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Abstract

We studied free-surface gravity-driven recirculating flows of cohesionless granular materials down

a rough inclined plane and overflowing a wall normal to the incoming flow and to the bottom.

We performed 2D spherical particle discrete element simulations using a linear damped spring

law between particles with a Coulomb failure criterion. High-frequency force fluctuations were

observed. This paper focuses on the mean steady force exerted by the flow on the obstacle versus

the macroscopic inertial number of the incoming flow, where the inertial number measures the ratio

between a macroscopic deformation timescale and an inertial timescale. A triangular stagnant zone

is formed upstream of the obstacle and sharply increases the mean force at low incoming inertial

numbers. A simple hydrodynamic model based on depth-averaged momentum conservation is

proposed. This analytical model predicts the numerical data fairly well and allows us to quantify

the different contributions to the mean force on the wall. Beyond this model, our study provides

an example of the ability of simple hydrodynamic approaches to describe the macroscopic behavior

of an assembly of discrete particles, not only in terms of kinematics, but also in terms of forces.
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1. INTRODUCTION

The importance of granular materials in geophysics and in various industrial processes

has resulted in extended research on granular flows at the frontier between physics, soil

mechanics and fluid mechanics. Flows around obstacles and the force those granular flows

are able to exert on the obstacle are important issues when applied to storage and conveying

bulk solids [1] and also in geophysical flows [2–4]. Granular drag on objects was approached

by the pioneering work of Wieghardt [5, 6], who provided an early systematic experimental

and analytical study of granular flows around immersed objects. In those free-surface flows,

he showed the drag force depended relatively little on velocity and he observed a pile-up

in front of the immersed object as well as depression of the surface in the wake. A recent

experimental study on dense granular flows around an immersed cylinder in a vertical chute

[7] showed that the mean drag is independent of the mean upstream velocity. The subject

also contributed experiments on two-dimensional flows in a vertical bin around various inserts

[1]. The authors recorded velocity contours and observed stagnant zones in front of the

inserts.

Many recent studies have focused on the drag force on small obstacles such as cylinders

in the case of rapid - dilute - granular flows [8, 9], including interstitial gas effects [10, 11].

In the dilute regime, the force is proportional to the square of the incoming velocity as

predicted from kinetic theory for granular gas. The importance of shock waves formed in

front of the obstacle has been shown for this rapid regime [12, 13] and has been the subject

of valuable recent studies [18–24].

The quasic-static regime has also been investigated by Wieghardt [5, 6]. A series of

recent studies examined drag forces on immersed obstacles in a rotating granular bed at very

low velocities [25–27]. Experimental measurements showed that the drag force is linearly

dependent on the cylinder diameter, quadratically dependent on the depth of insertion and

independent of velocity [25]. The effect of obstacle shape on drag force and its influence

on jamming behavior has been analyzed [27] as well as stick-slip fluctuations in granular

drag [26]. All these studies refer to horizontal motion and showed that the average pressure

is scaled as the immersion depth. A recent study investigated the average drag forces

for obstacles slowly plunging into and withdrawing from shallow beds of different granular

materials, and showed that the average pressure is scaled as the immersion depth exhibiting

2 (August 7, 2009)



a power law behaviour rather than a linear behavior [28].

Since the studies of Wieghardt [5] and Tuzun and Nedderman [1], little has been studied

on the drag of dense granular flows and the effects of the stagnant zone observed in front of

the obstacle. In the present paper, dense granular flows will systematically refer to assemblies

of grains moving at higher velocity than the grains in the quasi-static regime mentioned just

above but at lower velocity than the grains in the rapid dilute regime. This regime refers

to the so-called granular liquid regime mentioned in [29]. A typically sized roughness close

to the diameter of the flowing grains is a condition to obtain this type of dense regime.

In the dense granular regime, when the obstacle has a typical size close to the flow depth,

large stagnant zones or dead zones are able to form in front of the obstruction, while grains

that are non trapped inside the dead zone continue to flow around the obstacle. These

stagnant zones observed in the dense regime are not accompanied by a granular jump (large

discontinuity in flow depth and velocity), as described earlier for rapid flows on smooth beds

[14–17]. Furthermore, free-surface curvatures and large flow-depth gradients are observed

in the vicinity of the obstacle. All these conditions result in a mean force on the obstacle

that cannot be expressed as (i) a simple function of the incoming depth-averaged velocity

of the flow, as is usually observed for granular flows around small immersed obstacles in the

dilute regime [8, 9, 12, 13] or (ii) a simple function of a depth of insertion (equal to the flow

depth when the small object is located at the base of the flow) in the quasi-static regime

[25, 27, 28, 30].

This paper focuses on 2D free surface gravity-driven flows of dense granular materials

down an inclined plane and overflowing a wall normal to the bottom. These flows corre-

spond to a flow geometry typically encountered in geophysical flows when avalanches overtop

protection dams [4]. A roughly triangular dead zone, whose length greatly depends on the

slope inclination, is formed upstream of the wall and largely influences the mean force on

the wall. We investigated this mean force using discrete numerical simulations combined

with a hydrodynamic modeling approach. The numerical simulations method and results

are presented first. Then we describe a simple hydrodynamic analytical model showing that

the mean force is the sum of many contributions: the weight of the granular material (mo-

tionless grains inside the dead zone and moving grains above), the incoming momentum

force, the incident pressure force and the basal friction force inside the dead zone. Based

on simple arguments to calibrate the free parameters, the predictions from the proposed
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analytical model are successfully compared to numerical results.

2. DISCRETE NUMERICAL SIMULATIONS

2.1. Numerical methods

Simulation method and contact law

Numerical simulations are carried out using the molecular dynamics method, as intro-

duced by Cundall [31] and largely used to simulate dense granular flows (see for example

[32–34]). We defined the normal contact force as the sum of two contributions, an elastic

one N e (spring) and a viscous one Nv (dashpot). In the simplest case used here, the normal

elastic force N e
ij is assumed to depend linearly on the overlap δij (the displacement of the

spring): N e
ij = knδij , where kn is the normal stiffness. The dashpot contributes a normal

dissipative force Nv proportional to the time derivative of the overlap: Nv
ij = Cij δ̇ij , where

Cij is a normal damping coefficient that may be related to a coefficient restitution e in a

binary collision of cohesionless grains [35, 36]. The sum of both contributions Nij is re-

stricted to being repulsive, i.e., tensile normal forces are not allowed, as the particles are

assumed to be non cohesive. Finally, the normal contact force may be expressed as follows:

Nij = knδij + Cij δ̇ij . Two microscopic parameters are then needed: the normal stiffness kn

and the damping coefficient Cij (or restitution coefficient e) to define the normal intergran-

ular force. The tangential component Tij of the contact force is implemented in terms of a

linear spring Tij = ktuij, where kt is the tangential stiffness and uij the displacement of the

spring. Tij is restricted to absolute values smaller than µN e
ij according to friction between

grains described by a Coulomb condition enforced with the sole elastic part of the normal

force. Here the local particle friction parameter µ is introduced. When this threshold is

reached, the tangential relative motion is regarded as sliding with the sliding friction µN e
ij

(directed opposite the tangential relative velocity). Finally the tangential contact force may

be expressed as follows: Tij = min
(

µN e
ij, ktuij

)

. Two miscroscopic parameters are then

needed: the tangential stiffness kt and the local particle friction parameter µ to define the

tangential intergranular force.
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Microscopic parameters

The simulated system is an assembly of spheres of average diameter d and density ρP

(average mass m = 1/6ρP πd3). A small polydispersity (±10% in size) is introduced to

prevent crystallization. The average particle diameter is d = 1 mm and the particle density

is ρP =2450 kg m−3 corresponding to the glass material. The normal stiffness kn is calculated

from the Young modulus E [37]: kn ≈ Ed. The Young modulus of the glass material is

E = 69GPa, which gives kn=6.9 107 N m−1 but kn was reduced to kn = 104 N m−1 with

respect to the limit of rigid grains (no influence of the stiffness above this limit), in order to

decrease the calculation time.

It has been previously shown that the dimensionless number N1 = kn/(ρd3γ̇2) (where

γ̇ is the shear rate and ρ the density) has to be greater than 104 in order to conclude

that we are in the limit where grains behave as if they are perfectly stiff [36]. N1 can

be thought as the inverse of the square of the ratio between the shear velocity uγ̇ = γ̇d

and the sound velocity cs =
√

k/(ρd) [36]. The condition N1 > 104 gives uγ̇/cs < 10−2

(condition 1). This condition 1 controls the overlap generated by flow inertia and gives the

following condition on the shear rate (with kn = 104 N m−1 and a density ρ = φρP where

φ = 0.55 is a typical volume fraction): γ̇ < 860 s−1. The dense granular flows investigated

in this paper occur below this limiting value of the shear rate (as well as many similar

experimental granular flows [38]). We have also to consider the overlap generated by quasi-

static mechanisms such as the compression of force chains. Similarly to the number N1,

we can define the dimensionless number N2 = kn/(Pd) for spherical grains, which can be

interpreted as the inverse of the square of the ratio between the characteristic velocity of

grains rearrangement uP =
√

P/ρ (where P is the pressure) and the sound velocity cs. By

analogy to the condition 1, the condition N2 > 104, which gives uP /cs < 10−2, has to be

respected (condition 2). For dense granular flows, the typical pressure level is maximum at

the bottom and may be approximated by the hydrostatic pressure P ≈ ρgh. The condition

2 gives the following condition on the flow depth (with kn = 104 N m−1): h < 75d. The

granular flows investigated in the paper are below this limiting value of the flow depth

(thereafter, in Fig. 1b, are provided the typical values of the flow depth). Furthermore,

recent discrete simulations on dense granular flows showed that the effect of variations in kn

is minimal as long as kn > 2.105mg/d [39]. With our values for d and m, it gives kn > 2570
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N m−1, which is also compatible with the chosen value for kn.

In the rigid grains limit, it has been shown that the macroscale behavior does not depend

on µ (except for frictionless grains µ = 0) and e (except for the extreme values e = 0 and

e = 1) for plane shear flows without gravity [34]. It has also been shown that the flow

behavior (bulk density and velocity profile) depends little on the local particle friction if

µ > 0.5 for steady flows down a rough inclined plane (see Fig. 9 in [32]). In our simulations,

we used µ = 0.5 corresponding to a typical value for glass beads. The restitution coefficient

e was also shown to only slighly influence the bulk density and the velocity profile of steady

dense granular flows down rough inclined planes if e < 0.9 (see figure 10 in [32]). In the

dense granular regime, the macroscopic flow quantities are known to be almost insensitive to

the coefficient of restitution e [29, 40]. In our simulations, we chose e = 0.5. It has also been

shown that the kt/kn ratio has a very small influence [32, 36]. Here we used kt/kn = 1/2,

which gives kt=5 103 N m−1. The commercial Particle Flow Code was used here (PFC2D

version 3.0 [41]). In our simulations, the time step was kept constant at 4 10−6s, which

guaranteed the stability of our calculations.

Flow geometry

We defined a channel of length Lc = 1700d and a reservoir of length Lr = 150d. The

roughness of the bottom was made with grains of a mean diameter d = 1 mm with the same

properties as the grains in motion. The channel was constantly fed by releasing grains into

the reservoir. Grains moved out of the reservoir by an aperture of constant height Hr = 35d

(see inset in Fig. 1a). After a certain simulation time, the imposed height Hr at the exit

of the channel led to a constant mass flow rate. We investigated two types of flow in a

large range of slope inclinations (16◦ ≤ θ ≤ 32◦): (i) flows with no obstacles in order to

characterize our flows regarding the existing literature reporting dense granular flows down

rough inclined planes and (ii) flows overflowing a vertical wall normal to the bottom and

located at a distance 900d from the exit of the reservoir. The following section presents the

results.
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2.2. Numerical results

Control flows without an obstacle

Dense granular flows down rough inclined planes have been thoroughly studied and an

overview of recent progress and remaining unanswered questions can be found in [29, 40].

This section reports a summary of the main results obtained from our discrete simulations

of control flows with no obstacles. We show that these results are compatible with previous

reports in the literature [40]. The existence of steady and uniform flows in a large range of

slope inclinations [θmin, θmax] has been shown for dense granular flows down a rough inclined

plane [32, 40, 42]. The function hstop(θ) has been defined as the thickness of the granular

material left by a steady and uniform flow at slope inclination θ and can be measured. The

angle θmax is the angle for which no grains are able to stay on the inclined plane (hstop = 0)

and the angle θmin is the angle for which hstop tends towards ∞ (no flow). We determined the

function hstop(θ) numerically, which is depicted in Fig. 1a. The curve can be fitted by the

function hstop(θ) = Bd[(θmax − θ)/(θ − θmin)] where B is a constant depending on material

properties [40]. We found the following values: θmin ≈ 14◦, θmax ≈ 24◦ and B = 2.3. It is

found to be in agreement with previous data on 2D flows [32, 40, 43].

A single dimensionless number called the inertial number has been defined and may be

interpreted as the ratio [40] between (i) a microscopic time scale d/
√

P/ρP , which represents

the time it takes for a particle of density ρP to fall in a hole of size d under the pressure

P giving the typical time scale of rearrangements, and (ii) a macroscopic time scale 1/γ̇

linked to the mean deformation (γ̇ is the local shear rate). I is the square root of the Savage

number [44] or the Coulomb number [45, 46] previously introduced in the literature. The

averaged inertial number I may be estimated from depth-averaged velocity and thickness of

the flows assuming a Bagnold-like velocity profile [40]:

I =
5ūd

h3/2
√

2g cos θ
(1)

Fig. 1b shows the velocity profiles obtained at different slope inclinations and at the

position x/d = 900. The Bagnold profiles (shown in dash lines in Fig. 1b) roughly fit the

numerical data, except at the base of the flow as it has been previously reported [40]. Fig. 1c

shows the macroscopic inertial number I, calculated from Eq. (1), along the distance x from
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the reservoir. For steady and uniform flows, we can define a unique value of I far enough

from the reservoir. Above θmax, we observed a continuous increase in the inertial number I

along x showing that the flows are non-uniform flows. For these gradually accelerated flows,

we defined the inertial number I at two positions: x/d = 900, corresponding to the location

of the wall in the second set of simulations, and x/d = 1500 (maximum position up to which

we took measurements because for x/d > 1500 the flow properties were influenced by the

boundary limit due to the end of the inclined plane at x/d = 1700).

The robust scaling has been shown for the variation of the basal friction coefficient µ∗

versus the inertial number I for plane shear flows [34]:

µ∗ = µ∗

min + bI (2)

where µ∗

min = tan θmin and b is a constant. Another scaling is proposed in the literature

for µ∗(I) for inclined planes [47, 48]:

µ∗ = µ∗

min +
∆µ

I0/I + 1
(3)

where ∆µ = tan θmax − µ∗

min and I0 is a constant typically equal to 0.3 for glass beads.

The depth-averaged equations, introduced by [49] and recently revisited [29, 50] in the

context of shallow granular flows down an inclined plane, allow us to estimate the effective

friction coefficient µ∗. The acceleration is balanced by the gravity parallel to the plane, the

tangential stress between the fixed bottom and the flowing layer, and a pressure force related

to the thickness gradient [29, 49, 50]. The momentum balance is reduced to the following

equation in steady 2D flow conditions:

β
∂hū2

∂x
=

(

tan θ − µ∗ − k
∂h

∂x

)

gh cos θ. (4)

The β factor, in the acceleration term, is related to the velocity profile and is defined by

1
h

∫ h

0
u2(y)dy = β

(

1
h

∫ h

0
u(y)dy

)2

. It is generally taken to be equal to 1, which corresponds

to the exact value for plug flows [49]. It can be calculated provided an assumption on the

shape of the velocity profile: β = 4/3 for linear velocity profiles and β = 5/4 for Bagnold

velocity profiles [51]. The k factor, in the thickness gradient term, is the ratio of the normal

stress σxx to the normal stress σyy, classically introduced for dense granular flows [49, 50].

For steady dense granular flows, k can be chosen equal to 1 (isotropic fluid-like behavior)
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as shown by previous studies [32]. From Eq. (4), we could estimate the effective friction

coefficient at a given position x0/d:

µ∗(x0) ≃ tan θ −
[

△h

△x

]

x=x0

− β

gh cos θ

[

△(hū2)

△x

]

x=x0

(5)

We performed our calculations with β = 1, △x = 200d, △h = hx=x0−100d−hx=x0+100d and

△(hū2) = (hū2)x=x0−100d− (hū2)x=x0+100d. Fig. 2 shows the variation of the effective friction

coefficient µ∗ versus the macroscopic inertial number I for different positions x/d. All the

data collapse into a single curve whatever the position x/d and the slope, which shows that

the existence of a unique relationship between µ∗ and I is still valid for accelerating flows

investigated here. We also reported the laws from Eq. (2) with b = 0.5 and from Eq. (3).

These laws should be valid for steady and uniform flows when tan θ = µ∗. This is the case

for the Eq. (2) which predicts fairly well the data for θ < θmax (low I values) but fails

for larger values of θ (large I values). The Eq. (3) was shown to be in good qualitative

agreement with the data in the sense it predicts the asymptotic saturation of the friction at

large values of I (µ∗ → µmax). We reported the equation prediction for three values of θmax:

24◦, 26◦ and 28◦. Results show that a low value of θmax gives a good prediction at low I but

fails in predicting the saturation friction, whereas a higher θmax gives a relevant prediction

at large I but fails in predicting the data at low I. The inset graph in Fig. 2 gives µ∗ versus

I with β = 5/4 for comparison.

Fig. 2b shows the mean volume fraction φ̄3D versus the inertial number I for different

positions x/d. Our simulations were performed in two dimensions with spherical beads (no

disks). The mean volume fraction φ̄3D was calculated from the mean volume fraction φ̄2D

assuming φ̄3D = 2
3
φ̄2D if we compare a sphere of diameter d included in a cube of identical

size d to a disk of diameter d included in a square of size d. Again, all the data are shown

to collapse into a single curve whatever the position x/d and the slope, which supports the

existence of a unique relationship between φ and I. Fig. 2b presents a comparison of the

results to the following law proposed in the literature [29, 48]:

φ̄ = φ̄max + (φ̄min − φ̄max)I (6)

A good agreement is found for θ ≤ θmax (steady and uniform flows) and deviation from

this law for θ ≥ θmax (slightly non uniform flows), if we consider typical values φ̄max = 0.55
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and φ̄min = 0.4.

In conclusion, steady and uniform flows (θ ≤ θmax ≈ 24◦) as well as slightly non-uniform

flows (θ ≥ θmax) were investigated and characterized with regards to recent new insights

on dense granular flows. We also measured the velocity and density profiles over depth

and found good agreement with previously published data on dense granular flows down

rough inclined planes [29, 32, 40], i.e., Bagnold-like velocity profiles and a constant volume

fraction. We carried out a second set of numerical simulations for which we added a vertical

wall normal to the bottom at the location x/d = 900, as depicted in Fig. 3. The obstacle

height H was systematically taken equal to the flow depth h1 of the control flow: H/h1 = 1

(for θ ≥ θmax, h1 was defined at the position x/d = 900). The following analyzes the force

on the wall resulting from these dense granular flows.

Mean force on the obstacle

Fig. 4a shows an example of how the force exerted on the obstacle evolves over a 0.4-

s time-duration window. The force is characterized by high-frequency fluctuations with

possible high amplitudes. We systematically observed a fluctuating chain forces network

formed inside the dead zone being the source of the high-frequency fluctuations. Force

chains in granular media are highly fluctuating physical processes that have been widely

studied in the literature (see, for example, [52–56]). This issue is not discussed in detail in

this paper. The total normal force Fn(t) on the wall, at a given time t, is the sum of each

force f i
n(t) mobilized at the contact points between the wall and each bead i in contact with

the wall:

Fn(t) =
∑

i=1...n

f i
n(t) (7)

where n is the number of beads in contact with the wall at the given time t. The number

n is closely approximated by the ratio between the obstacle height and the mean particle

diameter: n ∼ H/d. When a bead j in contact with the wall is trapped in a relatively long

force chain, the force f i=j
n increases substantially and largely contributes to the total force

Fn(t), which gives a force peak. Such a mechanism can be illustrated in Fig. 4b which gives

the change over time of the ratio of the force f i=imax

n to the total normal force Fn(t), where

f i=imax

n is the instantaneous force which corresponds to the bead exerting the maximum force
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on the wall. When the ratio f i=imax

n /Fn(t) is close or equal to one (point A in Fig. 4b), it

means that the total force is mainly due only one bead in contact with the wall and trapped

in a force chain. Inversely, when no bead in contact with the wall is trapped in a force chain,

each bead has a similar contribution to the total force Fn(t) and the ratio f i=imax

n /Fn(t) is

lower (point B in Fig. 4b).

We represented the moving average over 0.02 s and 0.1 s in Fig. 4a. The graph indicates

that the moving average tends toward a non-time-dependent hydrodynamic force, one of

the main points of the present paper. Fig. 4c shows the mean steady normal force Fn on

the wall versus the slope inclination θ. The results show that the normal force increases

sharply on low slope inclinations (low value of I) when decreasing the slope inclination.

The dramatic increase in force when θ is close to θmin is proof of a transition toward a

quasi-static regime and the flow stopping. The dead zone formed upstream of the obstacle

tends to move upward indefinitely and the mean force is greatly increased by the weight

of the granular material stored upstream of the wall. The mean force is quasi-constant

at intermediate slope inclinations. The last data point seems to show a slight increase in

force at the highest slope inclination which was investigated (highest value of I). Here

we have a transition toward an rapid - or inertial - regime for which the force is mainly

controlled by the flow velocity. These regimes are also visible in the inset in Fig. 4c,

which shows the rescaled normal force Fn/F0 versus the inertial number I, where F0 is a

typical flow force equal to F dyn
0 = 1

β

∫ h1

0
1
2
ρ1u

2(y)dy = 1
2
ρ1u

2
1h1 (dynamic contribution) or

F hydro
0 =

∫ h1

0
ρ1g(h−y) cos θdy = 1

2
ρ1gh2

1 cos θ (hydrostatic contribution). u1 =
∫ h1

0
u(y)dy is

the mean velocity over flow depth h1 of the incoming flow of density ρ1. The following section

proposes a hydrodynamic model to describe this behavior in greater detail and quantify the

different contributions to the mean force in each regime defined by the inertial number I.

3. HYDRODYNAMIC MODELING

3.1. Momentum conservation in a control volume

In a steady regime, the variation of momentum in a fixed control volume of fluid V is

equal to the sum of the volume forces (the weight of the granular material here) and of the

external forces resulting from the elements in contact with the control volume:
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∫

S

ρu(u · n)dS = −
∫

S

pndS +

∫

S

σ · ndS +

∫∫

V

ρgdV (8)

We use a single integral symbol for external forces (
∫

S
) and a double integral symbol for

the volume forces (
∫∫

V
) because we consider variables per unit width (in N m−1). n is the

unit vector normal to the surface S of the control volume V , ρ the density, u the velocity,

g the gravity acceleration, p the pressure and σ the stress tensor. We apply the momentum

conservation on the control volume V0 defined on the schematic view given in Fig. 5. If we

consider sections (S1) and (S2) defined in Fig. 5, Eq. (8) gives:

βQ0
m(u2 + u1) = P + P0 + P1 + P2 + R − F (9)

where u1 = 1
h1

∫

S1
udS and u2 = 1

h2

∫

S2
udS are the mean velocities at sections (S1) and

(S2) defined in Fig. 5, and also shown in Fig. 3. S1 is the section normal to the bottom

and the incoming flow at the position where the obstacle does not create disturbance in

the upstream incoming flow. S2 is the section normal to the outgoing flow at the top of

the obstacle and making an angle α with the bottom. Mass flow rate conservation gives

Q0
m = ρ1u1h1 = ρ2u2h2 where Q0

m is the mass flow rate, h1 is the thickness of the incoming

flow at section (S1), ρ1 its density, and h2 is the thickness of the outgoing flow at section (S2)

and ρ2 its density. Let us define all the forces involved in momentum conservation. P is the

weight of the control volume: Px = ρ0gV0 sin θ (component of P in the x-axis direction) and

Py = −ρ0gV0 cos θ (component of P in the y-axis direction). ρ0 is the mean density of the

granular material in the control volume assumed to be close to the incoming flow density:

ρ0 ≈ ρ1. The force P0 due to the intersitial fluid (air) at the free surface of the flow are

ignored: P0 ∼ 0. The pressure force P1 due to the incoming fluid on section (S1) is parallel

to the bottom: P1x = 1
2
kρ1gh1 cos θ (P1y = 0), where k is the earth pressure coefficient

classically introduced for dense granular flows [49, 50]. The pressure force P2 resulting from

the outgoing fluid on section (S2) is assumed to be negligible (P2 ≈ 0). This assumption

is argued by the presence of a flying and dilute granular jet (downstream the wall) which

does not exert any pressure on the more dense incoming flow at section (S2) (zero pressure

boundary condition). The reaction of the bottom R has two components. Ry is the y-axis

component and Rx is the x-axis component corresponding to the mean basal friction force

assumed to be proportional to the normal force (y-component of the weight of the volume
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V0): Rx = µzmPy. We will discuss this assumption in detail and the meaning of the mean

friction µzm later in the paper. F is the mean force exerted on the wall by the granular flow.

Numerical simulations showed a curvature of the free-surface of the flow in the zone of

influence of the obstacle. Here, for the sake of simplicity, we assume that the free-surface

can be modeled by a straight line between sections (S1) and (S2) in Fig. 5. The disturbance

created by the obstacle in the flow is characterized by a free-surface inclined at an angle αsl

and the dead zone inclined at an angle αzm with the bottom (see Fig. 5). This assumption

and the relation H = h1 allow us to estimate the volume V0:

V0 =
1

2
h1

[(

2 +
δh

cos α

)

L − h1δ
2
h tan α

]

(10)

where L is the upstream distance at which the flow is no longer influenced by the obstacle

(i.e., the distance between the section S1 and the obstacle: see Fig. 5 and also the simulation

picture in Fig. 3) and δh = h2/h1 is the ratio between the flow depths in sections (S1) and

(S2). The obstacle’s influence zone can be determined by the following equation:

L =
h1δh

(cos α)(tanαsl)
(11)

The projection of momentum conservation on the x-axis and y-axis gives the following

equations for Fn and Ft:

Fn = Fdyn + Fpressure + Fweight−friction (12)

Ft = −βρ1u
2
1h1δu sin α − ρ1gV0 cos θ + Ry (13)

with:

Fdyn = βρ1u
2
1h1(1 − δu cos α) (14)

Fpressure =
1

2
kρ1gh2

1 cos θ (15)

Fweight−friction = ρ1gV0 (sin θ − µzm cos θ) (16)

where δu = u2/u1 represents the variation of mean flow velocity between sections (S1)

and (S2). As mentioned above, mass flow rate conservation gives Q0
m = ρ1u1h1 = ρ2u2h2.

Assuming that the density is unchanged (ρ2 ≈ ρ1), we have δu ≈ 1/δh. The following
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proposes simple empirical equations to close the model and determine the angles αsl, αzm

and α (defined in Fig. 5), the basal friction µzm, and the velocity ratio δu.

3.2. Free-surface and dead zone angles

The more inclined the slope is, the higher the free-surface angle upstream of the wall.

Therefore, we can assume that αsl is a simple affine function of the slope inclination θ:

αsl = aθ + b, where a and b are empirical coefficients to be determined. Two asymptotic

conditions may be considered for each incoming regime: (i) the uniform - dense - regime

and (ii) the non-uniform - more dilute - regime. It gives different values of the parameters

a and b for each regime. We note a1 and b1 (respectively, a2 and b2) the coefficients in the

dense (respectively dilute) regime. First, let us consider the incoming dense uniform regime

for θ < θmax. When θ = θmin, no steady regime is possible. The influence zone propagates

increasingly upstream of the obstacle (L → ∞), which corresponds to a value of αsl close

to zero. This asymptotic condition gives: 0 = a1θmin + b1, which implies αsl = a1(θ − θmin).

When increasing the inclination angle θ, the angle αsl increases until it reaches the critical

value αc
sl for θ = θmax, which gives the asymptotic condition: αc

sl = a1(θmax −θmin). Second,

we consider the incoming non-uniform and dilute regime for θ > θmax. We can consider

the situation for which the influence zone tends toward zero, which implies that the angle

αsl tends toward π/2 at a critical slope inclination θc. This asymptotic condition gives:

π/2 = a2θc + b2. αsl may be expressed as: αsl = a2(θ − θc) + π/2. When decreasing the

inclination angle θ, the angle αsl decreases until it reaches the value αc
sl defined above for

θ = θmax, which gives: αc
sl = a2(θmax−θc)+π/2. Combining all these asymptotic conditions,

we obtain the following changes in αsl according to the slope angle θ:

αsl(θ < θmax) =
αc

sl

θmax − θmin
(θ − θmin) (17)

αsl(θ > θmax) =

(

αc
sl − π

2

θmax − θc

)

(θ − θc) +
π

2
(18)

The values of the critical angles θc and αc
sl will be discussed and determined later in the

paper. In section (S2), the grains at the free surface have a velocity parallel to the free

surface and grains at the top of the obstacle (base of the launching downstream jet) have a
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velocity parallel to the line defined by the upstream dead zone. The angle α defined in Fig.

5 can then be approximated by:

α =
αsl + αzm

2
(19)

Considering that the length of the dead zone formed upstream of the obstacle is identical

to the length of the influence zone defined according to the free-surface (length L of the

control volume in Fig. 5), the angle αzm defined in Fig. 5 can be determined by the

following implicit equation:

tan αzm =
tan αsl

1 + h1

H

(

δh

cos(
α

sl
+αzm

2
)
+ 1

) (20)

3.3. Variation in velocity and depth

Incoming flows encounter a local decreased slope created by the dead zone upstream

of the obstacle, which leads to a decrease in velocity. The term δu defined in momentum

conservation (Eq. (9)) is then smaller than one: δu = u2/u1 < 1. We do not have precise

measurements of the velocity profiles at section S2, which would allow us to test a possible

theoretical prediction of δu based on the assumption of Bagnold velocity profiles at sections

S1 and S2. Future work is needed in that sense. Here we simply propose an empirical

law based on the following statement: the larger the deflecting angle α, the higher the

expected velocity decrease is. Thus, we simply assume that the relative velocity reduction

is proportional to the angle α: △u/u1 = (u1 − u2)/u1 = κα, where κ is a coefficient to be

determined. This equation allows us to quantify δu:

δu = 1 − κα (21)

Let us note that the free-surface angle α is strongly correlated to the obstacle’s influence

zone L: the larger α, the longer L. We could have also proposed a simple relation between

δu and L. By mass flow rate conservation and assuming an unchanged density, the flow

depth is increased (δh = h2/h1 > 1) and can be approximated by:

1/δh ≈ 1 − κα (22)
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The κ coefficient is a model parameter that will be discussed later.

3.4. Basal friction in the dead zone

The quantification of the basal friction µzm is a crucial and non-trivial point. Let us

note Tb the basal friction force. If we consider grains at the base of the flow at section (S1),

these grains are in movement and the basal friction force is known according to Coulomb

sliding condition: Tb = (tan θ)Py for θmin < θ < θmax (steady and uniform flows). For

slightly accelerating flows at slopes inclinations larger than θmax, the basal friction force Tb

at section S1 is slightly smaller than (tan θ)Py (positive flow-depth gradient in the x-axis

direction). If we consider motionless grains at the base of the flow immediately upstream

of the obstacle, the basal friction is locally undetermined (the non-sliding condition gives:

Tb < µzmPy). The basal friction µzm is then expected to vary between a value equal to µ∗

(µ∗ = tan θ for steady and uniform flows and µ∗ < tan θ for gradually accelerating flows)

at the beginning of the dead zone and a value which is less and less determined when the

obstacle is approached. For simplicity reasons, the constant value that can be given will be

discussed below.

4. NUMERICAL DATA COMPARED TO HYDRODYNAMIC MODELING

4.1. Calibration

To compare the predictions of the proposed hydrodynamic model to the data from discrete

numerical simulations, we need to validate the empirical laws proposed to close the model

and to determine the different parameters introduced in the model.

A first empirical law has been proposed for the prediction of the angle αsl. Fig. 6a gives

the angle αsl versus the inclination angle θ. Each group is clearly described by a linear fit

and allows us to determine the coefficients ai and bi defined previously. Identifying these

coefficients to Eqs. (17) and (18), we can obtain the critical angles αc
sl and θc. We have

both unknown parameters and four equations, giving the following results: αc
sl ≈ θmin and

θc ≈ π/2. Eqs. (17) and (18) can be then expressed:
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αsl(θ < θmax) =
θmin

θmax − θmin
(θ − θmin) (23)

αsl(θ > θmax) =
π

2
−

(

θmin − π/2

θmax − π/2

)

(π/2 − θ) (24)

Fig. 6b shows the angle (θ − αzm), which corresponds to the mean angle of the dead

zone with the horizontal (see Fig. 5), versus the slope inclination θ. (θ−αzm) is remarkably

close to θmin whatever the slope inclination. The angle αzm can be approximated as follows:

αzm ≈ θ− θmin, instead of using the implicit Eq. (20). The prediction of Eqs. (23) and (24)

compared to the angle αsl estimated from numerical simulations are also reported in Fig. 6b.

The linear law proposed to describe αsl is in quite good agreement with the numerical data.

The inset graph in Fig. 6b shows the numerical angles compared to proposed predictions in

terms of αzm and αsl as a function of I. This plot is obtained by considering the value of the

inertial number that the flow would have in absence of obstacle at x/d = 900, corresponding

to the position of the obstacle.

The relation θ−αzm = θmin gives a simple equation (instead of Eq. (11), which demands

knowledge of δh and αsl) to estimate the length L of the obstacle’s influence zone. Indeed,

we can consider that it is identical to the length of the dead zone (as shown in Fig. 3), which

gives: L ≈ H/ tan(θ − θmin). Fig. 6c shows the prediction of the latter equation compared

to the length of influence measured directly from numerical simulations. Predictions are

satisfying regarding the simple assumptions made. L was estimated graphically using the

simulation pictures similar to the typical picture depicted in Fig. 3. It is the distance

between the obstacle and the section (S1), and coincides quite well with the length of the

dead zone represented by grains with a velocity smaller than a threshold speed vt (see black

colored grains in Fig. 3). This threshold velocity was typically chosen equal to 5% of the

depth-averaged velocity of the granular flow in absence of obstacle (vt ≈ 0.05ū).

A second empirical law has been proposed to predict the velocity ratio δu. It implies a κ

coefficient difficult to determine. κ is expected to vary and display different behaviors in the

different flow regimes (dilute, dense and quasi-static regimes). One approximation considers

the value of κ approximated from the dilute regime for which collisional interactions are

dominant. If the effects of the ambiant fluid are not considered, the only source of velocity

reduction in the dilute regime stems from collisions between grains and is expected to be

proportional to the restitution coefficient. Therefore, we can assume that the u2/u1 ratio

17 (August 7, 2009)



scales as e in the dilute regime. Furthermore, assuming that the length of the dead zone

tends to vanish in the dilute regime, it corresponds to a limit angle α of π/2, giving the

following limit condition according to Eq. (21): δu = e = 1−κe(π/2). The value of κ is then

equal to κe = (1 − e)/(π/2) = 0.32 with e = 0.5. Fig. 6d shows the prediction of Eq. (22)

with κ = κe = 0.32 compared to the depth ratio h2/h1 measured directly from numerical

simulations. The prediction from the simple law proposed for the depth ratio δh, is not

perfect, but the order of magnitude given by this κe value is satisfying regarding the crude

assumption made. The assumption of unchanged density probably has an effect on results.

Density ρ2 at the top of the obstacle (free boundary and granular jet at section S2) may be

smaller than density ρ1, which could explain why the flow depth ratio is underestimated.

Another parameter in the model is the basal friction µzm. We measured shear and normal

basal stresses directly from numerical simulations. Fig. 7a shows the ratio between basal

shear and normal stresses τxy/σyy versus the position x/d upstream of the obstacle (example

for θ = 26◦). Outside of obstacle’s influence zone (−x/d > L/d with x < 0 in Fig. 7a),

the friction is close to (tan θ) as was expected, and it decreases when approaching the

obstacle with high fluctuations close to the obstacle. The variation of τxy/σyy is nontrivial.

We interpolated all the curves by polynomial functions, named Pµ(x), which allowed us

to estimate an averaged friction. µzm is estimated from the averaged value obtained at a

distance 1/3L upstream of the obstacle: µzm = Pµ(x = −1/3L) with x < 0 (Fig. 7a). It

corresponds to the position of the dead zone’s center of gravity assumed to be triangular in

shape. Fig. 7b gives µzm versus I. The values measured are relatively constant and found

to be very close to the value calculated from the minimum angle θmin, which is also reported

in Fig. 7b. In spite of the complex force chains network inside the dead zone leading to

high fluctuations of the local basal friction τxy/σyy, it is possible to consider a continuum

approach and define an averaged basal friction µzm equal to (tan θmin). This value seems

compatible with the observed geometry of the dead zone provided that the angle of the dead

zone with the horizontal (θ − αzm) is equal to θmin, as discussed above (see Fig. 6b) and

shown again in the inset graph in Fig. 7b.

All the parameters are now determined, which allows us to compare the predictions of

the hydrodynamic analytical model to the numerical data from discrete simulations in terms

of the force exerted on the wall.
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4.2. Quantitative comparison

Fig. 8a shows the normal force on obstacle Fn versus the slope inclination θ obtained from

both the hydrodynamic modeling approach and the data from discrete numerical simulations.

Fig. 8b shows the same results in terms of the rescaled force Fn/F0 versus the inertial

number I, where F0 = F dyn
0 or F0 = F hydro

0 . The analytical prediction is found to be in very

good agreement with the numerical data provided the parameters discussed above: β = 5/4

(Bagnold-like velocity profile), κe = (1−e)/(π/2) with e = 0.5 and θmin = 14◦. We proposed

a constant value for κ derived from the dilute regime where collisions are dominant with a

velocity reduction scaling such as the restitution coefficient e. Even if κ depends on e and

µ also in the dense granular regime, the results are satisfactory to describe the mean force

in this regime because δu and δh (depending on κ) have only a slight effect on the force

estimation in this regime. The value of k, representing the ratio of the normal stress σxx

to the normal stress σyy, was chosen equal to 1, which corresponds to isotropic material

conditions. A value derived from a Mohr-Coulomb plasticity [49, 57] does not provide a

better prediction, similar to the results from previous studies [21, 32].

Fig. 8a also reports the different contributions to the normal forces given by Eq. (12).

At high inertial numbers I, the contribution from the momentum term (Fdyn) is dominant,

proving an inertial regime. At low inertial numbers I, the pressure term (Fpressure) and the

difference between weight and basal friction (Fweight−friction) become dominant contributions.

In the dense regime (0 < I < 0.3 − 0.4), Fig. 8b shows that the force scales like the

hydrostatic force F hydro
0 but it is four times greater than F hydro

0 . The contribution of the

term (Fweight−friction) to the total normal force Fn is dominant because of the large increase

in length of the dead zone, as shown in Fig. 6c.

An important result from discrete simulations, shown by the Fig. 4a, is that the tangential

force Ft on the obstacle is found to be close to zero whatever the slope inclination: Ft ≈ 0.

From Eq. (13), we can estimate the reaction of the bottom in the y-axis direction (Ry).

Fig. 8c shows the reaction of the bottom Ry versus the inertial number I. The reaction

Ry is strongly increased at low inertial numbers because −Py = ρ1gV0 cos θ is very large

(the influence zone upstream of the obstacle being very long). This behavior is proof of

the transition toward the quasi-static regime and prevents the occurrence of a steady flow

regime when approaching the angle θmin. In this quasi-static regime, the momentum force

19 (August 7, 2009)



in the y-axis direction is negligible and the reaction Ry is equal to the weight of the material

upstream of the obstacle in the y-axis direction: βρ1u
2
1h1δu sin α << Ry = −Py. At higher

inertial numbers, there exists a critical value Ic for which the reaction of the bottom Ry is

equal to zero (see inset in Fig. 8c), which indicates that the momentum force in the y-axis

direction is exactly balanced by the weight of the material stored upstream of the obstacle

in the y-axis direction. Above Ic, the three contributions are balanced according to the Eq.

(13) and Ry < 0. The fact that Ft is found to negligible, and the consequences it has on the

prediction of the bottom reaction Ry, should be further studied by initiating experimental

studies.

5. CONCLUSION

This paper has described the results on the mean force on a vertical wall caused by free-

surface dense granular flows down an inclined plane. We presented numerical data from 2D

spherical particle discrete simulations performed for a wide range of slopes. The normal

force on the obstacle was characterized by high-frequency fluctuations with high amplitudes

due to a fluctuating force chains network inside the dead zone formed upstream of the wall.

This paper has focused on the mean normal force. We considered a hydrodynamic modeling

approach based on momentum conservation in a control volume. The analytical prediction

was compared to numerical data and quite accurately reproduced the behavior of the force.

Although the numerical simulations display a more complex shape of the dead zone and

the free-surface upstream of the obstacle (particularly when approaching the quasi-static

regime), we assumed a triangular shape for the dead zone. These simple assumptions, made

to close the theoretical model, provided good results. Indeed, the mean angle of the dead

zone and the length of the influence zone upstream of the obstacle were captured quite well by

the simple laws proposed. The predictions of the angle αsl and of the variation in depth were

not perfect and will need further investigation. However, we believe that the hydrodynamic

analytical model proposed in this paper with simple empirical arguments to close the model

is strikingly satisfying in the sense that it is able to predict the exact order of magnitude

of the mean granular force computed from discrete numerical simulations if relevant values

are provided for the parameters needed in the model. All these parameters were estimated

from simple assumptions with no fitting processes. We can conclude that the dynamics
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of the incoming flow (u1, h1 and φ1) and the granular material properties (θmin = 14◦,

k = 1, β = 5/4 and e = 0.5 here) made it possible to estimate the mean steady granular

normal force on a vertical obstacle for uniform incoming flows (θmin < θ < θmax) but also for

gradually accelerated flows (θ > θmax). Besides numerical simulations showed that the mean

tangential force exerted on the wall is close to zero, which could initiate future experimental

studies. Beyond this analytical model, this study provides a new example of the ability of

hydrodynamic modeling approaches to describe the mean macroscopic behavior (kinematics

and depth-averaged force) of an assembly of rigid grains. It has to be kept in mind that the

continuum model proposed in this paper has been developed on the basis of stationary flow

conditions (recirculating flows) with an obstacle height close to the incoming flow depth.

Neither the force due to rapid granular flows impinging high walls in the presence of a upward

traveling shock wave [17], nor the peak impact force due to a granular avalanche front, can

be reproduced by the continuum model proposed in this paper. Further investigations will

be devoted to the situation of dense granular avalanches (finite volume) overflowing small

planar obstacles, in order to see if the continuum model is able to catch the force exerted

by the decelerating avalanche tail (after the occurrence of the peak impact force).
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FIG. 1: (a) Thickness hstop normalized by d versus the slope inclination θ: open squares represent

our numerical data, plain squares represent data from [43] reported also in [40], the continuous

line gives the fitted function hstop(θ)/d = B[(θmax − θ)/(θ − θmin)] with θmin = 24◦, θmin = 14◦

and B = 2.3. Inset: sketch of the simulated recirculation system. (b) Velocity profiles measured

at x/d = 900 for control flows at different slope inclinations; the dotted lines give the Bagnold

profiles. (c) Inertial number I versus normalized distance x/d for different slope inclinations.

FIG. 2: (a) coefficient of effective friction µ∗ versus the inertial number I: our numerical data

(with β = 1) for different x/d are compared to the predictions from Eq. (2) with b = 0.5 and Eq.

(3) with I0 = 0.3 considering three values of θmax: 24◦, 26◦ and 28◦; inset graph: numerical data

with β = 1 and β = 5/4. (b) Depth-averaged volume fraction φ̄ versus the inertial number I: our

numerical data are compared to the linear law from Eq. (6) with φ̄max = 0.55 and φ̄min = 0.4.

FIG. 3: Typical picture of a numerical simulation showing the dead zone formed upstream of the

wall overflowed by a granular flow (example for θ = 24◦) at a given time (instantaneous picture).

We distinguished grains of individual velocity v smaller (black grains) and greater (white grains)

than a threshold velocity vt, which gives the shape of the so-called “dead zone”. The threshold

velocity was typically taken equal to 5% of the depth-averaged velocity of the granular flow in the

absence of obstacle: vt ≈ 0.05ū.
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FIG. 4: (a) Change over time for the instantaneous normal (dark gray) and tangential (light gray)

components of the force per unit width exerted on the obstacle: example for θ = 28◦. Lines

(continuous line for Fn and dotted line for Ft) represent the time-averaged values. (b) Change over

time of the ratio of the instantaneous force f i=imax

n to the instantaneous normal force Fn(t), where

f i=imax

n is due to the bead exerting the maximum force among all the beads in contact with the

wall. (c) Time-averaged normal force Fn per unit of width versus the slope inclination θ. Inset:

rescaled normal force Fn/F0 versus I, with F0 = F dyn
0 = 1

2ρ1u
2
1h1 and F0 = F hydro

0 = 1
2ρ1gh2

1 cos θ.

The vertical dashed gray line represents the transition at θ = θmax.

FIG. 5: Sketch of the control volume V0 (hatched zone) inside which the momentum conservation

is applied. h1 and u1 are flow depth and mean velocity of the incoming flow at section (S1). The

section (S1) is normal to the bottom and represents the beginning of the influence’s zone of the

obstacle. The wall height is H and L is the length of the obstacle’s influence zone, i.e., the distance

between the section (S1) and the foot of the obstacle. h2 and u2 are flow depth and mean velocity

of the flow at section (S2). The section (S2) is normal to the main direction of the outgoing flow of

velocity u2. We defined the angle α between u2 and the bottom. θ is the bottom slope. Assuming

a triangular shape for the dead zone, we also defined αzm as the angle of the dead zone with the

bottom and αsl as the angle of the free-surface (inside V0) with the bottom.

FIG. 6: (a) Free-surface angle αsl versus the slope inclination θ: numerical data and linear fits for

both dense and dilute regimes. (b), (c) and (d): predictions from the empirical laws compared

to numerical data. (b) Angles θ − αzm and θ − αsl versus the slope inclination θ; inset graph:

angles αzm and αsl versus the inertial number I; (c) length of the influence zone upstream of the

obstacle normalized by the obstacle height L/H versus I; (d) depth ratio δh = h2/h1 versus I

(with κ = κe = 0.32).

FIG. 7: (a) Time-averaged ratio between basal shear and normal stresses τxy/σyy versus the position

x/d (the position x/d is negative): example for θ = 26◦; the dotted line gives the value of tan θ and

the dashed line tan θmin. (b) Estimated values of µzm versus I compared to the value tan(θmin);

inset graph: estimated values of θ − αzm versus I compared to θmin.
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FIG. 8: (a) Normal force per unit width Fn versus the slope θ (with β = 5/4 and k = 1): ana-

lytical predictions compared to the numerical data. We also reported the following contributions:

Fweight−friction, Fpressure and Fdyn. (b) Rescaled force Fn/F0 versus I from numerical simulations

and from the hydrodynamic model. (c) Reaction per unit width of the bottom Ry, from Eq. (13),

versus the inertial number I. The y-axis component of the weight of the material (Py) and the y-

axis component of the momentum force (−βρ1u
2
1h1δu sin α) are also reported with β = 5/4. Inset:

is a zoom on high I.
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