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This paper deals with the reconstruction of T1-T2 correlation spectra in Nuclear Magnetic Resonance (NMR) relaxometry. The ill-posed character and the large size of this inverse problem are the main difficulties to tackle. While maximum entropy is retained as an adequate regularization approach, the choice of an efficient optimization algorithm remains a challenging task. Our proposal is to apply a truncated Newton algorithm with three original features. Firstly, a theoretically well stated line search strategy suitable for the entropy function is applied to ensure the convergence of the algorithm. Secondly, an appropriate preconditioning structure based on a truncated singular value decomposition of the forward model matrix is used to speed up the algorithm convergence. Furthermore, we exploit the specific structures of the observation model and the Hessian of the criterion to reduce the computation cost of the algorithm. The performances of the proposed strategy are illustrated by means of synthetic and real data processing.

denoted T 1 and T 2 . Joint measurements with respect to these two parameters allow to build T1-T2 spectra, which reveal couplings between T 1 and T 2 relaxations that are very useful for structure determination [START_REF] English | Quantitative two-dimensional time correlation relaxometry[END_REF].

The physical model behind NMR relaxometry states that the measured NMR decay X(τ 1 , τ 2 ) is related to the T1-T2 spectrum S(T 1 , T 2 ), according to a 2D Fredholm integral of the first kind

X(τ 1 , τ 2 ) = k 1 (τ 1 , T 1 )S(T 1 , T 2 )k 2 (τ 2 , T 2 )dT 1 dT 2 (1) 
with k 1 (τ 1 , T 1 ) = 1 -e -τ1/T1 and k 2 (τ 2 , T 2 ) = e -τ2/T2 . This decay also depends on time variables, noted τ 1 and τ 2 , corresponding respectively to the spin evolution length and to the recording time of the echo.

The associated inverse problem involving the recovery of the continuous distribution S(T 1 , T 2 ) is known to be an ill-posed problem [START_REF] Sternin | Use of inverse theory algorithms in the analysis of biomembrane NMR data[END_REF].

Experimental data are collected at m 1 ×m 2 discrete values in the τ 1 -τ 2 domain. Thus, the data function

X(τ 1 , τ 2
) is replaced by a data matrix X ∈ R m1×m2 . Similarly, the kernels k 1 and k 2 are discretized as matrices K 1 ∈ R m1×N1 and K 2 ∈ R m2×N2 . Equation (1) takes a discrete form X = K 1 SK t 2 , where the spectrum S is a real-valued matrix of size N 1 × N 2 . In practice, measurements are modeled by

Y = K 1 SK t 2 + E (2) 
with E a noise term assumed white Gaussian. 2D NMR reconstruction amounts to estimate S given Y subject to S 0 1 . Attention must be paid to the size of the 2D NMR problem. Indeed, when converted to a standard one-dimensional representation, (2) reads

y = Ks + e (3) 
with y = vect [Y ], s = vect [S], e = vect [E], vect[•] denoting a column vector obtained by stacking all the elements of a matrix in lexicographic order and

K = K 1 ⊗ K 2 (4) 
is the Kronecker product between matrices K 1 and K 2 . Matrix K is thus of size m 1 m 2 × N 1 N 2 . Typical values are m 1 = 50, m 2 = 10 4 , N 1 × N 2 = 200 × 200, so K is a huge matrix whose explicit handling is almost impossible. It is one of the two main contributions of this paper to make use of to the factored form [START_REF] Sternin | Use of inverse theory algorithms in the analysis of biomembrane NMR data[END_REF] to solve this issue without any approximation.

Adopting the well-known least-square approach would lead to define a spectrum estimate as the minimizer of

C(S) = 1 2 Y -K 1 SK t 2 2 F , (5) 
1 in the sense Sij 0 ∀i, j where • F denotes the Frobenius norm, under the positivity constraint S 0. However, K 1 and K 2 are rank-deficient and very badly conditioned matrices [START_REF] Butler | Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[END_REF]. Therefore, such a solution is numerically unstable and regularized solutions must rather be envisaged. Given that the maximum entropy approach provides acknowledged methods for conventional (i.e., one-dimensional) NMR [START_REF] Laue | Maximum entropy method in nuclear magnetic resonance spectroscopy[END_REF][START_REF] Mariette | Continuous relaxation time distribution decomposition by MEM[END_REF], this paper explores T 1 -T 2 spectrum estimation based on maximum entropy regularization and proposes a specific descent algorithm.

According to our experience, the barrier shape of the entropy function makes the minimization problem quite specific. In particular, general-purpose non-linear programming algorithms can reveal extremely inefficient in terms of convergence speed. More surprisingly, the more specific scheme adapted from [START_REF] Skilling | Maximum entropy image reconstruction: General algorithm[END_REF] also reveals very slow to converge. This motivated us to devise an alternate optimization strategy that is provably convergent and shows a good trade-off bewteen simplicty and efficiency. The proposed algorithm belongs to the truncated Newton algorithm but possessed original features regarding the line search and the preconditioning strategy.

The rest of the paper is organized as follows: Section II gives an overview of different regularization strategies that can be applied to solve this problem. Section III proposes an efficient reconstruction method for maximum entropy regularization , based on a truncated Newon algorithm associated with an original line search strategy well suited to the form of the criterion. The computation cost of the algorithm is reduced by working directly with the factored form [START_REF] Mariette | Continuous relaxation time distribution decomposition by MEM[END_REF] to calculate quantities such as gradient and Hessian-vector products. In section IV, the efficiency of the proposal scheme is illustrated by means of synthetic and real data examples.

II. PROBLEM STATEMENT AND EXISTING SOLUTIONS

The mathematical methods developed to solve (1) can be classified in two groups: The first approach is to fit the decay curves with a minimal number of discrete exponentials terms. The parametric minimization is usually handle with the Levenberg-Marquardt algorithm [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF]. In this paper, we rather focus on the second approach which analyses the data in terms of a continuous distribution of relaxation components

S(T 1 , T 2 )
. This modelization gives rise to the linear equation [START_REF] Sternin | Use of inverse theory algorithms in the analysis of biomembrane NMR data[END_REF]. In this section, we give an overview of different inversion strategies for this problem.

A. Direct resolution: TSVD and Tikhonov methods

NMR reconstruction is a linear ill-posed problem. To tackle it, truncated singular value decomposition (TSVD) and Tikhonov penalization (TIK) are commonly used methods [START_REF] Sternin | Use of inverse theory algorithms in the analysis of biomembrane NMR data[END_REF]. Each of them calls for its own regularization principle to compensate the ill-conditioned character of the observation matrix.
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1) TSVD:

The TSVD approach consists in replacing the inverse (or the generalized inverse) of K by a matrix of reduced rank, in order to avoid the amplification of noise due to the inversion of small nonzero singular values [START_REF] Golub | Matrix computations[END_REF]. In practice, computing the TSVD requires the explicit decomposition of K in terms of singular elements, which can be numerically burdensome.

2) Tikhonov penalization: While TSVD tackles the ill-posed character by control of dimensionality, Tikhonov method follows a penalization approach along which a trade-off is sought between fidelity-todata and regularity. It leads to the minimization of a mixed objective function:

L(S) = C(S) + λR(S) (6) 
where the regularization parameter λ > 0 controls the respective weight of the two terms, C is a leastsquare term

C(S) = 1 2 y -Ks 2 = 1 2 Y -K 1 SK t 2 2 F
and the additional term R is also a quadratic term. In the context of NMR reconstruction, the regularization functionnal R is usually chosen as the squared ℓ 2 -norm of the spectrum ( [START_REF] Butler | Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[END_REF][START_REF] Venkataramanan | Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[END_REF][START_REF] Bruckner | Tikhonov regularization for an integral equation of the first kind with logarithmic kernel[END_REF][START_REF] Lamanna | On the inversion of multicomponent NMR relaxation and diffusion decays in heterogeneous systems[END_REF]):

R(S) = 1 2 s 2 = 1 2 S 2 F . (7) 
Tikhonov solution is then obtained by solving the linear system (K t K + λI)s = K t y.

B. Iterative minimization

Both TSVD and TIK solutions provide results of limited resolution. Moreover, they tend to exhibit oscillatory excursions, especially in the peripheral regions of the recovered peaks, which usually violate the positivity of the spectrum components [START_REF] Chiang | Maximum entropy: A complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR[END_REF]. Enforcing the positivity of the spectrum is obviously desirable from the viewpoint of physical interpretation, but it has also a favorable effect on the resolution of the estimated spectrum.

1) Tikhonov under the positivity constraint:

The positivity constraint S 0 is naturally incorporated into Tikhonov approach by constraining the minimization of C to the positive orthant. However, there is no closed-form expression for the minimizer anymore, so the solution must be computed iteratively using a fixed-point algorithm.

Butler-Reeds-Dawson algorithm (BRD) is a rather simple and efficient technique based on the resolution of the Karush-Kuhn-Tucker system [START_REF] Butler | Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[END_REF]. Although commonly employed in materials science, it is scarcely referenced in the quadratic programming literature. For the sake of clarification, Appendix A proposed a very simple interpretation of the BRD scheme as iteratively minimizing a dual function of the criterion in the sense of Legendre-Fenchel duality.

However, the BRD scheme requires the inversion of a system of size m × m at each iteration, where m is the number of measurements. In the case of 2D NMR problems, m = m 1 m 2 , and usual values of m 1 and m 2 lead to a prohibitive computation cost. To solve this issue, a data compression step is proposed in [START_REF] Venkataramanan | Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[END_REF], prior to the application of BRD. It relies on strongly truncated singular value decompositions of

K 1 and K 2 : K i ≈ U i Σ i V t i , i = 1, 2, with mi = rank(K i ) ≪ m i .
The fidelity to data term is then approximated by

C(S) = 1 2 Ỹ -K1 S Kt 2 2 F (8) 
where

K1 = Σ 1 V t 1 , K2 = Σ 2 V t 2 and Ỹ = U t 1 Y U 2 are of size m1 × N 1 , m2 × N 2 and m1 × m2 , respectively . 
2) Maximum entropy: A different regularization approach will be considered here, based on Shannon entropy penalization φ(s) = -s log s. Maximum entropy (ME) [START_REF] Skilling | Maximum entropy image reconstruction: General algorithm[END_REF][START_REF] Eggermont | Maximum entropy regularization for Fredholm integral equations of the first kind[END_REF] yields an acknowledged approach in the context of 1D NMR relaxometry [START_REF] Laue | Maximum entropy method in nuclear magnetic resonance spectroscopy[END_REF][START_REF] Mariette | Continuous relaxation time distribution decomposition by MEM[END_REF]. An interesting feature of entropy penalization is that it implicitly handles the positivity constraint since the norm of the gradient of the entropy term is unbounded at the boundary of the positive orthant. Thus, the minimizer of the resulting penalized leastsquare criterion cancels its gradient, and computing it is essentially similar to solving an unconstrained optimization problem.

Formally, the extension to the 2D case is easily obtained by minimization of

L(S) = 1 2 Y -K 1 SK t 2 2 F + λ N1 i=1 N2 j=1 S ij log S ij . (9) 
However, the practical computation of the solution is clearly more difficult in the 2D case because the optimization problem is much larger-scale. The choice of a specific minimization scheme suited to maximum entropy 2D NMR reconstruction is the main contribution of the paper.

In the context of maximum entropy, [START_REF] Gordon | Algebric reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[END_REF] proposed the fixed-point multiplicative algebraic reconstruction technique (MART) to maximize the entropy term under the constraint Ks = y. The closed-form simplicity of MART is attractive. However, as emphasized in [START_REF] Johnson | Maximum entropy reconstruction methods in electron paramagnetic resonance imaging[END_REF], the presence of inherent noise in projection data makes this method less efficient that the minimization of the penalized criterion L, in practical reconstructions. In [START_REF] Skilling | Maximum entropy image reconstruction: General algorithm[END_REF], an iterative minimization algorithm based on a quadratic approximation of the criterion over a low-dimension subspace is developped. However, according to [16, p. 1022], the convergence of this algorithm is not established. We have tested its behavior in the 2D NMR context.

February 10, 2010 DRAFT

Our conclusions are that this algorithm does not ensure a monotonic decrease of the criterion, and that its convergence is very slow [START_REF] Chouzenoux | Reconstruction d'un spectre RMN 2D par maximum d'entropie[END_REF].

The goal is the next section is to derive an optimization algorithm that would benefit from stronger theorical properties and sufficiently low computational cost to avoid any data compression step.

III. PROPOSED TRUNCATED NEWTON ALGORITHM

A. Minimization strategy

The truncated Newton (TN) algorithm [START_REF] Dembo | Inexact Newton methods[END_REF][START_REF] Nash | A survey of truncated-Newton methods[END_REF] is based on iteratively decreasing the objective function L(s) by moving the current solution s k along a descent direction d k

s k+1 = s k + α k d k , (10) 
where α k > 0 is the stepsize and d k is a search direction computed by solving approximately the Newton equations:

H k d k = -g k (11) 
with

H k ∇ 2 L(s k ) and g k ∇L(s k ).
The TN algorithm has been widely used in the context of interior point algorithms with logarithmic [START_REF] Nash | On the complexity of a practical interior-point method[END_REF][START_REF] Bellavia | Inexact interior-point method[END_REF] and entropic [START_REF] Johnson | Maximum entropy reconstruction methods in electron paramagnetic resonance imaging[END_REF] barrier functions.

In practice, the TN method consists in alternating the construction of d k and the computation of the stepsize α k by a line search procedure. On the one hand, the direction d k results from preconditioned conjugate gradient (PCG) iterations on (11) stopped before convergence. On the other hand, the stepsize α k is obtained by iteratively minimizing the scalar function ℓ(α) = L(s k + αd k ) until some convergence conditions are met [START_REF] Nocedal | Numerical Optimization[END_REF]Chap.3]. Typically, the strong Wolfe conditions are considered:

ℓ(α k ) ℓ(0) + c 1 α k l(0) (12) 
| l(α k )| c 2 | l(0)| (13) 
where (c 1 , c 2 ) ∈ (0, 1) are tuning parameters that does not depend on k. There exist several procedures to find an acceptable stepsize: exact minimization of ℓ(.), backtracking, approximation of ℓ(.) using cubic interpolations [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Moré | Line search algorithms with guaranteed sufficient decrease[END_REF] or quadratic majorizations [START_REF] Sun | Global convergence of conjugate gradient methods without line search[END_REF][START_REF] Labat | Convergence of conjugate gradient methods with a closed-form stepsize formula[END_REF]. However, the entropic penalty term implies that the derivative of ℓ(α) takes the value -∞ as soon as any of the components of the vector s k + αd k cancels, hence when α is equal to one of the two limit values:

α -= max i, dk,i>0 -s i d k,i , α + = min i, dk,i<0 -s i d k,i (14) 
The function ℓ is undefined outside (α -, α + ), therefore, we must ensure that during the line search, the stepsize values remain in the interval (α -, α + ). Moreover, because of the vertical asymptotes at α - and α + , standard methods using cubic interpolations or quadratic majorizations are not well suited. Our proposal is to adopt the specific majorization-based line search proposed in [START_REF] Chouzenoux | A majorize-minimize line search algorithm for barrier function optimization[END_REF][START_REF]A new line search method for barrier functions with strong convergence properties[END_REF] for barrier function optimization. Using an adequate form of majorization, we now derive an analytical stepsize formula preserving strong convergence properties.

B. Line search strategy

The minimization of ℓ(•) using the Majorization-Minimization (MM) principle [START_REF] Hunter | A tutorial on MM algorithms[END_REF] is performed by successive minimizations of majorant functions for ℓ(.). Function h(α, α ′ ) is said majorant for ℓ(α) at

α ′ if for all α,      h(α, α ′ ) ℓ(α) h(α ′ , α ′ ) = ℓ(α ′ ) (15) 
As illustrated in Fig. 1, the initial minimization of ℓ(α) is then replaced by a sequence of easier subproblems, corresponding to the MM update rule

           α 0 k = 0, α j k = arg min α h j (α, α j-1 k ), j = 1, . . . , J k , α k = α Jk k . (16) 
Following [START_REF]A new line search method for barrier functions with strong convergence properties[END_REF], we propose a majorant function h j (., α j k ) that incorporates barriers to account for the entropy term. It is piecewise defined under the following form (whenever unambiguous, the iteration index k will be dropped for the sake of simplicity):

h j (α, α j ) =      p - 0 + p - 1 α + p - 2 α 2 -p - 3 log (α -α -) for all α ∈ (α -; α j ] p + 0 + p + 1 α + p + 2 α 2 -p + 3 log (α + -α) for all α ∈ [α j ; α + ) (17) 
The parameters p ± n , n = 0, . . . , 3 must be defined to ensure that h j (., α j ) is actually a majorant of ℓ(•) at α j (see Figure 1(a) for an illustration). A direct application of [27, Prop. 2] allows to establish expressions for these parameters. The resulting form of h j (., α j ) is rather simple, though lengthy to express, so it is reported in Appendix B. According to [27, Lemma 2], it corresponds to a strictly convex, twice differentiable function in the set (α -, α + ). Moreover, its unique minimizer takes an explicit form, the latter being also found in Appendix B.

Finally, [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF] produces monotonically decreasing values {ℓ(α j )} and the series {α j } converges to a stationnary point of ℓ(α) [START_REF] Jacobson | An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms[END_REF]. 

α - α + α j h j (α, α j ) ℓ(α) α > α j α < α j α j+1 (a) Case α-and α+ finite α + α j h j (α, α j ) α < α j α > α j α j+1 ℓ(α) (b) Case α-= -∞ and α+ finite

C. Convergence result

Let us focus on the convergence of the truncated Newton algorithm when α k is chosen according to the proposed MM strategy. A detailed analysis can be found in [START_REF]A new line search method for barrier functions with strong convergence properties[END_REF] in a more general framework.

According to [START_REF]A new line search method for barrier functions with strong convergence properties[END_REF], the proposed line search procedure ensures that:

k (g t k d k ) 2 d k 2 < ∞ (18) 
and that the directions generated by the TN algorithm are gradient related in the sense of [START_REF] Bertsekas | Nonlinear Programming[END_REF]. According to [START_REF] Shi | Convergence of line search methods for unconstrained optimization[END_REF], inequality [START_REF] Dembo | Inexact Newton methods[END_REF], known as Zoutendijk condition, is sufficient to prove the convergence of the algorithm in the sense lim k→∞ g k = 0. Finally, the objective function being strictly convex, the proposed algorithm converges to its unique minimizer.

D. Preconditioning

As emphasized in [START_REF] Hansen | Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion[END_REF], the Hessian of the Shannon entropy regularization term is very ill-conditioned for points that are close to the boundary of the positive orthant since some of its eigenvalues tend to infinity. Furthermore, the exponential decays in kernels k 1 and k 2 imply that K 1 and K 2 are also very ill-conditioned. Preconditioning is a well-known technique to obtain more clustered eigenvalues of the Hessian of the criterion and to accelerate the convergence of descent algorithms. The principle is to transform the space of original variables into a space in which the Hessian has more clustered eigenvalues by using of a preconditioning matrix P k that approximates the inverse H -1 k of the Hessian. A good preconditioner reaches a trade-off between the quality of approximation and the computation cost. General-purpose preconditioning strategies have been proposed in the litterature including symmetric successive overrelaxation and incomplete LU or Cholesky decompositions ([33, Chap.10], [START_REF] Chen | Matrix preconditioning techniques and applications[END_REF]). In the context of ME optimization, [START_REF] Johnson | Maximum entropy reconstruction methods in electron paramagnetic resonance imaging[END_REF] takes P k as a diagonal matrix defined using the Hessian diagonal elements:

P k = diag diag(K t K) + λ diag(s k ) -1 -1 (19) 
We rather propose a more specific preconditioner. It is based on the fact that, as a consequence of (4), the singular value decomposition of K is given by

K = U t ΣV , with U = U 1 ⊗ U 2 , V = V 1 ⊗ V 2 , Σ = Σ 1 ⊗ Σ 2 , U t i Σ i V i being the singular value decomposition of K i , i = 1, 2.
Then, let us define

P k = Ṽ Σ2 Ṽ t + λ diag(s k ) -1 -1 (20) 
where Ṽ and Σ correspond to truncated versions of V and Σ. In the non-truncated case, Ṽ = V and Σ = Σ, and P k then identifies with the Hessian of L at s k . It remains to define the way we truncate the singular value decomposition of K. Akin to [START_REF] Venkataramanan | Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[END_REF], we separately truncate the decompositions of K 1

and K 2 and we define Ṽ and Σ according to

Ṽ = Ṽ1 ⊗ Ṽ2 , (21) 
Σ = Σ1 ⊗ Σ2 . ( 22 
)
Let us remark that the resulting approximation of K may slightly differ from the TSVD of K. The reason is simple: although Σ1 and Σ2 separately gather the largest singular values of Σ 1 and Σ 2 , Σ

does not necessarily gather the largest singular values of Σ. As a consequence, our approximation may be suboptimal compared to the TSVD, the latter being optimal in the least-square sense [START_REF] Eckart | Multiplicative iterative algorithms for convex programming[END_REF], but the fact that we maintain factored expressions for matrices Ṽ and Σ is essential in terms of computation cost.

E. Memory storage and computation cost reduction

The computation cost can be reduced by exploiting the factored form of the observation model. Three main operations are involved in the iterative optimization algorithm: the computation of the gradient vector g k = ∇L(s k ), and the products of P k and H k with a vector. The three resulting quantities can be calculated using low cost operations, as described below.

1) Gradient:

The gradient of the criterion can be computed without explicitly handling matrix K, according to

g k = -vect K t 1 (Y -K 1 S k K t 2 )K 2 + λ(1 + log s k ). ( 23 
)
2) Hessian: In the same manner, products between the Hessian matrix and any vector w = vect [W ] can be computed as follows:

H k w = vect K t 1 K 1 W K t 2 K 2 + λ(w./s k ), (24) 
where ./ denotes componentwise division.

3) Preconditioner: In order to compute products involving P k , it is useful to make use of the matrix inversion lemma:

P k = A k -A k Ṽ ( Σ-2 + Ṽ t A k Ṽ ) -1 Ṽ t A k , (25) 
with A k = λ -1 diag(s k ). Moreover, the following factored expression can be deduced from ( 21) for the

entries of matrix M = Ṽ t A k Ṽ ∈ R v1×v2 : M ij = 1 λ N1 m=1 N2 n=1 (S k ) mn ( Ṽ1 ) ma ( Ṽ2 ) nb ( Ṽ1 ) mc ( Ṽ2 ) nd ,
where (a, b) and (c, d) are row and column subscripts that correspond to the linear indexes i and j, respectively. Thus, the product P k w can be efficiently computed according to

P k w = b k -A k Ṽ ( Σ-2 + M ) -1 Ṽ t b k , = b k -A k vect Ṽ1 Q k Ṽ t 2 (26) 
where b k = A k w, q k = ( Σ-2 + M ) -1 vect Ṽ t 1 B k Ṽ2 and Q k , B k denote the equivalent square matrix representations of q k and b k respectively.

F. Resulting algorithm

The resulting TN algorithm is given in Table I. The algorithm convergence is checked using the following stopping rule ( [START_REF] Nocedal | Numerical Optimization[END_REF]):

g k ∞ < ǫ(1 + |L(s k )|), (27) 
and the PCG iterations in Table II are stopped when ( [START_REF] Nash | A survey of truncated-Newton methods[END_REF]):

g k + H k d k η L(s k ) . (28) 

IV. EXPERIMENTAL RESULTS

This section discusses the performances of the proposed method and illustrates its applicability. First, we consider synthetic data allowing us to discuss the tuning of the different parameters of the algorithm.

Then, the proposed method is used for the processing of real NMR datasets.

The different results presented in this paper are obtained using Matlab 7.5 running on an Intel Pentium Ensure: Resolution of ( 9)

Compute the TSVD of K1 and K2 at ranks v1, v2.

while [START_REF]A new line search method for barrier functions with strong convergence properties[END_REF] does not hold do Compute g k , P k and H k using ( 23), ( 24) and [START_REF] Labat | Convergence of conjugate gradient methods with a closed-form stepsize formula[END_REF].

Compute d k using Table II.

Set α k after J iterations of [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF].

Update s k according to [START_REF] Bruckner | Tikhonov regularization for an integral equation of the first kind with logarithmic kernel[END_REF].

end while 

u0 ← 0 r0 ← -g k -H k u0 p0 ← P k r0 while does not hold do θi ← (r t i P k ri)/(p t i H k pi) ui+1 ← ui + θipi ri+1 ← ri -θiH k pi βi ← (r t i+1 P k ri+1)/(r t i P k ri) pi+1 ← P k ri+1 + βipi d k ← ui+1 end while

A. Synthetic data

We consider two datasets A (Fig. 2) and B (Fig. 3) simulated using the observation model ( 3 

Q = 100 s(λ) -s o 2 2 / s o 2 2 , (29) 
and the preconditioner truncature parameters v 1 , v 2 are set to the same value v. 

1) PCG subiterations:

The parameter η controls the accuracy of the PCG minimization. The smaller it is, the more accurate the solving of [START_REF] Lamanna | On the inversion of multicomponent NMR relaxation and diffusion decays in heterogeneous systems[END_REF]. Here, several values are tested within the range [10 -7 , 10 -1 ].

Let I k denotes the number of PCG subiterations at outer iteration k. As expected, the number of global iterations K decreases with η (Fig. 4(a)) while the average value of I k generally increases (Fig. 4(c)).

The number of PCG subiterations depends also on the preconditioner, it can be noted that I k decreases as the truncation rank of the SVD increases, corresponding to a more accurate approximation of the inverse Hessian matrix. The smallest overall minimization time is achieved when a tradeoff is reached between the number of global iterations and the number of PCG iterations (Fig. 4(b)). In this example, the best tuning is (v, η) = (4, 10 -4 ).

2) Preconditioning: Fig. 4(d) illustrates the criterion evolution for different preconditioners: the proposed approximation P k (v) given by ( 20) with v 1 = v 2 = v = 0, 1, 4 and the diagonal preconditioner [START_REF] Nash | A survey of truncated-Newton methods[END_REF]. The stopping criterion is not fulfilled after 1000 iterations for P k (0) nor P d k . Moreover, according to Fig. 4(b), the iteration number decreases as the SVD truncation rank v increases and one can note (Fig. 4(a-b)) that the choice of v involves a compromise between an acceleration of the algorithm and an increase of the computational cost since the computational cost of the SVD decomposition increases with the decomposition rank.

P d k resulting from
3) Line search strategies: Let us compare the performances of the algorithm when the step size is obtained either by the proposed MM line search or by the Moré and Thuente's cubic interpolation procedure (MT) [START_REF] Moré | Line search algorithms with guaranteed sufficient decrease[END_REF]. The latter performs an iterative minimization of ℓ(.) based on cubic interpolation until identifying α k that fulfills the strong Wolfe conditions ( 12) and ( 13).

According to Table III, the TN algorithm with the MM line search performs better than the MT-TN with the best settings for c 1 and c 2 . Concerning the choice of the sub-iteration number, it appears that J = 1 leads to the best results in terms of computation time which shows that an exact minimization of the scalar function ℓ(α) during line search is not necessary. case.

4) Data compression:

As expected, the computation cost decreases with mi . It can be noted that even if BRD requires about three time less iterations than TN, the computation time of the latter remains low thanks to an implementation exploiting adequately the model's structure.

Furthermore, it appears that, except for very high compression, the reconstructed spectra resulting from data compression have a similar quality than the one obtained without compression. It can be noted that the best reconstruction quality in term of similarity is obtained when data compression is performed, for mi = 5. This is reminiscent with the regularization effect of the TSVD described in introduction.

5) Regularization term:

Our aim is to compare the ME and TIK regularizations in terms of reconstruction quality. In order to evaluate the sensibility to noise of the two strategies, we have tested different noise realizations with SNR = 5, 10 and 15 dB. According to Fig. 5, the minimum value of Q decreases with the noise level, for ME and TIK regularizations. Moreover, the two strategies lead to similar reconstruction error for the three noise levels.

Furthermore, according to Table IV, for the same level of compression, the two regularizations lead to spectra with similar qualities in terms of quadratic error Q. However, as illustrated in Fig. 6 and Fig. 7, the entropy penalization leads to spectra whose shape are closer to the simulated one. 

6) Hyperparameter estimation:

In the previous, the tuning of the hyperparameter λ required the knowledge of the reference spectrum. This strategy, impractical in an experimental context, can be replaced by different procedures proposed in the litterature. Here, we present the chi-squared approach that has been widely used in the context of NMR reconstruction [START_REF] Butler | Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[END_REF][START_REF] Mariette | Continuous relaxation time distribution decomposition by MEM[END_REF][START_REF] Venkataramanan | Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions[END_REF] and ME optimization [START_REF] Skilling | Maximum entropy image reconstruction: General algorithm[END_REF][START_REF] Pichon | Non-parametric recontruction of distribution functions from observed galactic discs[END_REF].

Given measurements Y and an estimate of the noise standard deviation σ, the χ 2 of the data is given by:

χ 2 = K 1 SK t 2 -Y 2 F /σ 2 (30) 
Over the different noise realizations, χ 2 follows a normal distribution with mean and variance

Mean(χ 2 ) = m 1 m 2 , Var(χ 2 ) = 2m 1 m 2 (31) 
Thus, a classical method for setting the hyperparameter λ is to constrain χ 2 to be equal to its expected value

χ 2 aim = m 1 m 2 (32) 
However, [START_REF] Hansen | Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion[END_REF] often leads to over-smoothed reconstructions ( [START_REF] Pichon | Non-parametric recontruction of distribution functions from observed galactic discs[END_REF][START_REF] Galatsanos | Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation[END_REF]) and a better choice is to take

χ 2 aim = m 1 m 2 - √ 2m 1 m 2 (33) 
In practical applications when the noise level is important or the estimation of σ is inaccurate, the chi-squared test can be difficult to achieve. [START_REF] Song | T1-T2 correlation spectra obtained using a fast two-dimensional Laplace inversion[END_REF] preconizes to choose λ such that the S-curve (Fig. 8)

does not make significant progress:

∂ log 10 χ 2 ∂ log 10 λ ≪ 1 (34) 
We propose to combine the two latter strategies for the determination of λ, as detailed in Table V. We emphasize that the minimizations [START_REF] Eckart | Multiplicative iterative algorithms for convex programming[END_REF] can be performed at very low cost by initializing the TN algorithm of Table I with the solution at previous λ. 

B. Experimental data

We present reconstruction results of T1-T2 spectra from 2D NMR analysis on vegetal samples (apple).

Measurements are made for m 1 = 50, m 2 = 10000 and the reconstruction is performed for N 1 = N 2 = 200, J = 1, v = 5, η = 10 -3 and λ = 5 • 10 -5 given by Table V. V. CONCLUSION

In this paper, we have presented an efficient method for the reconstruction of a 2D NMR spectrum.

The minimization is performed with a truncated Newton algorithm associated with a MM line search scheme. The resulting method benefits from strong convergence results. The proposed method has a reduced computational cost and shows itself very efficient on practical problems.

APPENDIX

A. Interpretation of BRD algorithm using Legendre-Fenchel duality

Let us consider the constrained minimization problem

min s 0 L(s) = 1 2 Ks -y 2 + λ 2 s 2 . ( 36 
)
The BRD algorithm [START_REF] Butler | Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing[END_REF] is based on the equivalence between the KKT conditions of problem [START_REF] Pichon | Non-parametric recontruction of distribution functions from observed galactic discs[END_REF] and the following unconstrained problem

min c∈R m χ(c) = 1 2 c t (G(c) + λI) c -c t y (37) 
with the reparametrization s = max(0, K t c) and

G(c) = K t Diag(H(K t c))K, (38) 
where H denotes a component-wise unit step function that takes the value zero for negative or zero arguments and one for positive arguments. Let us show that this equivalence can also be obtained from the Legendre-Fenchel conjugacy theory (see [START_REF] Bertsekas | Convex analysis and optimization[END_REF] for a reminder on Legendre-Fenchel theory).

First, let us introduce the Legendre-Fenchel conjugate f * of the quadratic f (u) = 

where

ϕ(u) = min s 0 s t K t u + λ 2 s 2 . ( 42 
)
The minimization problem (42) is convex, separable and the following expression of the minimizer is easy to derive:

s * (u) = 1 λ max 0, -K t u ( 43 
)
where max is to be considered component-wise. Moreover, we have

ϕ(u) = (s * (u)) t K t u + λ 2 s * (u) 2 = 1 2 (s * (u)) t K t u, (44) 
the latter expression being a consequence of (max(0, x)) 2 = x max(0, x) for all x ∈ R. Finally, given [START_REF] Bertsekas | Convex analysis and optimization[END_REF], ( 43) and ( 44), (41) also reads B. Expression of the majorant function h j (•, α j ) and of its minimizer

The majorant function h j (•, α j ) is piecewise defined, whether α ∈ (α -; α j ] or α ∈ [α j ; α + ). In both cases, it takes the following form:

h j (α, α j ) = ℓ(α j ) + (α -α j ) l(α j ) + 1 2 m j (α -α j ) 2 + γ j (ᾱ j -α j ) log ᾱj -α j ᾱj -α -α + α j (45) while the expressions of parameters ᾱj , m j , and γ j are specific to each case.

1) Case α ∈ (α -; α j ]:

           ᾱj = α - m j = d t k K t Kd k + λ i|dk,i<0 φ i (α j ) γ j = λ(α --α j ) i|dk,i>0 φ i (α j ) (46)
2) Case α ∈ [α j ; α + ):

           ᾱj = α + m j = d t k K t Kd k + λ i|dk,i>0 φ i (α j ) γ j = λ(α + -α j ) i|dk,i<0 φ i (α j ) (47) 
where φ i (α) = d 2 k,i /(s i + αd k,i ) in both cases. The minimizer of h j (•, α j ) can be expressed as follows:

α j + sign( l(α j )) 2 |A 3 | |A 2 | + A 2 2 -4A 1 A 3 , ( 48 
) with            A 1 = -m j
A 2 = γ jl(α j ) + m j (ᾱ j -α j )

A 3 = (ᾱ j -α j ) l(α j ) .

(49)
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 1 Fig. 1. Schematic principle of the MM line search procedure. The tangent majorant function for ℓ at αj is piecewise defined on the sets (α-, αj] and [αj, α+). The new iterate αj+1 is taken as the minimizer of hj(., αj). Two cases are illustrated. The third and last case where αis finite and α+ = +∞ is the symmetrical of case (b).

  ) with a signal to noise ratio (SNR) of 10 dB, m 1 = 100 and m 2 = 1000. The synthetic spectrum A is an independant Gaussian distribution located at [T 1 , T 2 ] = [0.5s, 1s] while spectrum B is the sum of an independant Gaussian distribution located at [T 1 , T 2 ] = [0.5s, 0.5s] and a correlated Gaussian distribution at [T 1 , T 2 ] = [1.5s, 1.5s]. The reconstruction is performed for N 1 = N 2 = 100 and the algorithm is February 10, 2010 DRAFT initialized with a uniform positive 2D spectrum. The regularization parameter λ is set to minimize the quadratic error

Fig. 2 .

 2 Fig. 2. Dataset A: Simulated 2D spectra (left) and NMR decays (right).

Fig. 3 .

 3 Fig. 3. Dataset B: Simulated 2D spectrum (left) and NMR decay (right).

Fig. 4 .

 4 Fig. 4. Dataset A: Analysis of the algorithm performances for different strategies

Fig. 5 .

 5 Fig. 5. Dataset A: Similarity error for ME (left) and TIK (right) reconstructions. Average of Monte Carlo simulations with 100 random realizations for SNR = 5, 10 and 15 dB.

Fig. 6 .

 6 Fig. 6. Dataset A: Reconstructed spectra with optimal setting of λ for ME (left) and TIK (right) regularization (SNR = 10 dB and mi = 5).

Fig. 7 .

 7 Fig. 7. Dataset B: Reconstructed spectra with optimal setting of λ for ME (left) and TIK (right) regularization (SNR = 10 dB and mi = 5).

2 ]Fig. 8 .

 28 Fig. 8. Dataset A (SNR = 10 dB and mi = 5): S-curve for ME reconstruction. The dotted line illustrates the fulfillment of condition[START_REF] Hansen | Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion[END_REF] 

Fig. 9 .

 9 Fig. 9. Reconstruction of 2D NMR experimental data

t u t K t u + 1 2 u 2 +

 2 y t u = -λ min c∈R m χ(c) where the last identity is obtained using the change of variable c = -u/λ. Thus,[START_REF] Pichon | Non-parametric recontruction of distribution functions from observed galactic discs[END_REF] and (37) are equivalent through Legendre-Fenchel duality, and c * minimizes χ(c) in R m if and only if s * = max(0, K t c * ) minimizes L(s) in R m + .

TABLE II PCG

 II 

ALGORITHM

Require: g k , H k , P k Ensure: Approximate solution d k of

[START_REF] Lamanna | On the inversion of multicomponent NMR relaxation and diffusion decays in heterogeneous systems[END_REF] 

  Table IV illustrates the effect of data compression in terms of reconstruction quality and algorithmic properties. The low part of the table presents results obtained with TIK regularization under positivity constraints, using the BRD algorithm. Reconstruction results without data compression are given in the first column of the table only for ME because BRD was impractical in this

		c 1	c 2	K	T (s)
		10 -1	0.5	93 19.84
	MT	10 -1	0.9	90 15.64
		10 -1 0.99 170 25.72
		10 -3	0.5	93 16.98
		10 -3	0.9	90 15.36
		10 -3 0.99 170 25.14
		J		K	T (s)
		1		79 13.56
	MM	2		85 15.09
		3		84 15.06
		4		84 15.11
		5		85 15.31
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TABLE III DATASET

 III 

A: COMPARISON BETWEEN MM AND MT LINE SEARCH STRATEGIES IN TERMS OF ITERATION NUMBER AND TIME BEFORE CONVERGENCE.

TABLE V S

 V -CURVE METHOD FOR HYPERPARAMETER ESTIMATION

			(35)
	Compute χ 2 ( Ŝ) using (30).
	λn+1 ← θλn	
	end while	
		Dataset A	Dataset B
		ME TIK	ME TIK
	-log 10 λ Q 4.92 6.19 5.32 5.92
	Q	2.05 3.92 13.8 10.7
	-log 10 λ S	5.05 5.91 5.59 5.92
	Q	2.43 4.67 22.9 10.7

Require: Initial values s0 0, λ0, parameter θ ∈ (0, 1) and accuracy η Ensure: ME resolution with chi-squared based tuning of λ while (33) and (34) do not hold do Using Table I, compute Ŝ = arg min L(S) + λnR(S).

TABLE VI DATASET

 VI A (SNR = 10 DB AND mi = 5): EVALUATION OF THE PROPOSED S-CURVE STRATEGY FOR HYPER-PARAMETER ESTIMATION. λQ IS THE MINIMIZER OF Q AND λS RESULTS FROM

TABLE V February

 V 

10, 2010 DRAFT

February 10, 2010 DRAFT

3.2 GHz, 3 GB RAM. February 10, 2010 DRAFT