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Efficient Maximum Entropy Reconstruction of

Nuclear Magnetic Resonance T1-T2 Spectra
Emilie Chouzenoux, Saı̈d Moussaoui, J́erôme Idier and François Mariette

Abstract

This paper deals with the reconstruction of T1-T2 correlation spectra in Nuclear Magnetic Resonance

(NMR) relaxometry. The ill-posed character and the large size of this inverse problem are the main

difficulties to tackle. While maximum entropy is retained as an adequate regularization approach, the

choice of an efficient optimization algorithm remains a challenging task. Our proposal is to apply a

truncated Newton algorithm with three original features. Firstly, a theoretically well stated line search

strategy suitable for the entropy function is applied to ensure the convergence of the algorithm. Secondly,

an appropriate preconditioning structure based on a truncated singular value decomposition of the forward

model matrix is used to speed up the algorithm convergence. Furthermore, we exploit the specific

structures of the observation model and the Hessian of the criterion to reduce the computation cost

of the algorithm. The performances of the proposed strategyare illustrated by means of synthetic and

real data processing.

Index Terms

Maximum entropy regularization, truncated Newton algorithm, line search, preconditioning with

SVD, Nuclear magnetic resonance, Fredholm integral, Laplace inversion, T1-T2 spectrum.

I. I NTRODUCTION

Nuclear magnetic resonance (NMR) relaxometry is a measurement technique used to analyze the

properties of matter in order to determine its molecular structure and dynamics. In conventional NMR, the

data are recorded independently either in terms of longitudinal or transverse relaxation times, respectively
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denotedT1 andT2. Joint measurements with respect to these two parameters allow to build T1-T2 spectra,

which reveal couplings betweenT1 andT2 relaxations that are very useful for structure determination [1].

The physical model behind NMR relaxometry states that the measured NMR decayX(τ1, τ2) is related

to the T1-T2 spectrumS(T1, T2), according to a 2D Fredholm integral of the first kind

X(τ1, τ2) =

∫∫

k1(τ1, T1)S(T1, T2)k2(τ2, T2)dT1dT2 (1)

with k1(τ1, T1) = 1−e−τ1/T1 andk2(τ2, T2) = e−τ2/T2 . This decay also depends on time variables, noted

τ1 andτ2, corresponding respectively to the spin evolution length and to the recording time of the echo.

The associated inverse problem involving the recovery of thecontinuous distributionS(T1, T2) is known

to be an ill-posed problem [2].

Experimental data are collected atm1×m2 discrete values in theτ1-τ2 domain. Thus, the data function

X(τ1, τ2) is replaced by a data matrixX ∈ R
m1×m2 . Similarly, the kernelsk1 andk2 are discretized as

matricesK1 ∈ R
m1×N1 and K2 ∈ R

m2×N2 . Equation (1) takes a discrete formX = K1SKt
2, where

the spectrumS is a real-valued matrix of sizeN1 × N2. In practice, measurements are modeled by

Y = K1SKt
2 + E (2)

with E a noise term assumed white Gaussian. 2D NMR reconstruction amounts to estimateS given Y

subject toS � 01. Attention must be paid to the size of the 2D NMR problem. Indeed, when converted

to a standard one-dimensional representation, (2) reads

y = Ks + e (3)

with y = vect [Y ], s = vect [S], e = vect [E], vect[·] denoting a column vector obtained by stacking

all the elements of a matrix in lexicographic order and

K = K1 ⊗ K2 (4)

is the Kronecker product between matricesK1 andK2. Matrix K is thus of sizem1m2×N1N2. Typical

values arem1 = 50, m2 = 104, N1 × N2 = 200 × 200, so K is a huge matrix whose explicit handling

is almost impossible. It is one of the two main contributionsof this paper to make use of to the factored

form (2) to solve this issue without any approximation.

Adopting the well-known least-square approach would lead to define a spectrum estimate as the

minimizer of

C(S) =
1

2
‖Y − K1SKt

2‖2
F , (5)

1in the senseSij > 0 ∀i, j
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where‖·‖F denotes the Frobenius norm, under the positivity constraintS � 0. However,K1 andK2 are

rank-deficient and very badly conditioned matrices [3]. Therefore, such a solution is numerically unstable

and regularized solutions must rather be envisaged. Given that the maximum entropy approach provides

acknowledged methods for conventional (i.e., one-dimensional) NMR [4, 5], this paper exploresT1-T2

spectrum estimation based on maximum entropy regularization and proposes a specific descent algorithm.

According to our experience, the barrier shape of the entropy function makes the minimization problem

quite specific. In particular, general-purpose non-linear programming algorithms can reveal extremely

inefficient in terms of convergence speed. More surprisingly, the more specific scheme adapted from

[6] also reveals very slow to converge. This motivated us to devise an alternate optimization strategy

that is provably convergent and shows a good trade-off bewteen simplicty and efficiency. The proposed

algorithm belongs to the truncated Newton algorithm but possessed original features regarding the line

search and the preconditioning strategy.

The rest of the paper is organized as follows: Section II gives an overview of different regularization

strategies that can be applied to solve this problem. SectionIII proposes an efficient reconstruction

method for maximum entropy regularization , based on a truncated Newon algorithm associated with an

original line search strategy well suited to the form of the criterion. The computation cost of the algorithm

is reduced by working directly with the factored form (5) to calculate quantities such as gradient and

Hessian-vector products. In section IV, the efficiency of theproposal scheme is illustrated by means of

synthetic and real data examples.

II. PROBLEM STATEMENT AND EXISTING SOLUTIONS

The mathematical methods developed to solve (1) can be classified in two groups: The first approach is

to fit the decay curves with a minimal number of discrete exponentials terms. The parametric minimization

is usually handle with the Levenberg-Marquardt algorithm [7]. In this paper, we rather focus on the

second approach which analyses the data in terms of a continuous distribution of relaxation components

S(T1, T2). This modelization gives rise to the linear equation (2). In this section, we give an overview

of different inversion strategies for this problem.

A. Direct resolution: TSVD and Tikhonov methods

NMR reconstruction is a linear ill-posed problem. To tackleit, truncated singular value decomposition

(TSVD) and Tikhonov penalization (TIK) are commonly used methods [2]. Each of them calls for its

own regularization principle to compensate the ill-conditioned character of the observation matrix.
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1) TSVD: The TSVD approach consists in replacing the inverse (or the generalized inverse) ofK

by a matrix of reduced rank, in order to avoid the amplificationof noise due to the inversion of small

nonzero singular values [8]. In practice, computing the TSVD requires the explicit decomposition ofK

in terms of singular elements, which can be numerically burdensome.

2) Tikhonov penalization:While TSVD tackles the ill-posed character by control of dimensionality,

Tikhonov method follows a penalization approach along which a trade-off is sought between fidelity-to-

data and regularity. It leads to the minimization of a mixed objective function:

L(S) = C(S) + λR(S) (6)

where the regularization parameterλ > 0 controls the respective weight of the two terms,C is a least-

square term

C(S) =
1

2
‖y − Ks‖2 =

1

2

∥

∥Y − K1SKt
2

∥

∥

2

F

and the additional termR is also a quadratic term. In the context of NMR reconstruction, the regularization

functionnalR is usually chosen as the squaredℓ2-norm of the spectrum ([3, 9–11]):

R(S) =
1

2
‖s‖2 =

1

2
‖S‖2

F . (7)

Tikhonov solution is then obtained by solving the linear system (KtK + λI)s = Kty.

B. Iterative minimization

Both TSVD and TIK solutions provide results of limited resolution. Moreover, they tend to exhibit

oscillatory excursions, especially in the peripheral regions of the recovered peaks, which usually violate

the positivity of the spectrum components [12]. Enforcing the positivity of the spectrum is obviously

desirable from the viewpoint of physical interpretation, but it has also a favorable effect on the resolution

of the estimated spectrum.

1) Tikhonov under the positivity constraint:The positivity constraintS � 0 is naturally incorporated

into Tikhonov approach by constraining the minimization ofC to the positive orthant. However, there

is no closed-form expression for the minimizer anymore, so the solution must be computed iteratively

using a fixed-point algorithm.

Butler-Reeds-Dawson algorithm (BRD) is a rather simple andefficient technique based on the resolution

of the Karush-Kuhn-Tucker system [3]. Although commonly employed in materials science, it is scarcely

referenced in the quadratic programming literature. For the sake of clarification, Appendix A proposed a
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very simple interpretation of the BRD scheme as iterativelyminimizing a dual function of the criterion

in the sense of Legendre-Fenchel duality.

However, the BRD scheme requires the inversion of a system ofsizem×m at each iteration, wherem

is the number of measurements. In the case of 2D NMR problems,m = m1m2, and usual values ofm1

andm2 lead to a prohibitive computation cost. To solve this issue,a data compression step is proposed

in [9], prior to the application of BRD. It relies on stronglytruncated singular value decompositions of

K1 and K2: Ki ≈ UiΣiV
t

i , i = 1, 2, with m̃i = rank(Ki) ≪ mi. The fidelity to data term is then

approximated by

C̃(S) =
1

2
‖Ỹ − K̃1SK̃t

2‖2
F (8)

whereK̃1 = Σ1V
t
1 , K̃2 = Σ2V

t
2 and Ỹ = U t

1Y U2 are of sizem̃1 × N1, m̃2 × N2 and m̃1 × m̃2,

respectively.

2) Maximum entropy:A different regularization approach will be considered here, based on Shannon

entropy penalizationφ(s) = −s log s. Maximum entropy (ME) [6, 13] yields an acknowledged approach

in the context of 1D NMR relaxometry [4, 5]. An interesting feature of entropy penalization is that

it implicitly handles the positivity constraint since the norm of the gradient of the entropy term is

unbounded at the boundary of the positive orthant. Thus, the minimizer of the resulting penalized least-

square criterion cancels its gradient, and computing it is essentially similar to solving an unconstrained

optimization problem.

Formally, the extension to the 2D case is easily obtained by minimization of

L(S) =
1

2
‖Y − K1SKt

2‖2
F + λ

N1
∑

i=1

N2
∑

j=1

Sij log Sij . (9)

However, the practical computation of the solution is clearly more difficult in the 2D case because

the optimization problem is much larger-scale. The choice ofa specific minimization scheme suited to

maximum entropy 2D NMR reconstruction is the main contribution of the paper.

In the context of maximum entropy, [14] proposed the fixed-point multiplicative algebraic reconstruction

technique (MART) to maximize the entropy term under the constraint Ks = y. The closed-form

simplicity of MART is attractive. However, as emphasized in[15], the presence of inherent noise in

projection data makes this method less efficient that the minimization of the penalized criterionL, in

practical reconstructions. In [6], an iterative minimization algorithm based on a quadratic approximation

of the criterion over a low-dimension subspace is developped. However, according to [16, p. 1022], the

convergence of this algorithm is not established. We have tested its behavior in the 2D NMR context.
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Our conclusions are that this algorithm does not ensure a monotonic decrease of the criterion, and that

its convergence is very slow [17].

The goal is the next section is to derive an optimization algorithm that would benefit from stronger

theorical properties and sufficiently low computational cost to avoid any data compression step.

III. PROPOSED TRUNCATEDNEWTON ALGORITHM

A. Minimization strategy

The truncated Newton (TN) algorithm [18, 19] is based on iteratively decreasing the objective function

L(s) by moving the current solutionsk along a descent directiondk

sk+1 = sk + αkdk, (10)

whereαk > 0 is the stepsize anddk is a search direction computed by solving approximately theNewton

equations:

Hkdk = −gk (11)

with Hk , ∇2L(sk) and gk , ∇L(sk). The TN algorithm has been widely used in the context of

interior point algorithms with logarithmic [20, 21] and entropic [15] barrier functions.

In practice, the TN method consists in alternating the construction of dk and the computation of the

stepsizeαk by a line search procedure. On the one hand, the directiondk results from preconditioned

conjugate gradient (PCG) iterations on (11) stopped before convergence. On the other hand, the stepsize

αk is obtained by iteratively minimizing the scalar functionℓ(α) = L(sk +αdk) until some convergence

conditions are met [22, Chap.3]. Typically, the strong Wolfe conditions are considered:

ℓ(αk) 6 ℓ(0) + c1αk ℓ̇(0) (12)

|ℓ̇(αk)| 6 c2|ℓ̇(0)| (13)

where(c1, c2) ∈ (0, 1) are tuning parameters that does not depend onk. There exist several procedures to

find an acceptable stepsize: exact minimization ofℓ(.), backtracking, approximation ofℓ(.) using cubic

interpolations [22, 23] or quadratic majorizations [24, 25]. However, the entropic penalty term implies

that the derivative ofℓ(α) takes the value−∞ as soon as any of the components of the vectorsk +αdk

cancels, hence whenα is equal to one of the two limit values:

α− = max
i, dk,i>0

(−si

dk,i

)

, α+ = min
i, dk,i<0

(−si

dk,i

)

(14)
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The functionℓ is undefined outside(α−, α+), therefore, we must ensure that during the line search,

the stepsize values remain in the interval(α−, α+). Moreover, because of the vertical asymptotes atα−

andα+, standard methods using cubic interpolations or quadraticmajorizations are not well suited. Our

proposal is to adopt the specific majorization-based line search proposed in [26, 27] for barrier function

optimization. Using an adequate form of majorization, we now derive an analytical stepsize formula

preserving strong convergence properties.

B. Line search strategy

The minimization ofℓ(·) using the Majorization-Minimization (MM) principle [28] is performed by

successive minimizations of majorant functions forℓ(.). Functionh(α, α′) is said majorant forℓ(α) at

α′ if for all α,










h(α, α′) > ℓ(α)

h(α′, α′) = ℓ(α′)

(15)

As illustrated in Fig.1, the initial minimization ofℓ(α) is then replaced by a sequence of easier subprob-

lems, corresponding to the MM update rule






















α0
k = 0,

αj
k = arg minα hj(α, αj−1

k ), j = 1, . . . , Jk,

αk = αJk

k .

(16)

Following [27], we propose a majorant functionhj(., αj
k) that incorporates barriers to account for the

entropy term. It is piecewise defined under the following form(whenever unambiguous, the iteration

index k will be dropped for the sake of simplicity):

hj(α, αj) =











p−
0

+ p−
1
α + p−

2
α2 − p−

3
log (α − α−) for all α ∈ (α−; αj ]

p+
0

+ p+
1
α + p+

2
α2 − p+

3
log (α+ − α) for all α ∈ [αj ; α+)

(17)

The parametersp±n , n = 0, . . . , 3 must be defined to ensure thathj(., αj) is actually a majorant of

ℓ(·) at αj (see Figure 1(a) for an illustration). A direct application of [27, Prop. 2] allows to establish

expressions for these parameters. The resulting form ofhj(., αj) is rather simple, though lengthy to

express, so it is reported in Appendix B. According to [27, Lemma 2], it corresponds to a strictly convex,

twice differentiable function in the set(α−, α+). Moreover, its unique minimizer takes an explicit form,

the latter being also found in Appendix B.

Finally, (16) produces monotonically decreasing values{ℓ(αj)} and the series{αj} converges to a

stationnary point ofℓ(α) [29].
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α
−

α+αj

hj(α, αj)

ℓ(α)

α > αjα < αj

αj+1

(a) Caseα
−

andα+) finite

α+αj

hj(α, αj)

α < αj α > αj

αj+1

ℓ(α)

(b) Caseα
−

= −∞ andα+ finite

Fig. 1. Schematic principle of the MM line search procedure. The tangentmajorant function forℓ at αj is piecewise defined

on the sets(α
−

, αj ] and [αj , α+). The new iterateαj+1 is taken as the minimizer ofhj(., αj). Two cases are illustrated. The

third case whereα
−

is finite andα+ = +∞ is the symmetrical of case (b).

C. Convergence result

Let us focus on the convergence of the truncated Newton algorithm whenαk is chosen according

to the proposed MM strategy. A detailed analysis can be foundin [27] in a more general framework.

According to [27], the proposed line search procedure ensures that:

∑

k

(gt
kdk)

2

‖dk‖2
< ∞ (18)

and that the directions generated by the TN algorithm aregradient relatedin the sense of [30]. According

to [31], inequality (18), known asZoutendijk condition, is sufficient to prove the convergence of the

algorithm in the senselimk→∞ ‖gk‖ = 0 Finally, the objective function being strictly convex, the proposed

algorithm converges to its unique minimizer.

D. Preconditioning

As emphasized in [32], the Hessian of the Shannon entropy regularization term is very ill-conditioned

for points that are close to the boundary of the positive orthant since some of its eigenvalues tend

to infinity. Furthermore, the exponential decays in kernelsk1 and k2 imply that K1 and K2 are also

very ill-conditioned. Preconditioning is a well-known technique to obtain more clustered eigenvalues

of the Hessian of the criterion and to accelerate the convergence of descent algorithms. The principle

is to transform the space of original variables into a space in which the Hessian has more clustered

eigenvalues by using of a preconditioning matrixPk that approximates the inverseH−1

k of the Hessian.

A good preconditioner reaches a trade-off between the quality of approximation and the computation
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cost. General-purpose preconditioning strategies have been proposed in the litterature including symmetric

successive overrelaxation and incomplete LU or Cholesky decompositions ([33, Chap.10], [34]). In the

context of ME optimization, [15] takesPk as a diagonal matrix defined using the Hessian diagonal

elements:

Pk =
[

diag
(

diag(KtK)
)

+ λ diag(sk)
−1

]−1
(19)

We rather propose a more specific preconditioner. It is based on the fact that, as a consequence of (4),

the singular value decomposition ofK is given byK = U t
ΣV , with U = U1 ⊗ U2, V = V1 ⊗ V2,

Σ = Σ1 ⊗ Σ2, U t
i ΣiVi being the singular value decomposition ofKi, i = 1, 2. Then, let us define

Pk =
[

Ṽ Σ̃
2Ṽ t + λ diag(sk)

−1
]−1

(20)

whereṼ and Σ̃ correspond to truncated versions ofV andΣ. In the non-truncated case,̃V = V and

Σ̃ = Σ, andPk then identifies with the Hessian ofL at sk. It remains to define the way we truncate

the singular value decomposition ofK. Akin to [9], we separately truncate the decompositions ofK1

andK2 and we defineṼ and Σ̃ according to

Ṽ = Ṽ1 ⊗ Ṽ2, (21)

Σ̃ = Σ̃1 ⊗ Σ̃2. (22)

Let us remark that the resulting approximation ofK may slightly differ from the TSVD ofK. The

reason is simple: although̃Σ1 and Σ̃2 separately gather the largest singular values ofΣ1 and Σ2, Σ̃

does not necessarily gather the largest singular values ofΣ. As a consequence, our approximation may

be suboptimal compared to the TSVD, the latter being optimal inthe least-square sense [35], but the fact

that we maintain factored expressions for matricesṼ and Σ̃ is essential in terms of computation cost.

E. Memory storage and computation cost reduction

The computation cost can be reduced by exploiting the factored form of the observation model. Three

main operations are involved in the iterative optimizationalgorithm: the computation of the gradient

vectorgk = ∇L(sk), and the products ofPk andHk with a vector. The three resulting quantities can

be calculated using low cost operations, as described below.

1) Gradient: The gradient of the criterion can be computed without explicitly handling matrixK,

according to

gk = −vect
[

Kt
1(Y − K1SkK

t
2)K2

]

+ λ(1 + log sk). (23)
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2) Hessian: In the same manner, products between the Hessian matrix and any vectorw = vect [W ]

can be computed as follows:

Hkw = vect
[

Kt
1K1WKt

2K2

]

+ λ(w./sk), (24)

where./ denotes componentwise division.

3) Preconditioner: In order to compute products involvingPk, it is useful to make use of the matrix

inversion lemma:

Pk = Ak − AkṼ (Σ̃−2 + Ṽ tAkṼ )−1Ṽ tAk, (25)

with Ak = λ−1diag(sk). Moreover, the following factored expression can be deduced from (21) for the

entries of matrixM = Ṽ tAkṼ ∈ R
v1×v2 :

Mij =
1

λ

N1
∑

m=1

N2
∑

n=1

(Sk)mn (Ṽ1)ma (Ṽ2)nb (Ṽ1)mc (Ṽ2)nd,

where (a, b) and (c, d) are row and column subscripts that correspond to the linear indexesi and j,

respectively. Thus, the productPkw can be efficiently computed according to

Pkw = bk − AkṼ (Σ̃−2 + M)−1Ṽ tbk,

= bk − Akvect
[

Ṽ1QkṼ
t
2

]

(26)

wherebk = Akw, qk = (Σ̃−2 +M)−1 vect
[

Ṽ t
1 BkṼ2

]

andQk, Bk denote the equivalent square matrix

representations ofqk andbk respectively.

F. Resulting algorithm

The resulting TN algorithm is given in Table I. The algorithm convergence is checked using the

following stopping rule ([22]):

‖gk‖∞ < ǫ(1 + |L(sk)|), (27)

and the PCG iterations in Table II are stopped when ([19]):

‖gk + Hkdk‖ 6 η‖L(sk)‖. (28)

IV. EXPERIMENTAL RESULTS

This section discusses the performances of the proposed method and illustrates its applicability. First,

we consider synthetic data allowing us to discuss the tuningof the different parameters of the algorithm.

Then, the proposed method is used for the processing of real NMR datasets.

The different results presented in this paper are obtained using Matlab7.5 running on an Intel Pentium

4 3.2 GHz, 3 GB RAM.
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TABLE I

TN ALGORITHM FOR ME OPTIMIZATION

Require: Initial value s0 � 0, parametersv1, v2, λ,

J and accuraciesǫ, η.

Ensure: Resolution of (9)

Compute the TSVD ofK1 andK2 at ranksv1, v2.

while (27) does not holddo

Computegk, Pk and Hk using (23), (24) and

(25).

Computedk using Table II.

Setαk after J iterations of (16).

Updatesk according to (10).

end while

TABLE II

PCGALGORITHM

Require: gk, Hk, Pk

Ensure: Approximate solutiondk of (11)

u0 ← 0

r0 ← −gk −Hku0

p0 ← Pkr0

while (28) does not holddo
θi ← (rt

iPkri)/(pt
iHkpi)

ui+1 ← ui + θipi

ri+1 ← ri − θiHkpi

βi ← (rt
i+1Pkri+1)/(rt

iPkri)

pi+1 ← Pkri+1 + βipi

dk ← ui+1

end while

A. Synthetic data

We consider two datasets A (Fig. 2) and B (Fig. 3) simulated using the observation model (3) with

a signal to noise ratio (SNR) of10 dB, m1 = 100 and m2 = 1000. The synthetic spectrum A is an

independant Gaussian distribution located at[T1, T2] = [0.5s, 1s] while spectrum B is the sum of an

independant Gaussian distribution located at[T1, T2] = [0.5s, 0.5s] and a correlated Gaussian distribution

at [T1, T2] = [1.5s, 1.5s]. The reconstruction is performed forN1 = N2 = 100 and the algorithm is
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initialized with a uniform positive 2D spectrum. The regularization parameterλ is set to minimize the

quadratic error

Q = 100 ‖s(λ) − so‖2
2/‖so‖2

2, (29)

and the preconditioner truncature parametersv1, v2 are set to the same valuev.
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Fig. 2. Dataset A: Simulated 2D spectra (left) and NMR decays (right).
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Fig. 3. Dataset B: Simulated 2D spectrum (left) and NMR decay (right).

1) PCG subiterations:The parameterη controls the accuracy of the PCG minimization. The smaller

it is, the more accurate the solving of (11). Here, several values are tested within the range[10−7, 10−1].

Let Ik denotes the number of PCG subiterations at outer iterationk. As expected, the number of global

iterationsK decreases withη (Fig. 4(a)) while the average value ofIk generally increases (Fig. 4(c)).

The number of PCG subiterations depends also on the preconditioner, it can be noted thatIk decreases as

the truncation rank of the SVD increases, corresponding to a more accurate approximation of the inverse

Hessian matrix. The smallest overall minimization time is achieved when a tradeoff is reached between

the number of global iterations and the number of PCG iterations (Fig. 4(b)). In this example, the best

tuning is (v, η) = (4, 10−4).

2) Preconditioning:Fig. 4(d) illustrates the criterion evolution for differentpreconditioners: the pro-

posed approximationPk(v) given by (20) withv1 = v2 = v = 0, 1, 4 and the diagonal preconditioner

P d
k resulting from (19). The stopping criterion is not fulfilled after 1000 iterations forPk(0) nor P d

k .

Moreover, according to Fig. 4(b), the iteration number decreases as the SVD truncation rankv increases
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Fig. 4. Dataset A: Analysis of the algorithm performances for different PCG strategies

and one can note (Fig. 4(a-b)) that the choice ofv involves a compromise between an acceleration

of the algorithm and an increase of the computational cost since the computational cost of the SVD

decomposition increases with the decomposition rank.

3) Line search strategies:Let us compare the performances of the algorithm when the stepsize

is obtained either by the proposed MM line search or by the Moré and Thuente’s cubic interpolation

procedure (MT) [23]. The latter performs an iterative minimization of ℓ(.) based on cubic interpolation

until identifying αk that fulfills the strong Wolfe conditions (12) and (13).

According to Table III, the TN algorithm with the MM line search performs better than the MT-TN

with the best settings forc1 and c2. Concerning the choice of the sub-iteration number, it appears that

J = 1 leads to the best results in terms of computation time which shows that an exact minimization of

the scalar functionℓ(α) during line search is not necessary.

4) Data compression:Table IV illustrates the effect of data compression in termsof reconstruction

quality and algorithmic properties. The low part of the tablepresents results obtained with TIK reg-

ularization under positivity constraints, using the BRD algorithm. Reconstruction results without data

compression are given in the first column of the table only for ME because BRD was impractical in this
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M
T

c1 c2 K T (s)

10−1 0.5 93 19.84

10−1 0.9 90 15.64

10−1 0.99 170 25.72

10−3 0.5 93 16.98

10−3 0.9 90 15.36

10−3 0.99 170 25.14
M

M

J K T (s)

1 79 13.56

2 85 15.09

3 84 15.06

4 84 15.11

5 85 15.31

TABLE III

DATASET A: COMPARISON BETWEENMM AND MT LINE SEARCH STRATEGIES IN TERMS OF ITERATION NUMBER AND

TIME BEFORE CONVERGENCE.

case.

As expected, the computation cost decreases withm̃i. It can be noted that even if BRD requires

about three time less iterations than TN, the computation time of the latter remains low thanks to an

implementation exploiting adequately the model’s structure.

Furthermore, it appears that, except for very high compression, the reconstructed spectra resulting from

data compression have a similar quality than the one obtained without compression. It can be noted that

the best reconstruction quality in term of similarity is obtained when data compression is performed, for

m̃i = 5. This is reminiscent with the regularization effect of the TSVDdescribed in introduction.

5) Regularization term:Our aim is to compare the ME and TIK regularizations in terms ofreconstruc-

tion quality. In order to evaluate the sensibility to noise of the two strategies, we have tested different noise

realizations with SNR= 5, 10 and15 dB. According to Fig. 5, the minimum value ofQ decreases with the

noise level, for ME and TIK regularizations. Moreover, the two strategies lead to similar reconstruction

error for the three noise levels.

Furthermore, according to Table IV, for the same level of compression, the two regularizations lead

to spectra with similar qualities in terms of quadratic error Q. However, as illustrated in Fig. 6 and Fig.
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m̃1 100 10 5 2 1

m̃2 1000 100 5 5 1

Q 2.58 2.54 2.12 90.3 97.3

ME K 79 85 94 50 7

T (s) 13.6 7.58 7.64 3.39 0.27

Q - 4.53 3.92 81.6 97.9

TIK K - 31 22 13 12

T (s) - 432 1.98 0.47 1.03

TABLE IV

DATASET A: RECONSTRUCTION QUALITY, ITERATION NUMBER AND TIME BEFORE CONVERGENCE FORME AND TIK

RECONSTRUCTION WITH DIFFERENT LEVEL OF DATA COMPRESSION
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Fig. 5. Dataset A: Similarity error for ME (left) and TIK (right) reconstructions. Average of Monte Carlo simulations with

100 random realizations for SNR =5, 10 and15 dB.

7, the entropy penalization leads to spectra whose shape arecloser to the simulated one.
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Fig. 6. Dataset A: Reconstructed spectra with optimal setting ofλ for ME (left) and TIK (right) regularization (SNR =10 dB

andm̃i = 5).

6) Hyperparameter estimation:In the previous, the tuning of the hyperparameterλ required the

knowledge of the reference spectrum. This strategy, impractical in an experimental context, can be
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Fig. 7. Dataset B: Reconstructed spectra with optimal setting ofλ for ME (left) and TIK (right) regularization (SNR =10 dB

andm̃i = 5).

replaced by different procedures proposed in the litterature. Here, we present the chi-squared approach

that has been widely used in the context of NMR reconstruction [3, 5, 9] and ME optimization [6, 36].

Given measurementsY and an estimate of the noise standard deviationσ̂, theχ2 of the data is given

by:

χ2 = ‖K1SKt
2 − Y ‖2

F /σ̂2 (30)

Over the different noise realizations,χ2 follows a normal distribution with mean and variance

Mean(χ2) = m1m2, Var(χ2) = 2m1m2 (31)

Thus, a classical method for setting the hyperparameterλ is to constrainχ2 to be equal to its expected

value

χ2
aim = m1m2 (32)

However, (32) often leads to over-smoothed reconstructions ([36, 37]) and a better choice is to take

χ2
aim = m1m2 −

√
2m1m2 (33)

In practical applications when the noise level is importantor the estimation ofσ is inaccurate, the

chi-squared test can be difficult to achieve. [38] preconizesto chooseλ such that the S-curve (Fig. 8)

does not make significant progress:
∂ log10 χ2

∂ log10 λ
≪ 1 (34)

We propose to combine the two latter strategies for the determination ofλ, as detailed in Table V. We

emphasize that the minimizations (35) can be performed at very low cost by initializing the TN algorithm

of Table I with the solution at previousλ. Table VI illustrates the performances of the numerical scheme

of Table V for findingλ.

February 10, 2010 DRAFT



17

−6 −4 −2 0 2 4 6
−1

0

1

2

3

4

5

6

log10(λ)

lo
g
1
0
[χ

2
/
m

1
m

2
]

Fig. 8. Dataset A (SNR= 10 dB andm̃i = 5): S-curve for ME reconstruction. The dotted line illustrates the fulfillment of

condition (32)

TABLE V

S-CURVE METHOD FOR HYPERPARAMETER ESTIMATION

Require: Initial values s0 � 0, λ0, parameterθ ∈

(0, 1) and accuracyη

Ensure: ME resolution with chi-squared based tuning

of λ

while (33) and (34) do not holddo

Using Table I, compute

Ŝ = arg min L(S) + λnR(S). (35)

Computeχ2(Ŝ) using (30).

λn+1 ← θλn

end while

Dataset A Dataset B

ME TIK ME TIK

− log10 λQ 4.92 6.19 5.32 5.92

Q 2.05 3.92 13.8 10.7

− log10 λS 5.05 5.91 5.59 5.92

Q 2.43 4.67 22.9 10.7

TABLE VI

DATASET A (SNR =10 DB AND m̃i = 5): EVALUATION OF THE PROPOSEDS-CURVE STRATEGY FOR HYPER-PARAMETER

ESTIMATION. λQ IS THE MINIMIZER OF Q AND λS RESULTS FROMTABLE V
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B. Experimental data

We present reconstruction results of T1-T2 spectra from 2D NMRanalysis on vegetal samples (apple).

Measurements are made form1 = 50, m2 = 10000 and the reconstruction is performed forN1 = N2 =

200, J = 1, v = 5, η = 10−3 andλ = 5 · 10−5 given by Table V.
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Fig. 9. Reconstruction of 2D NMR experimental data

The TN algorithm converges in137 iterations (164 s). The reconstructed spectrum is illustrated in

Fig.9(a). The positions of the three spectrum maxima (Fig.9(b)) have been confirmed by theoretical

analysis. Moreover, the peak localized in[T1, T2] = [1.36, 0.88] shows a correlation betweenT1 andT2,

illustrating the advantage of 2D relaxometry since this information does not appear in the marginalT1

andT2 spectra on Fig.9(c)-(d).

V. CONCLUSION

In this paper, we have presented an efficient method for the reconstruction of a 2D NMR spectrum.

The minimization is performed with a truncated Newton algorithm associated with a MM line search

scheme. The resulting method benefits from strong convergenceresults. The proposed method has a

reduced computational cost and shows itself very efficient onpractical problems.
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APPENDIX

A. Interpretation of BRD algorithm using Legendre-Fenchel duality

Let us consider the constrained minimization problem

min
s>0

{

L(s) =
1

2
‖Ks − y‖2 +

λ

2
‖s‖2

}

. (36)

The BRD algorithm [3] is based on the equivalence between the KKT conditions of problem (36) and

the following unconstrained problem

min
c∈Rm

{

χ(c) =
1

2
ct (G(c) + λI) c − cty

}

(37)

with the reparametrizations = max(0, Ktc) and

G(c) = KtDiag(H(Ktc))K, (38)

where H denotes a component-wise unit step function that takes the value zero for negative or zero

arguments and one for positive arguments. Let us show that this equivalence can also be obtained from

the Legendre-Fenchel conjugacy theory (see [39] for a reminder on Legendre-Fenchel theory).

First, let us introduce the Legendre-Fenchel conjugatef∗ of the quadraticf(u) = 1

2
‖u − y‖2, i.e.,

f∗(u) = sup
v

(

vtu − 1

2
‖v − y‖2

)

=
1

2
‖u‖2 + ytu. (39)

According to the conjugacy theorem [39, Prop. 7.1.1],

L(s) = sup
u∈Rm

(

stKtu − f∗(u)
)

+
λ

2
‖s‖2. (40)

Moreover, according to the minimax theorem [39, Prop. 2.6.2], (40) implies

min
s>0

L(s) = max
u∈Rm

min
s>0

(

stKtu − f∗(u) +
λ

2
‖s‖2

)

,

= max
u∈Rm

(ϕ(u) − f∗(u)) (41)

where

ϕ(u) = min
s>0

(

stKtu +
λ

2
‖s‖2

)

. (42)

The minimization problem (42) is convex, separable and the following expression of the minimizer is

easy to derive:

s∗(u) =
1

λ
max

(

0,−Ktu
)

(43)

wheremax is to be considered component-wise. Moreover, we have

ϕ(u) = (s∗(u))t Ktu +
λ

2
‖s∗(u)‖2 =

1

2
(s∗(u))t Ktu, (44)
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the latter expression being a consequence of(max(0, x))2 = xmax(0, x) for all x ∈ R. Finally,

given (39), (43) and (44), (41) also reads

min
s>0

L(s) = max
u∈Rm

(

− 1

2λ

(

max
(

0,−Ktu
))t

Ktu +
1

2
‖u‖2 + ytu

)

= − λ min
c∈Rm

χ(c)

where the last identity is obtained using the change of variable c = −u/λ. Thus, (36) and (37) are equiv-

alent through Legendre-Fenchel duality, andc∗ minimizesχ(c) in R
m if and only if s∗ = max(0, Ktc∗)

minimizesL(s) in R
m
+ .

B. Expression of the majorant functionhj(·, αj) and of its minimizer

The majorant functionhj(·, αj) is piecewise defined, whetherα ∈ (α−; αj ] or α ∈ [αj ; α+). In both

cases, it takes the following form:

hj(α, αj) = ℓ(αj) + (α − αj)ℓ̇(αj) +
1

2
mj(α − αj)2 + γj

[

(ᾱj − αj) log
ᾱj − αj

ᾱj − α
− α + αj

]

(45)

while the expressions of parametersᾱj , mj , andγj are specific to each case.

1) Caseα ∈ (α−; αj ]:






















ᾱj = α−

mj = dt
kK

tKdk + λ
∑

i|dk,i<0
φi(α

j)

γj = λ(α− − αj)
∑

i|dk,i>0
φi(α

j)

(46)

2) Caseα ∈ [αj ; α+):






















ᾱj = α+

mj = dt
kK

tKdk + λ
∑

i|dk,i>0
φi(α

j)

γj = λ(α+ − αj)
∑

i|dk,i<0
φi(α

j)

(47)

whereφi(α) = d2
k,i/(si + αdk,i) in both cases.

The minimizer ofhj(·, αj) can be expressed as follows:

αj + sign(ℓ̇(αj))
2 |A3|

|A2| +
√

A2
2
− 4A1A3

, (48)

with






















A1 = −mj

A2 = γj − ℓ̇(αj) + mj(ᾱj − αj)

A3 = (ᾱj − αj)ℓ̇(αj)

. (49)
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