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Model refinements of magnetic circuits are performed via a subdomain finite element method based on a perturbation technique. A
complete problem is split into subproblems, some of lower dimensions, to allow a progression from 1-D to 3-D models. Its solution is
then expressed as the sum of the subproblem solutions supported by different meshes. A convenient and robust correction procedure
is proposed allowing independent overlapping meshes for both source and reaction fields, the latter being free of cancellation error in
magnetic materials. The procedure simplifies both meshing and solving processes, and quantifies the gain given by each model refinement
on both local fields and global quantities.

Index Terms—Finite element method (FEM), magnetic circuit, model refinement, subdomain method.

I. INTRODUCTION

T HE perturbation of finite element (FE) solutions provides
clear advantages in repetitive analyses and helps im-

proving the solution accuracy [1]–[6]. It allows to benefit from
previous computations instead of starting a new complete FE
solution for any variation of geometrical or physical data. It also
allows different problem-adapted meshes and computational
efficiency due to the reduced size of each subproblem.

A subproblem FE method is herein developed for coupling
solutions of various dimensions, starting from simplified models
[7], based on ideal flux tubes defining 1-D models, that evolve
towards 2-D and 3-D accurate models, allowing leakage flux
and end effects. It is an extension of the method proposed in
[3]–[5], applied to refinements up to 3-D models. With the former
method,material and interfaceconditionchangeswerecombined
separately. A more convenient and robust correction procedure
is proposed here. It combines both types of changes, via volume
and surface sources, in single correction steps. This allows inde-
pendent overlapping meshes for both source and reaction fields,
which simplifies the meshing procedure. This also solves the
critical problem of cancellation error in magnetic materials.

The developments are performed for the magnetic vector po-
tential FE magnetostatic formulation, paying special attention
to the proper discretization of the constraints involved in each
subproblem. The method is illustrated and validated on test
problems.

II. MAGNETIC SUBPROBLEMS OF VARIOUS DIMENSIONS

A. Series of Coupled Subproblems

Instead of solving a complete problem, generally with a 3-D
model, it is proposed to split it into a sequence of subproblems,
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some of lower dimensions, i.e. 1-D and 2-D models, and others
performing adequate corrections. The complete solution is then
to be expressed as the sum of the subproblem solutions. This
offers a way to perform model refinements, with a direct access
to each correction, usually of useful physical meaning.

Each subproblem is defined in its own domain, generally dis-
tinct from the complete one. At the discrete level, this aims to de-
crease the problem complexity and to allow distinct meshes with
suitable refinements. Each subproblem approximates at best its
contribution to the complete solution. The domains of the sub-
problems usually overlap.

B. Canonical Magnetostatic Problem

A canonical magnetostatic problem is defined in a domain
, with boundary (possibly at in-

finity). Subscript refers to the associated problem . The equa-
tions, material relations, boundary conditions (BCs) and inter-
face conditions (ICs) of problem are

(1a-b)

(1c-d)

(1e-f)

(1g-h)

where is the magnetic field, is the magnetic flux density,
is the electric current density, is the magnetic permeability
and is the unit normal exterior to . The notation

expresses the discontinuity of a quantity through any
interface (with sides and ) in (the region in between
is exterior to ).

The fields and are volume sources (VSs). The source
is usually used for fixing a remnant induction in magnetic

materials. The source fixes the current density in inductors.
With the perturbation method, is also used for expressing
changes of permeability and for adding portions of induc-
tors [3], [4]. In magnetodynamic problems, also expresses
changes of conductivity [2], [6]. For a change of permeability
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of a region, from for problem to for problem , the VS
in this region is

(2)

for the total fields to be related by .
The surface fields and are generally zero, defining

classical ICs for the physical fields, i.e. the continuities of the
traces and . If nonzero, they define possible surface
sources (SSs) that account for particular phenomena occurring
in the idealized thin region between and [2]–[5]. A typ-
ical case occurs when, in a problem , the fields and are
explicitly fixed to zero in a region exterior to the studied domain

, separated by the interface . This amounts to force a dis-
continuity of the traces and/or through ; usually
a BC fixes one of the traces to zero on the inner side of .
To restore the missing continuity, a problem has then to fix the
opposite of the discontinuity as an IC through (
and only differ at the discrete level by their meshes), via

(3a)

(3b)

Each problem is to be constrained via the so defined VSs
and SSs from parts of the solutions of other problems. This is
a key element of the developed method, offering a wide variety
of possible corrections, as it will be shown.

III. FINITE ELEMENT WEAK FORMULATIONS

A. B-Conform Weak Formulations

The canonical problem (1a)–(1h) is defined in with the
magnetic vector potential formulation [3], [4], expressing the
magnetic flux density in as the curl of a magnetic vector
potential . The related -formulation is obtained from the
weak form of the Ampère equation (1a), i.e. [3], [4]

(4)

where is a gauged curl-conform function space defined
on and containing the basis functions for as well as for
the test function (at the discrete level, this space is defined
by edge FEs); and respectively denote a volume
integral in and a surface integral on of the product of their
vector field arguments. The surface integral term on ac-
counts for natural BCs of type (1e), usually zero. The term on
the surface with essential BCs on is usually omitted
because it does not locally contribute to (4). It will be shown to
be the key for the post-processing of a solution, a part of which

having to act as a SS.

B. Projections of Solutions Between Meshes

Some parts of a previous solution serve as sources in a
subdomain of the current problem . At the discrete
level, this means that this source quantity has to be expressed

in the mesh of problem , while initially given in the mesh of
problem . This can be done via a projection method [8] of its
curl limited to , i.e.

(5)

where is a gauged curl-conform function space for
the -projected source (the projection of on mesh

) and the test function . Directly projecting (not its curl)
would result in significant numerical inaccuracies when evalu-
ating its curl.

C. VSs for Changes of Material Properties and Inductors

A change of permeability from problem to is taken into
account in (4) via the volume integral . The VS

is given by (2), with . At the discrete level, the
source primal quantity , initially given in mesh , is projected
in the mesh via (5), with limited to the modified regions.
A change of current density in either added or modified induc-
tors is defined in (4) via the source integral with the
associated VS .

D. SSs for Changes of ICs

With the -conform formulation, ICs (3a) and (3b) are to be
defined respectively in weak and strong senses, i.e. via a surface
integral and in . IC (3b) is expressed via a discontinuity
of the trace through , i.e.

(6)

As for IC (3a), it is to be weakly expressed via the last in-
tegral in (4), with . The so involved trace

gains at being kept in a surface integral (weighted

by ), that originally appears in (4) for problem on now
restricted to . It can then be naturally expressed via
the other (volume) integrals in (4), i.e.

(7)

At the discrete level, the volume integral in (7) is limited to
one single layer of FEs touching , because it involves only
the associated traces . The source , initially in mesh
, has to be projected in mesh via (5), with limited to the

FE layer, which thus decreases the computational effort of the
projection process.

IV. CONVENIENT AND ROBUST CORRECTION PROCEDURE

Progressions from 1-D to 3-D models have been already
studied in [3]–[5], mainly by considering ideal flux tubes with
surfaces initially impermeable to the flux, that progressively
become permeable to allow leakage flux and end effects. As a
drawback of the former approach, the correction problems had
to include the inductors together with the magnetic regions,
leading thus to classical meshing constraints. Indeed, the cor-
rection problems gathered simultaneously the source field and
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Fig. 1. Field lines generated by a stranded inductor: solution of a 1-D model
(implicitly extended as constant along the inductor height) ( , left), its correc-
tion from one coil cap ( , middle) and the resulting total field ( , right).

Fig. 2. Magnetic field along the coil axis: for the 1-D model, for the 2-D
correction from the coil cap and for the complete 2-D model.

leakage flux calculations. The generalized approach developed
herein, with both VSs and SSs, enables to make the meshes
of the inductors and magnetic regions totally independent,
with complete overlapping and with separate calculations of
source and leakage fields. Each mesh usually covers unbounded
regions via infinite FEs.

A. Step 1: Source Fields Generated by Inductors

Inductors alone are first studied, with the advantage to ben-
efit from all their symmetries, not broken by additional magnetic
regions. A 2-D stranded inductor (Figs. 1 and 2) is first consid-
ered as a portion of a infinite solenoid, thus with a 1-D model:

is constant inside, zero outside and varies linearly in the coil
section. This portion is limited by two caps through which
the trace is forced to be discontinuous. The correction
problem for end effects compensates this discontinuity via SSs
(3b) on the caps. The resulting cap field, calculated in a mesh
containing one cap and the surrounding unbounded region, can
thus be added to the 1-D solution with adequate translations and
rotations towards each coil end, for any coil height. The exten-
sion to 3-D coils is straightforward.

Another correction procedure is proposed for 3-D inductors
with portions satisfying translational or rotational symmetries,
that can be first studied via 2-D models. As an example, a
3-D stranded inductor is defined via the combination of a 2-D
plane model for its portion with a translational symmetry and a
2-D axisymmetrical model for its end winding (Figs. 3 and 4).
This consists in initially neglecting some end effects, zeroing

on the portions caps. Besides, each field is forced to
be zero out of each , which defines a discontinuity of
through . With such assumptions, two subproblems 1 and
2 with adjacent non-overlapping sudomains and share a
common interface through which a combination
of field discontinuities occurs. A third subproblem, 3-D, serves

Fig. 3. Field lines generated by a stranded inductor (half geometry): solution
of a 2-D plane model in the XY plane ( , portion on the left) and of a
2-D axisymmetrical model in the YZ plane ( , portion on the right);
the interface between the two portions is shown.

Fig. 4. Magnetic flux density along the coil axis in the 3-D system: for the
2-D plane model (implicitly extended as constant up to ), for
the 2-D axisymmetrical model, for the 3-D correction and for the complete
3-D model.

then to correct the field distribution in a certain neighborhood
on both sides of the interface, then denoted , via the

SSs , (Fig. 4).
Because the correction is local to , the associated 3-D mesh
only needs to be refined in its vicinity. It does not include at
all the already considered inductor portions. The solution with
such a combination of meshes is generally obtained with a
higher accuracy than the solution on a single 3-D mesh, for less
computational effort.

B. Step 2: Reaction Fields Free of Cancellation Error

A first typical problem is that of a magnetic region put in an
initially calculated source field . The associated subproblem
2 is solved in its proper mesh, with the added magnetic core
and its infinite surrounding region. The VS (2) is applied, with

. The higher , the lower the total
magnetic field . At the limit, approaches , which
gives an increasing inaccuracy on (Fig. 5). A
robust way to avoid such a cancellation error is to combine a
problem 2a, considering a perfect magnetic core
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Fig. 5. Field lines for the inductor alone ( , top left), for the added core ( ,
) with cancellation error (top right) and robust procedure (bottom

right), and for the complete problem ( , bottom left); distinct meshes are used
for problems 1 and 2.

Fig. 6. Field lines in the ideal flux tube ( , ), for the inductor
alone , for the leakage flux and for the total field (left to right).

, and a problem 2b, considering a change to the actual per-
meability . Problem 2a uses a SS

, with and , while problem 2b
uses the VS . Both problems gain
at being solved simultaneously, with the SS and
the resulting relation , with no more
inaccuracy (Fig. 5). In practice, this robust procedure asks for
the projection of the source field in the added magnetic region
as well as in the layer of FEs surrounding this region.

An electromagnet is then studied as an example of low reluc-
tance magnetic circuit [5]. The new procedure for such a circuit
splits the problem in a minimum of 3 subproblems (Figs. 6 and
7): (1) the magnetic region and the air gaps considered as an
ideal flux tube (with possible start from 1-D models [3]–[5]),
(2) the stranded inductor alone, and (3) the consideration of the
leakage flux via a SS on the flux tube boundary, simultane-
ously with the change of permeability due to the addition of the
magnetic region in the inductor source field (using the extended
procedure to avoid the cancellation error). In this way, step 2
and step 3 are based on totally independent meshes; step 1 uses
a portion of mesh 3. All the resulting total solutions have been
successfully validated.

Fig. 7. Magnetic flux density through the horizontal legs of the electromagnet
for the ideal flux tube , for the inductor alone and for the leakage flux

; their addition gives the complete solution .

V. CONCLUSIONS

The developed subdomain FE method allows to split mag-
netic models into subproblems of lower complexity with regard
to meshing operations and computational aspects. A natural pro-
gression from simple to more elaborate models, from 1-D to 3-D
geometries, is thus possible, while quantifying the gain given
by each model refinement. From the so calculated field cor-
rections, the associate corrections of global quantities inherent
to magnetic models, i.e. fluxes, magnetomotive forces, can be
evaluated. Further developments will deal with other model re-
finements, from static to dynamic, and from linear to nonlinear
problems.
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