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Efficient Maximum Entropy Reconstruction of

Nuclear Magnetic Resonance T1-T2 Spectra

Emilie Chouzenoux, Sd Moussaoui, 8®me Idier and Francois Mariette

Abstract

This paper deals with the reconstruction of T1-T2 correlaspectra in Nuclear Magnetic Resonance
(NMR) relaxometry. The ill-posed character and the largee 9f this inverse problem are the main
difficulties to tackle. While maximum entropy is retained as adequate regularization approach, the
choice of an efficient optimization algorithm remains a @rajing task. Our proposal is to apply a
truncated Newton algorithm with three original featuresstly, a theoretically well stated line search
strategy suitable for the entropy function is applied toueaghe convergence of the algorithm. Secondly,
an appropriate preconditioning structure based on a ttad&ngular value decomposition of the forward
model matrix is used to speed up the algorithm convergenagh&rmore, we exploit the specific
structures of the observation model and the Hessian of tierion to reduce the computation cost
of the algorithm. The performances of the proposed strategyillustrated by means of synthetic and

real data processing.

Index Terms

Maximum entropy regularization, truncated Newton aldomi line search, preconditioning with

SVD, Nuclear magnetic resonance, Fredholm integral, lcaplaversion, T1-T2 spectrum.

I. INTRODUCTION

Nuclear magnetic resonance (NMR) relaxometry is a measnernechnique used to analyze the
properties of matter in order to determine its molecularcttre and dynamics. In conventional NMR, the

data are recorded independently either in terms of longilar transverse relaxation times, respectively
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denotedl’}; andT5. Joint measurements with respect to these two paramelenstalbuild T1-T2 spectra,
which reveal couplings betwedén andTs; relaxations that are very useful for structure determamafi].

The physical model behind NMR relaxometry states that thesorea NMR decayX (71, 72) is related
to the T1-T2 spectrun$ (77, 7>), according to a 2D Fredholm integral of the first kind

X(r1,7) = / / oy (71, T3)S (T4, T ks (72, To)d Ty dT (1)

with ki (m,71) =1 —e /T andky(mo, Ta) = e~™/T: This decay also depends on time variables, noted
71 andry, corresponding respectively to the spin evolution lengtti & the recording time of the echo.
The associated inverse problem involving the recovery otctirginuous distributiort (77, 7%) is known
to be an ill-posed problem [2].

Experimental data are collectedrat x mo discrete values in the - domain. Thus, the data function
X (11, 72) is replaced by a data matriX € R™ *™=_ Similarly, the kernelg:; andk, are discretized as
matricesK; € R™>*N1 and K, € R™*M2, Equation (1) takes a discrete fori = K,SKY, where

the spectrumS is a real-valued matrix of siz&/; x Ns. In practice, measurements are modeled by
Y = K\SK;+ E (2)

with E a noise term assumed white Gaussian. 2D NMR reconstructimuiats to estimat& given'Y’
subject toS > 0. Attention must be paid to the size of the 2D NMR problem. balevhen converted

to a standard one-dimensional representation, (2) reads
y=Ks+e 3)
with y = vect [Y], s = vect [S], e = vect [E], vect[-] denoting a column vector obtained by stacking
all the elements of a matrix in lexicographic order and
K=K oK, (4)

is the Kronecker product between matrid€s and K. Matrix K is thus of sizen;msy x N1 N,. Typical
values aren; = 50, my = 10%, Ny x Ny = 200 x 200, so K is a huge matrix whose explicit handling
is almost impossible. It is one of the two main contributi@fighis paper to make use of to the factored
form (2) to solve this issue without any approximation.

Adopting the well-known least-square approach would leaddéfine a spectrum estimate as the
minimizer of

1
C(8) = 5 IY - KiSKi3. )

lin the senses;; > 0 Vi, j
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where||-|| - denotes the Frobenius norm, under the positivity constiint 0. However,K; and K, are
rank-deficient and very badly conditioned matrices [3]. Tiaee such a solution is numerically unstable
and regularized solutions must rather be envisaged. Ghantihe maximum entropy approach provides
acknowledged methods for conventionaé( one-dimensional) NMR [4, 5], this paper explorEsT;
spectrum estimation based on maximum entropy regulavizatnd proposes a specific descent algorithm.
According to our experience, the barrier shape of the eptfopction makes the minimization problem
quite specific. In particular, general-purpose non-line@gmmming algorithms can reveal extremely
inefficient in terms of convergence speed. More surprisintilg more specific scheme adapted from
[6] also reveals very slow to converge. This motivated us teisgean alternate optimization strategy
that is provably convergent and shows a good trade-off mwstmplicty and efficiency. The proposed
algorithm belongs to the truncated Newton algorithm butspesed original features regarding the line
search and the preconditioning strategy.

The rest of the paper is organized as follows: Section Il gives\erview of different regularization
strategies that can be applied to solve this problem. Sedtioproposes an efficient reconstruction
method for maximum entropy regularization , based on a &gt Newon algorithm associated with an
original line search strategy well suited to the form of thigecion. The computation cost of the algorithm
is reduced by working directly with the factored form (5) talalate quantities such as gradient and
Hessian-vector products. In section 1V, the efficiency of pneposal scheme is illustrated by means of

synthetic and real data examples.

II. PROBLEM STATEMENT AND EXISTING SOLUTIONS

The mathematical methods developed to solve (1) can be fidalssi two groups: The first approach is
to fit the decay curves with a minimal number of discrete exptaks terms. The parametric minimization
is usually handle with the Levenberg-Marquardt algorithrh @ this paper, we rather focus on the
second approach which analyses the data in terms of a consmdistribution of relaxation components
S(Ty,Ts). This modelization gives rise to the linear equation (2).His tsection, we give an overview

of different inversion strategies for this problem.

A. Direct resolution: TSVD and Tikhonov methods

NMR reconstruction is a linear ill-posed problem. To tackldéruncated singular value decomposition
(TSVD) and Tikhonov penalization (TIK) are commonly used mdth§2]. Each of them calls for its

own regularization principle to compensate the ill-coiodied character of the observation matrix.
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1) TSVD: The TSVD approach consists in replacing the inverse (or therghred inverse) ofK
by a matrix of reduced rank, in order to avoid the amplificattdmoise due to the inversion of small
nonzero singular values [8]. In practice, computing the TS¥Buires the explicit decomposition &
in terms of singular elements, which can be numerically ensdme.

2) Tikhonov penalizationWhile TSVD tackles the ill-posed character by control of disienality,
Tikhonov method follows a penalization approach along wradrade-off is sought between fidelity-to-

data and regularity. It leads to the minimization of a mixdyeative function:
L(S) =C(S)+ AR(S) (6)

where the regularization parameter> 0 controls the respective weight of the two termsjs a least-
square term
1 2 1 2
C(S) =5 lly - Ksl* = 5 |¥ - KiK.

and the additional ternk is also a quadratic term. In the context of NMR reconstruntibe regularization

functionnal R is usually chosen as the squargdnorm of the spectrum ([3, 9-11]):
1 1
R(S) = 3 lls|* = 5 IS%- (7)

Tikhonov solution is then obtained by solving the linearteys( K'K + \I)s = K'y.

B. lterative minimization

Both TSVD and TIK solutions provide results of limited resabuti Moreover, they tend to exhibit
oscillatory excursions, especially in the peripheral oegiof the recovered peaks, which usually violate
the positivity of the spectrum components [12]. Enforcing thositivity of the spectrum is obviously
desirable from the viewpoint of physical interpretationt i has also a favorable effect on the resolution
of the estimated spectrum.

1) Tikhonov under the positivity constrainT:he positivity constraintS > 0 is naturally incorporated
into Tikhonov approach by constraining the minimization(ofto the positive orthant. However, there
is no closed-form expression for the minimizer anymore, rso golution must be computed iteratively
using a fixed-point algorithm.

Butler-Reeds-Dawson algorithm (BRD) is a rather simple effidient technique based on the resolution
of the Karush-Kuhn-Tucker system [3]. Although commonlypdoyed in materials science, it is scarcely

referenced in the quadratic programming literature. Fergke of clarification, Appendix A proposed a
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very simple interpretation of the BRD scheme as iterativalpimizing a dual function of the criterion
in the sense of Legendre-Fenchel duality.

However, the BRD scheme requires the inversion of a systesizefn x m at each iteration, where,
is the number of measurements. In the case of 2D NMR problems,m;m-, and usual values ofi;
andms lead to a prohibitive computation cost. To solve this issuéata compression step is proposed
in [9], prior to the application of BRD. It relies on stronglsuncated singular value decompaositions of
K, and Ky: K, =~ U;3; VY, i = 1,2, with m; = rank(K;) < m;. The fidelity to data term is then
approximated by
C(S) = IV - K\ SK|3 (8)

where K| = .V, Ky = %,V)f andY = U'Y U, are of sizen; x Ny, iy x Ny and iy x s,
respectively.

2) Maximum entropy:A different regularization approach will be consideredeéhdrased on Shannon
entropy penalizatiow(s) = —slog s. Maximum entropy (ME) [6, 13] yields an acknowledged apploac
in the context of 1D NMR relaxometry [4,5]. An interestingafare of entropy penalization is that
it implicitly handles the positivity constraint since therm of the gradient of the entropy term is
unbounded at the boundary of the positive orthant. Thus, tinemzer of the resulting penalized least-
square criterion cancels its gradient, and computing is&estially similar to solving an unconstrained
optimization problem.

Formally, the extension to the 2D case is easily obtained mynmization of

N1 N2
1
L(S) = 5|IY — KiSKS[E + 2 ) Sijlog Syj. 9
i=1 j=1

However, the practical computation of the solution is dieamore difficult in the 2D case because
the optimization problem is much larger-scale. The choica specific minimization scheme suited to
maximum entropy 2D NMR reconstruction is the main contiifmutof the paper.

In the context of maximum entropy, [14] proposed the fixedapwiultiplicative algebraic reconstruction
techniqgue (MART) to maximize the entropy term under the camst Ks = y. The closed-form
simplicity of MART is attractive. However, as emphasized[Ib], the presence of inherent noise in
projection data makes this method less efficient that the miiaition of the penalized criterion, in
practical reconstructions. In [6], an iterative minimipatalgorithm based on a quadratic approximation
of the criterion over a low-dimension subspace is develdpptwever, according to [16, p. 1022], the

convergence of this algorithm is not established. We hastedeits behavior in the 2D NMR context.
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Our conclusions are that this algorithm does not ensure eotonit decrease of the criterion, and that
its convergence is very slow [17].
The goal is the next section is to derive an optimization allgor that would benefit from stronger

theorical properties and sufficiently low computationaltdosavoid any data compression step.

IIl. PROPOSED TRUNCATEDNEWTON ALGORITHM
A. Minimization strategy

The truncated Newton (TN) algorithm [18, 19] is based on iteeft decreasing the objective function

L(s) by moving the current solutior;, along a descent directioddy
Sk+1 = Sk + agdg, (10)

whereqy, > 0 is the stepsize andy, is a search direction computed by solving approximatelyNbeiton
equations:
Hdy. = —gi (11)

with H, = V2L(s;) and g, = VL(s;). The TN algorithm has been widely used in the context of
interior point algorithms with logarithmic [20, 21] and eopic [15] barrier functions.

In practice, the TN method consists in alternating the caottn of d;, and the computation of the
stepsizeq;, by a line search procedure. On the one hand, the direetjoresults from preconditioned
conjugate gradient (PCG) iterations on (11) stopped beforeergence. On the other hand, the stepsize
oy, is obtained by iteratively minimizing the scalar functiéfa) = L(s + ady;) until some convergence

conditions are met [22, Chap.3]. Typically, the strong Watbnditions are considered:
() < £(0) + cragl(0) (12)
[£(a)| < cal€(0)] (13)
where(cp, ¢2) € (0, 1) are tuning parameters that does not depend.dfhere exist several procedures to
find an acceptable stepsize: exact minimizatiorf(of, backtracking, approximation d@f.) using cubic
interpolations [22, 23] or quadratic majorizations [24].25owever, the entropic penalty term implies

that the derivative of(«) takes the value-co as soon as any of the components of the vesior ady

cancels, hence whem is equal to one of the two limit values:

s . s,
Q- = max ), oy = min ! (14)
i, dk,i>0 dk,’L ’i7dk,1<0 dk?,l
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The function? is undefined outsidéa_, o), therefore, we must ensure that during the line search,
the stepsize values remain in the interval , o). Moreover, because of the vertical asymptotesa at
and o, standard methods using cubic interpolations or quadraéiprizations are not well suited. Our
proposal is to adopt the specific majorization-based linechearoposed in [26, 27] for barrier function
optimization. Using an adequate form of majorization, wevrderive an analytical stepsize formula

preserving strong convergence properties.

B. Line search strategy

The minimization of/(-) using the Majorization-Minimization (MM) principle [28]si performed by
successive minimizations of majorant functions #¢r). Functioni(«, ') is said majorant fol(«) at

o if for all a,

h(a, o) > 0(a) (15)
h(d/,a’) = ()

As illustrated in Fig.1, the initial minimization of(«) is then replaced by a sequence of easier subprob-

lems, corresponding to the MM update rule

a) =0,
ai = argmin,, hj(oz,aiil), 7=1,..., Jk, (16)
Q. — Oégk.

Following [27], we propose a majorant functidﬁ(.,ai) that incorporates barriers to account for the
entropy term. It is piecewise defined under the following fofwhenever unambiguous, the iteration

index & will be dropped for the sake of simplicity):

. A Py +pra+pya® —pslog(a—a-) for all a € (a_;a’]
e = | (17)
pd +pfa+psa® —pilog(ay —a)  forall o€ of;ay)

The parameterg:”, n = 0, ..., 3 must be defined to ensure that(.,a) is actually a majorant of
{(-) at o/ (see Figure 1(a) for an illustration). A direct applicatioh[®7, Prop. 2] allows to establish
expressions for these parameters. The resulting form’/6f o/) is rather simple, though lengthy to
express, so it is reported in Appendix B. According to [27, bea?], it corresponds to a strictly convex,
twice differentiable function in the sétv_, o). Moreover, its unique minimizer takes an explicit form,
the latter being also found in Appendix B.

Finally, (16) produces monotonically decreasing val§ié&/)} and the seriefa’} converges to a

stationnary point of(«) [29].
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e Qi1 Qo

(a) Casex— anda- ) finite (b) Casea— = —oo and o finite

Fig. 1. Schematic principle of the MM line search procedure. The tangejdgrant function for/ at «; is piecewise defined
on the seta_, «;] and|[a;, a4 ). The new iteratev;; is taken as the minimizer di;(., «;). Two cases are illustrated. The

third case wherev_ is finite anday = +oo is the symmetrical of case (b).

C. Convergence result

Let us focus on the convergence of the truncated Newton #hgorivhenqay is chosen according
to the proposed MM strategy. A detailed analysis can be fann@7] in a more general framework.

According to [27], the proposed line search procedure @sstivat:

(grdy)?
2 < (19)

and that the directions generated by the TN algorithngaaelient relatedn the sense of [30]. According

to [31], inequality (18), known aZoutendijk conditionis sufficient to prove the convergence of the
algorithm in the senskm;._., ||gx|| = 0 Finally, the objective function being strictly convex, the@posed

algorithm converges to its uniqgue minimizer.

D. Preconditioning

As emphasized in [32], the Hessian of the Shannon entropyaegation term is very ill-conditioned
for points that are close to the boundary of the positive athsince some of its eigenvalues tend
to infinity. Furthermore, the exponential decays in kerrglsand ks imply that K; and K, are also
very ill-conditioned. Preconditioning is a well-known tedfue to obtain more clustered eigenvalues
of the Hessian of the criterion and to accelerate the coever of descent algorithms. The principle
is to transform the space of original variables into a spacevhich the Hessian has more clustered
eigenvalues by using of a preconditioning matkx that approximates the inversIeI,;1 of the Hessian.

A good preconditioner reaches a trade-off between the tguali approximation and the computation
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cost. General-purpose preconditioning strategies hase peposed in the litterature including symmetric
successive overrelaxation and incomplete LU or Choleskymgositions ([33, Chap.10], [34]). In the
context of ME optimization, [15] taked?, as a diagonal matrix defined using the Hessian diagonal
elements:

-1

P, = [diag (diag(K'K)) + )\diag(sk)_l] (19)

We rather propose a more specific preconditioner. It is baseth® fact that, as a consequence of (4),
the singular value decomposition & is given by K = U'SV, withU = U, @ Uy, V = V; @ Vs,
¥ =3 ® X, Ul'S,V; being the singular value decomposition Kf, i = 1,2. Then, let us define
o~ —1

P, = V2Vt 4 Adiag(sk)—l} (20)
whereV and X correspond to truncated versions %fand . In the non-truncated cas¥, = V' and
3> = 3, and P, then identifies with the Hessian df at s;. It remains to define the way we truncate
the singular value decomposition &. Akin to [9], we separately truncate the decompositionggf
and K, and we definé/ and ¥ according to
Vi

v Va, (21)

&

Let us remark that the resulting approximation &f may slightly differ from the TSVD ofK. The
reason is simple: althoug®; and 3, separately gather the largest singular valueEgfand =, &
does not necessarily gather the largest singular valuds. &s a consequence, our approximation may
be suboptimal compared to the TSVD, the latter being optiméhénleast-square sense [35], but the fact

that we maintain factored expressions for matrisésnd 3 is essential in terms of computation cost.

E. Memory storage and computation cost reduction

The computation cost can be reduced by exploiting the fadtfimem of the observation model. Three
main operations are involved in the iterative optimizatmlgorithm: the computation of the gradient
vector g, = VL(sg), and the products oP, and H;, with a vector. The three resulting quantities can
be calculated using low cost operations, as described below

1) Gradient: The gradient of the criterion can be computed without exgidiandling matrix K,
according to

g = —vect [K}(Y — K18, K5)K>| + A(1+ log sy,). (23)
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2) Hessian:In the same manner, products between the Hessian matrixrgndeatorw = vect [W]

can be computed as follows:
Hyw = vect [K{K1W K3 K| + AMw./sy), (24)
where./ denotes componentwise division.
3) Preconditioner:In order to compute products involvingy, it is useful to make use of the matrix
inversion lemma:
P,=A,— A V(24 VA, V) IVIA,, (25)
with A;, = A\~ 'diag(s.). Moreover, the following factored expression can be deddoem (21) for the

entries of matrixM = V' A,V € Rv1xv2;
N, N,

Mij — % Z Z(Sk)mn (Vl)ma (VQ)nb (Vl)mc (‘/Q)Hda

m=1n=1

where (a,b) and (c¢,d) are row and column subscripts that correspond to the linedexes: and j,
respectively. Thus, the produétw can be efficiently computed according to
Paw =b, — A V(72 4+ M) Vb,
= by, — Apvect[V1Q V5] (26)
whereb, = Ayw, g = (272 + M)~ vect[V}! By V5] andQ, By, denote the equivalent square matrix

representations af, andb;, respectively.

F. Resulting algorithm

The resulting TN algorithm is given in Table I. The algorithm weryence is checked using the
following stopping rule ([22]):
gkl < €(X 4 |L(sk)I), (27)

and the PCG iterations in Table Il are stopped when ([19]):

lgr + Hidy || < nl|L(sk)]- (28)

IV. EXPERIMENTAL RESULTS

This section discusses the performances of the proposedadatid illustrates its applicability. First,
we consider synthetic data allowing us to discuss the tuafripe different parameters of the algorithm.
Then, the proposed method is used for the processing of red NMasets.

The different results presented in this paper are obtainid Matlab7.5 running on an Intel Pentium

4 3.2 GHz, 3 GB RAM.
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TABLE |

TN ALGORITHM FOR ME OPTIMIZATION

Require: Initial value so = 0, parameters, va, A,
J and accuracies, 7.
Ensure: Resolution of (9)
Compute the TSVD ofK; and K> at ranksvy, va.
while (27) does not holdlo
Computege, P, and H;, using (23), (24) and
(25).
Computed, using Table II.
Setay, after J iterations of (16).

Updates;, according to (10).

end while

TABLE I

PCGALGORITHM

Require: gi, Hy, P
Ensure: Approximate solutiond;, of (11)
ug «— 0
ro +— —gr — Hypuo
Do + Pyro
while (28) does not holdlo
0;i — (riPeri)/(piHip:)
Wip1 — Ui + 0;p;
Tiy1 < 7 — 0:Hip;
Bi — (rig1Perigr)/(ri Peri)
Pit1 — Pyrig1 + Bipi

di — Uit
end while

A. Synthetic data

We consider two datasets A (Fig. 2) and B (Fig. 3) simulatedgudfie observation model (3) with
a signal to noise ratio (SNR) df0 dB, m; = 100 and ms = 1000. The synthetic spectrum A is an
independant Gaussian distribution located@t 7>] = [0.5s, 1s] while spectrum B is the sum of an
independant Gaussian distribution locatedZat 7>] = [0.5s,0.5s] and a correlated Gaussian distribution

at [Th,T5] = [1.5s,1.5s]. The reconstruction is performed fd¥; = N, = 100 and the algorithm is
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initialized with a uniform positive 2D spectrum. The regi#ation parameten is set to minimize the
guadratic error
Q =100|s() — s°[13/1ls°ll3 (29)

and the preconditioner truncature parametgrs- are set to the same value

15 18

1 10
5
71(s) %00 Ta(s)

Fig. 2. Dataset A: Simulated 2D spectra (left) and NMR decays (right).

Fig. 3. Dataset B: Simulated 2D spectrum (left) and NMR decay (right).

1) PCG subiterations:The parameter; controls the accuracy of the PCG minimization. The smaller
it is, the more accurate the solving of (11). Here, severhlesaare tested within the rang® =", 1071].
Let I, denotes the number of PCG subiterations at outer iterdtioks expected, the number of global
iterations K decreases withy (Fig. 4(a)) while the average value éf generally increases (Fig. 4(c)).
The number of PCG subiterations depends also on the precmretitit can be noted thd}, decreases as
the truncation rank of the SVD increases, corresponding t@m mccurate approximation of the inverse
Hessian matrix. The smallest overall minimization time ibiaged when a tradeoff is reached between
the number of global iterations and the number of PCG itematig-ig. 4(b)). In this example, the best
tuning is (v,n) = (4,107%).

2) Preconditioning: Fig. 4(d) illustrates the criterion evolution for differepteconditioners: the pro-
posed approximatioP(v) given by (20) withv; = v = v = 0, 1,4 and the diagonal preconditioner
P¢ resulting from (19). The stopping criterion is not fulfilledtef 1000 iterations for P, (0) nor Pg.

Moreover, according to Fig. 4(b), the iteration number dases as the SVD truncation rankncreases

February 10, 2010 DRAFT



13

1154
——y =10""
——n =107
105
——n=10""*

—*—n =10"°

854
75,&_ |
3 4 5 , 6 7 8

kot

(a) Iteration number (b) Computation time

for different truncation rank for different truncation rank

—-—y =3
6 ——v =4
——v=>5
.5 ——y =8
(5]
& 3
21\
N .
10'7 10'5 7 10’3 10'1 0 50 Time (s) 100 150
(c) Average PCG (d) Comparison between four
iteration number preconditioning strategies

Fig. 4. Dataset A: Analysis of the algorithm performances for diffeR@G strategies

and one can note (Fig. 4(a-b)) that the choicevoinvolves a compromise between an acceleration
of the algorithm and an increase of the computational caostesthe computational cost of the SVD
decomposition increases with the decomposition rank.

3) Line search strategieslLet us compare the performances of the algorithm when the sitep
is obtained either by the proposed MM line search or by the@&lmd Thuente's cubic interpolation
procedure (MT) [23]. The latter performs an iterative miniatian of /(.) based on cubic interpolation
until identifying «, that fulfills the strong Wolfe conditions (12) and (13).

According to Table Ill, the TN algorithm with the MM line se&rperforms better than the MT-TN
with the best settings for; andc,. Concerning the choice of the sub-iteration number, it appé¢hat
J =1 leads to the best results in terms of computation time whidws that an exact minimization of
the scalar functiorf(«) during line search is not necessary.

4) Data compressionTable 1V illustrates the effect of data compression in tewhseconstruction
quality and algorithmic properties. The low part of the taplesents results obtained with TIK reg-
ularization under positivity constraints, using the BR@althm. Reconstruction results without data

compression are given in the first column of the table only f& Mecause BRD was impractical in this
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c1 Co K | T (s)
1071 05 | 93 | 19.84
S 1071 0.9 | 90 | 15.64
10-1 0.99 | 170 | 25.72
1073 05 | 93 | 16.98
1072 0.9 | 90 | 15.36
1073 0.99 | 170 | 25.14
J K | T(s)
1 79 | 13.56
=S 2 85 | 15.09
=
3 84 | 15.06
4 84 | 15.11
5 85 | 15.31
TABLE 1l

DATASET A: COMPARISON BETWEENMM AND MT LINE SEARCH STRATEGIES IN TERMS OF ITERATION NUMBER AND
TIME BEFORE CONVERGENCE

case.

As expected, the computation cost decreases with It can be noted that even if BRD requires
about three time less iterations than TN, the computatior tihthe latter remains low thanks to an
implementation exploiting adequately the model’s strretu

Furthermore, it appears that, except for very high compoasséhe reconstructed spectra resulting from
data compression have a similar quality than the one oldtainthout compression. It can be noted that
the best reconstruction quality in term of similarity is aibied when data compression is performed, for
m; = 5. This is reminiscent with the regularization effect of the TSWd8scribed in introduction.

5) Regularization termOur aim is to compare the ME and TIK regularizations in termsegbnstruc-
tion quality. In order to evaluate the sensibility to noiséh® two strategies, we have tested different noise
realizations with SNR= 5,10 and15 dB. According to Fig. 5, the minimum value &f decreases with the
noise level, for ME and TIK regularizations. Moreover, theotstrategies lead to similar reconstruction
error for the three noise levels.

Furthermore, according to Table 1V, for the same level of casgion, the two regularizations lead

to spectra with similar qualities in terms of quadratic e However, as illustrated in Fig. 6 and Fig.
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My | 100 | 10 | 5 2 1

g | 1000 | 100 | 5 5 1
Q | 258 | 254212903 | 97.3

ME | K | 79 | 8 | 94 | 50 | 7
T (s)| 13.6 | 7.58 | 7.64 | 3.39 | 0.27
Q - | 453392816 | 97.9

TK | K - 31 | 22 | 13 | 12
T(s)| - | 432 |1.98| 047|103

TABLE IV

DATASET A: RECONSTRUCTION QUALITY, ITERATION NUMBER AND TIME BEFORE CONVERGENCE FORME AND TIK

RECONSTRUCTION WITH DIFFERENT LEVEL OF DATA COMPRESSION

8508 " 5dB
~6-10dB ~0-10dB
08| o 15dB o7 08 0 15dB
o, o° a 40°]
06 " o 0.6 o
< s & o |® 0
040 ® of 04t 2 P
% 8 o° K of
% & o’ °, " o
0.2 ,% LR of 0.2 o% o,
%0 % :’..gﬁ‘ COW
000024
0 —6 -5 —4 -3 -2 0 7 -6 4 3
10 10 10 10 10 10 10 103 10 10

Fig. 5.
100 random realizations for SNR 5, 10 and 15 dB.

Dataset A: Similarity error for ME (left) and TIK (right) reconsttions. Average of Monte Carlo simulations with

7, the entropy penalization leads to spectra whose shapeamer to the simulated one.

Fig. 6. Dataset A: Reconstructed spectra with optimal setting for ME (left) and TIK (right) regularization (SNR %0 dB

andm; = 5).

6) Hyperparameter estimationin the previous, the tuning of the hyperparamekerequired the

knowledge of the reference spectrum. This strategy, imigacin an experimental context, can be
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Fig. 7. Dataset B: Reconstructed spectra with optimal setting foff ME (left) and TIK (right) regularization (SNR %0 dB

andm; = 5).

replaced by different procedures proposed in the litteeatblere, we present the chi-squared approach

that has been widely used in the context of NMR reconstradip5, 9] and ME optimization [6, 36].
Given measuremenf® and an estimate of the noise standard deviadipthe x? of the data is given
by:
X} = |K1SK; — Y|[3/6° (30)

Over the different noise realizationg? follows a normal distribution with mean and variance
Mean(XQ) = mima, Var(XQ) = 2mimas (31)

Thus, a classical method for setting the hyperparametierto constrainy? to be equal to its expected
value

Xoim = mams (32)
However, (32) often leads to over-smoothed reconstrust{f86, 37]) and a better choice is to take
Xoim = m1mg — v/2myma (33)

In practical applications when the noise level is importanthe estimation ot is inaccurate, the
chi-squared test can be difficult to achieve. [38] preconiveshoose) such that the S-curve (Fig. 8)
does not make significant progress:

dlogyg X
— k1 34
O0logip A < (34)

We propose to combine the two latter strategies for the detation of A, as detailed in Table V. We
emphasize that the minimizations (35) can be performedratloar cost by initializing the TN algorithm
of Table | with the solution at previous. Table VI illustrates the performances of the numericaksch

of Table V for finding\.
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-6 -4 -2 logloo(A) 2 4 6

Fig. 8. Dataset A (SNR= 10 dB andm; = 5): S-curve for ME reconstruction. The dotted line illustrates the fulfillment o
condition (32)

TABLE V

S-CURVE METHOD FOR HYPERPARAMETER ESTIMATION

Require: Initial values sy = 0, Ao, parameterd €
(0,1) and accuracy)
Ensure: ME resolution with chi-squared based tuning
of A
while (33) and (34) do not holdo
Using Table I, compute

S =argmin L(S) + A\ R(S).  (35)

Computex?(S) using (30).
>\n+1 — O\,
end while

Dataset A Dataset B
ME | TIK ME | TIK

—logipAg | 4.92 | 6.19 || 5.32 | 5.92

Q 2.05 | 3.92 || 13.8 | 10.7

—logioAs | 5.05 | 5.91 || 5.59 | 5.92

Q 2.43 | 4.67 | 22.9 | 10.7
TABLE VI

DATASET A (SNR =10 DB AND 71; = 5): EVALUATION OF THE PROPOSEDS-CURVE STRATEGY FOR HYPERPARAMETER

ESTIMATION. Ag IS THE MINIMIZER OF () AND As RESULTS FROMTABLE V
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B. Experimental data

We present reconstruction results of T1-T2 spectra from 2D NiviRysis on vegetal samples (apple).
Measurements are made for, = 50, mo = 10000 and the reconstruction is performed 8 = Ny =

200, J =1,v="5,n=10"%and\ =5-10"° given by Table V.

6
AL/\-/\
2
0

2

(] 05 1 15 25
T (s)

(a) Reconstructed spectrum (€) spectrum

7, | 0.025 | 0.70 | 1.36 izu\

T, | 046 | 0.14 | 0.88 | A A/ \ |
‘ To(s) '

(b) Positions of peaks (s.) (d)> spectrum

Fig. 9. Reconstruction of 2D NMR experimental data

The TN algorithm converges ih37 iterations (64 s). The reconstructed spectrum is illustrated in
Fig.9(a). The positions of the three spectrum maxima (Fig)9tlaye been confirmed by theoretical
analysis. Moreover, the peak localized[if, T>] = [1.36,0.88] shows a correlation betweén and T,
illustrating the advantage of 2D relaxometry since thiginfation does not appear in the margifial

and 7y spectra on Fig.9(c)-(d).

V. CONCLUSION

In this paper, we have presented an efficient method for thenstaction of a 2D NMR spectrum.
The minimization is performed with a truncated Newton altjon associated with a MM line search
scheme. The resulting method benefits from strong convergessegts. The proposed method has a

reduced computational cost and shows itself very efficienpr@aatical problems.
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APPENDIX
A. Interpretation of BRD algorithm using Legendre-Fenchel dyal

Let us consider the constrained minimization problem

: _ 1 a2 A2
win { £(6) = J115s —yl? + Jlsl? | (36)

The BRD algorithm [3] is based on the equivalence between k& Eonditions of problem (36) and

the following unconstrained problem

crgﬂi{gﬂ {X(c) = %Ct (G(e)+ M)c— cty} (37)

with the reparametrizatioa = max(0, K'c) and
G(c) = K'Diag(H(K"c))K, (38)

where H denotes a component-wise unit step function that takes &lheevzero for negative or zero
arguments and one for positive arguments. Let us show thaetiuivalence can also be obtained from
the Legendre-Fenchel conjugacy theory (see [39] for a remiadd_egendre-Fenchel theory).

First, let us introduce the Legendre-Fenchel conjugiétef the quadraticf (u) = L|lu — y|?, i.e,
N ISR STURTE A WS STRTS B
F(w) = sup (v'u— g lo—y) = 5|lul® + y'u. (39)
According to the conjugacy theorem [39, Prop.7.1.1],

L(s) = sup (s'K'u— f*(u)) + 55| (40)

ucRm™

Moreover, according to the minimax theorem [39, Prop. 2,§4)) implies

min L(s) = max min <sthu — [*(u) + ;\HSHQ) ,

520 uceR™ s>0
- g 41
max (p(u) = f*(u)) (41)
where
s t gt A2
() = mip (oK u + 318l ) (42)

The minimization problem (42) is convex, separable and ttleviing expression of the minimizer is
easy to derive:

s*(u) = %max (0, —K'u) (43)

wheremax is to be considered component-wise. Moreover, we have

pluw) = (" ()" Kt 5" ()* = L (57 () K, (44)
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the latter expression being a consequencerofix(0,z))? = rmax(0,z) for all x € R. Finally,
given (39), (43) and (44), (41) also reads

: _ _ 1 Creta W\ Rete L2 t)
I;l}l%lL(S)—;Ié%)i( > (max (0, —K"'u)) Ku+2Hu|| +yu

= — )\ 1
min x(c)

where the last identity is obtained using the change of bbgia= —u/\. Thus, (36) and (37) are equiv-
alent through Legendre-Fenchel duality, aridminimizesy(c) in R™ if and only if s* = max(0, K*'c*)

minimizes L(s) in R’

B. Expression of the majorant functid#i(-, o’) and of its minimizer
The majorant functiorh’ (-, /) is piecewise defined, whethere (a_;a’] or a € [a?; a4 ). In both

cases, it takes the following form:

—aJ .
LY a4 (45)

o) —

. . . L. . . . . . . ~J
W (o, o) =0(a)) + (a—a?)l(a?) +%m3(a—o/)2+vj (@ — o) log &

while the expressions of parameter m/, and+’ are specific to each case.
1) Casea € (a_;al]:
& =a_

m! = di K'Kdy + ) > ilde <0 bi(ad) (46)

7 = Maw = ad) Xy, 0 i)
2) Casea € [ad; oy ):
al = Q.

m! = di K Kdy + XY, <o 9i(a?) (47)

v = Moy = af) Xyq, <0 9i(a)
where ¢; (o) = dj, ;/(s; + ady ;) in both cases.
The minimizer ofh/(-,a’) can be expressed as follows:
2 | A3

o + sign(f(a? , (48)
with
A1 = —mj
Ay =) — () +m! (& — &) . (49)

A3 = (@ = o)f(e)
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