 12410350) 624 36.04 29.74 - 46.50 2.76 
 OmegAnalyzerG (s/n: 106110) 628 36.10 27.48 - 46.50 2.86 
 OmegAnalyzerG (s/n: 106118) 625 36.09 27.48 - 46.50 2.92 
 Validation set 1 20 36.72 30.65 - 45.43 3.32 
 Validation set 2 40 37.61 33.78 - 41.92 2.14 
      

Oil (13% moisture basis)     
 Infratec 1229 (s/n: 553075) 629 18.42 11.89 - 22.52 1.78 
 Infratec 1241 (s/n: 12410350) 635 18.40 11.89 - 22.52 1.80 
 OmegAnalyzerG (s/n: 106110) 655 18.51 11.89 - 22.52 1.73 
 OmegAnalyzerG (s/n: 106118) 638 18.38 11.89 - 22.48 1.80 
 Validation set 1 20 18.55 15.27 - 21.68 1.57 
 Validation set 2 40 18.46 13.82 - 21.63 1.83 
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Table 2. Summary of the different standardization used. 

 

Classical 
method 

Orthogonal  
method on Y 

Orthogonal  
method on X 

Modified orthogonal 
method on X 

    

PDS OSC TOP TOP 4years 

Slope and Bias O-PLS DOP EROS 4 years 

Exhaustive 
calibration  EROS DOP 2y block 

   DOP 2y sequential 
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Table 3. Validation results of calibration models developed on their own calibration set. 

 
        

   Validation set 1 (n = 20) 
(known variability)  Validation set 2 (n = 40) 

(unknown variability) 
        

Instruments 
(Serial) Parameters  Protein  Oil  Protein Oil 

        

SEPac  0.32 0.31  0.55 0.42 
RPDb  10.42 4.98  3.88 4.21 Infratec 1229  

( s/n: 553075) Biasc  0.16 -0.14  0.12 -0.44 
        

SEP  0.30 0.24  0.46 0.36 
RPD  11.25 6.52  4.64 4.97 Infratec  1241  

( s/n: 1241030) Bias  0.20 -0.25  0.06 -0.40 
        

SEP  0.36 0.30  0.51 0.32 
RPD  9.29 5.17  4.17 5.55 OmegAnalyzerG  

( s/n: 106110) Bias  0.12 -0.16  0.17 -0.48 
        

SEP  0.29 0.26  0.47 0.33 
RPD  11.41 5.90  4.54 5.35 OmegAnalyzeGr  

( s/n: 106118) Bias  0.12 -0.23  0.16 -0.47 
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a Standard error of prediction. 

b Relative Predictive Determinant (unit less). 

c SEP and bias are expressed in % pt. 
 

 

 

 

 

 

 

 

 

  



1 

2 

3 

Table 4. Precision gain or loss provided by each standardization method compared to original 

calibrations. 

 

  Protein  Oil  Number of latent 
variables  

Number of 
component removed

Method Instrument 
Val. 
set 1 

Val. 
Set 2  

Val. 
set 1 

Val. 
Set 2  Protein Oil  Protein Oil 

             

DOP             
 Infratec 1229 + +  - -  10 12  1 1 
 OmegAnalyzerG 106110 + -  - -  11 9  1 3 
TOP             
 Infratec 1229 -* +  + -  12 11  1 1 
 OmegAnalyzerG 106110 -* -  - +  12 11  1 1 
EROS             

 Infratec 1229 -* +  + -  12 11  1 2 
 OmegAnalyzerG 106110 -* -  - +  12 11  1 1 

DOP 2y sequential            
 Infratec 1229 - =  - -  12 12  1 1 
 OmegAnalyzerG 106110 + +  + +  12 12  1 1 

DOP 2y block            
 Infratec 1229 + -  - -  11 12  1 1 

 OmegAnalyzerG 106110 + -  + +  11 11  1 1 
TOP 4years            
 Infratec 1229 - -  - -  9 10  2 3 
 OmegAnalyzerG 106110 + =  - -  10 11  1 3 
EROS 4years            
 Infratec 1229 - -  - -  9 10  2 3 
 OmegAnalyzerG 106110 + =  - -  10 11  1 3 
O-PLS             
 Infratec 1229 - =  - +  12 9  2 1 
 OmegAnalyzerG 106110 - +  - +  12 8  2 3 
OSC             

 Infratec 1229 + +  + =  10 9  1 1 
 OmegAnalyzerG 106110 + +  - +  11 12  1 1 
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+  result of the transferred secondary unit greater than the original secondary unit 

-  result of the transferred secondary unit lower than the original secondary unit 

=  results equivalent between transferred and original models  

* marks significance 

  



1 

2 

Table 5. Precision gain or loss provided by each standardization method compared to network masters. 

 

  Protein  Oil 

Method Instrument 
Val. 
set 1 

Val. 
Set 2  

Val. 
set 1 

Val. 
Set 2 

       

DOP       
 Infratec 1229 = -  - - 
 OmegAnalyzerG 106110 - -  - - 
TOP       
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - + 
EROS       

 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - + 

DOP 2y sequential      
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - +  - + 

DOP 2y block      
 Infratec 1229 + -  - - 

 OmegAnalyzerG 106110 - -  - + 
TOP 4years      
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - - 
EROS 4years      
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - - 
O-PLS       
 Infratec 1229 - -  - + 
 OmegAnalyzerG 106110 - =  - + 
OSC       

 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - =  - + 
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+  result of the transferred secondary unit greater than the master unit 

-  result of the transferred secondary unit lower than the master unit 

=  results equivalent between transferred and master models 
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Table 6. Transfer model performances with orthogonal and some common calibration transfer methods. 

 

  Protein (RPDc)  Oil (RPD) 
Instrument Method Val. Set 1 Val. Set 2  Val. Set 1 Val. Set 2

       

Infratec 1229 – Master Infratec 1241      
 Original 10.42 3.89  4.98 4.22 
 Best performing orthogonal (OSCa/OSC) 11.82 3.98  5.69 4.24 
 Exhaustive calibration model 11.42 4.72  6.31 4.57 
 PDS 5.51 3.25  6.92 5.02 
 Slope and Bias 10.70 3.87  4.90 4.18 
      
OmegAnalyzerG 106110 – Master OmegAnalyzerG 106118      
 Original 9.29 4.17  5.17 5.55 
 Best performing orthogonal (DOPb/DOP 2y sequential) 10.62 4.01  5.25 6.26 
 Exhaustive calibration model 11.39 4.44  5.48 5.73 
 PDS 2.42 1.51  2.73 4.36 
 Slope and Bias 9.59 4.16  5.34 5.67 
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a Orthogonal Signal Correction. 

b Dynamic Orthogonal Projection. 

c Relative Predictive Determinant (unit less). 

 

 

 

 

 

 

 

 

 

  


