
HAL Id: hal-00455459
https://hal.science/hal-00455459

Submitted on 10 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Token Traversal Strategies of a Distributed Spanning
Forest Algorithm in Delay Tolerant MANETs

Apivadee Piyatumrong, Patricia Ruiz, Pascal Bouvry, Frédéric Guinand,
Kittichai Lavagnananda

To cite this version:
Apivadee Piyatumrong, Patricia Ruiz, Pascal Bouvry, Frédéric Guinand, Kittichai Lavagnananda.
Token Traversal Strategies of a Distributed Spanning Forest Algorithm in Delay Tolerant MANETs.
Third International Conference, IAIT 2009., Dec 2009, Bangkok, Thailand. pp.96-109, �10.1007/978-
3-642-10392-6_10�. �hal-00455459�

https://hal.science/hal-00455459
https://hal.archives-ouvertes.fr

Token Traversal Strategies of a Distributed

Spanning Forest Algorithm in

Delay Tolerant MANETs

Apivadee Piyatumrong, Patricia Ruiz, Pascal Bouvry∗, Frédéric Guinand†, and Kittichai Lavangnananda‡,
∗Université du Luxembourg, The Faculty of Science, Technology and Communication (FSTC)

Computer Science and Communications Research Unit (CSC), Luxembourg

Email: apivadee.piyatumrong@uni.lu, patricia.ruiz@uni.lu, pascal.bouvry@uni.lu
†Le Havre University, LITIS, Le Havre, France

Email: frederic.guinand@univ-lehavre.fr
‡School of Information Technology,

King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

Email: kitt@sit.kmutt.ac.th

Abstract—This paper presents several distributed and
decentralized strategies used for token traversal in span-
ning forest over DTMs. DTMs or Delay Tolerant Mobile
ad hoc networks are characterized by some undesirable
behaviors like the disappearance of mobile devices, con-
nection disruptions, network partitioning, etc. Providing
efficient communications in DTMs is a very challenging
issue. Techniques based on tree topology are well known
for increasing the efficiency of network protocols and/or
applications. One of the main features of the tree based
topologies is the existence of a token traversing in every
tree. The traversal of this token through a tree has a
high impact on its characteristics, such as the topology
of the constructed tree and the performance (quality of
service) it can provide. The efficiency of communications
relies on the availability of the spanning tree topology. In
this sense, a complete tree structure over a network is
desired. Furthermore, the convergence speed rate used in
constructing this tree is important.

I. INTRODUCTION

Networks spontaneously and automatically created

among neighboring mobile devices are commonly called

mobile ad hoc networks (MANETs). The main positive

advantage of this kind of networks is that no infrastruc-

ture or administration system is requiered, as well as the

flexibility they have. Due to the appearance and disap-

pearance of the nodes, the mobility, and the obstacles, the

signal strength can be weakened and frequent and long

duration partitions may occur. An emerging subclass of

MANETs called Delay Tolerant Mobile ad hoc networks

(DTMs) are characterized by including these undesir-

able behaviors. This unpredictable and highly fluctuating

topology make challenging many aspects like efficient

communication, routing problems, etc.

DTM can be represented as a dynamic communication

graph (G), where the mobile devices are the set of

vertices (V), and the links between them are the edges

of the graph, (E). The dynamicity of the network is

represented by the fact that both V and E can change at

any time. Therefore, the graph at a given time t, G(t),
is composed of (Vt(G), Et(G)).

Establishing spanning tree in the network is a well

known strategy for efficient communication and routing

algorithms in wired networks, but recently it is also a

tendency to use them in MANETs [1], [2], [3]. In [4]

the authors stated that techniques for traversing the token

that perform well in static networks are not necessarily

well suited in network with mobility. Also in [5], it

concluded that the token movement strategies impacts

on the tree construction. Therefore, in this work some

different strategies for traversing the token in the tree

topology are implemented and compared in terms of the

performance ratio and the convergence speed rate. The

performance ratio is measured as the number of existing

trees divided by the number of different partitions (or

connected components), and the convergence speed rate

shows how fast multiple trees belonging to the same

partition merge into one tree. We compare four different

distributed strategies: Randomness, TABU-like, Depth-

First Search (DFS) and finally Depth-First Search-like

(DFS-like), described later.

The rest of the paper is organized as follows, next

section introduces the model used for creating the tree

topology over existing DTMs in pure distributed and

decentralized manner. After that, in Section III all the

compared strategies for circulating the token are pre-

sented. The experiments are explained in Section IV

and the results obtained are shown in Section V. Finally

Section VI concludes the work.

II. THE SPANNING FOREST ALGORITHM OF

DA-GRS

DA-GRS [6] is a model for creating and analyzing

decentralized applications and algorithms targeting dyna-

mically distributed environments like DTMs. Normally,

such applications and algorithms are often very difficult

to set up, describe and validate. Using DA-GRS is a

convenient way to design algorithms for DTMs, since

its outstanding properties are localized in a dynamic

working manner.

DA-GRS proposed some rules for constructing and

maintaining a spanning forest (given that a forest is

a graph whose components are trees [7]) in DTMs.

Figure 1 illustrates these simple rules of DA-GRS. These

rules handle four different scenarios, which are: (a)

partition occurs at a node which belongs to the spanning

tree that possesses the token, (b) partition occurs at a

node which belongs to the spanning tree which does

not possess the token, (c) when a token meets another

token (rendez-vous assumption), and, (d) token traversal

in general case (randomly).

Initial label:

rule1:

rule2:

rule3:

rule4:

T

N

T

T

off

1

off

2

Any

T

Any

T

T

N

N

0

1

0

2

1

2

2

1

T

N

Fig. 1. DAGRS rules for creating and maintaining spanning forest
topologies

An important feature of this model is that in each

tree exists one and only one token. Furthermore, only

two nodes possessing token can do the merging tree

operation. Since we are constructing, a tree cycles are not

allowed, and DAGRS manages to avoid them because it

is impossible to have two nodes belonging to the same

tree possessing token at the same time.

A. Simulating DA-GRS as a Network Protocol

For creating spanning forest over a DTM using DA-

GRS, a more detailed communication syntax needs to

be specified. Following those four scenarios defined in

DA-GRS, three different communication syntax or three

message sequence types are proposed as follows.

1) Beaconing: In order to have knowledge of the

one-hop neighborhood most decentralized systems uti-

lize beacons (also called ‘hello messages’) [8]. For

that purpose, every node sends periodically a message

alerting about its presence. In order to consider a node

as a neighbor, one must receive a beacon of the node

regularly. A node will not be a neighbor anymore when

one does not receive any beacon from that particular

node within a predefined time. Using this beaconing both

a broken communication link and the appearance of a

new one-hop neighbor are detected and thus, ‘rules1’ and

‘rule2’ in Figure 1 can be applied. Based on Beaconing

Rate of IEEE802.11 [9], the time interval used for

periodically sending the beacon is 100 millisecond.

2) Synchronization method and messages for Tree

Merging Process: ‘Rule3’ in Figure 1 represents the

spanning tree construction scenario (merging trees pro-

cess). DA-GRS uses rendez-vous assumption as their

synchronization method at this merging process. This

rendez-vous assumption states that at one moment in

time, only two tokens can meet and be merged. The

previous work [10] proposed to relax this assumption by

allowing a node to choose one token among the tokens

owned by its neighbors. In a distributed system a node

has no ability to know if there exists any node with

token in its neighborhood. Thus nodes holding a token

will broadcast a packet, ‘findingTk’, to verify whether

its neighbors also possess token. If any neighbors of

this broadcasting node possesses token and received

‘findingTk’ will reply using ‘ACK finding’ message.

‘ACK finding’ is an expression of agreement to do

merging of tokens. Moreover, this particular neighbor

will set its status to wait for ‘SYN/ACK finding’ to

confirm the merging process within a predefined period,

‘TimerWaitFor SynAckFinding’. As we are working with

a discrete simulator, the time duration of the timers is

one simulation step. After broadcasting ’findingTk’, the

broadcasting node will wait within a predefined duration,

‘TimerWaitFor finding’. At the end of this waiting time,

the broadcasting node selects one of its neighbor and a

‘SYN/ACK finding’ message will be sent using unicast

to this selected neighbor. In case, there is no node

with token in the neighborhood, the token is circulated.

The message sequence of this process is illustrated in

Figure 2.
Merging Trees Process

�ndingTk

ACK_�nding

SYN/ACK_�nding

number of packet = 1

number of packet =

number of one-hop

neighbors of this node

which have token
number of packet = 1

TimerWaitFor_Finding

TimerWaitFor_SynAckFinding

Fig. 2. Message sequence diagram of merging trees

3) Message for Token Traversal: ‘Rule4’ in Figure 1

stands for token traversal in general case (randomly).

When a node sends a broadcast message for finding a

neighbor possessing token, it also establishes a timer

as addressed in previous section. If the timer finishes

and there is no answer from any neighbor, the token

movement takes place. If there is no non-tree member

neighbor, the node will directly move the token, see

Figure 3.

Moving Token Process

moveTk

�ndingTk
Or

moveTk

number of packet = 1

Fig. 3. Message sequence diagram of traversing the token

III. TOKEN TRAVERSAL IN A DECENTRALIZED

SYSTEM

According to DAGRS’s rules, initially every node

possesses a token which is unique in each spanning tree.

In order to merging two spanning trees, the token of each

spanning tree must meet and agree to operate in merging

process. After this merging process, a bigger spanning

tree is created and one token becomes obsolete.

The walk of the token impacts on the spanning tree

construction. In literature, tree traversal refers to the

process of visiting each node in a tree data structure

in a particular manner [7]. In the context of this study,

we want the token to traverse less but has more chance

to meet another token. In other words, we want the

fastest rate of the tree construction to cover a connected

subgraph, which means less number of trees or remain

only one tree over a connected subgraph. This section

gives a detailed explanation of four strategies used in this

study. It is worth noting that all strategies are working

in distributed and decentralized manner suiting to work

in DTMs.

A. Randomness

The Randomness here follows the uniform distribution

law. Randomness is the heuristic used by DA-GRS. The

process is done by selecting a node randomly among

the list of neighbors. The moving token operation using

‘Randomness’ is described in Algorithm 1.

Algorithm 1 Using Randomness heuristic in

Move Token (τi) process of a node ν

1: α is the set of neighbors of node ν
2: node ρ is a node selected randomly from set α
3: move token τi from node ν to node ρ

B. TABU-like

TABU-like [11] includes a list (called Tabu-like list)

in the token of forbidden movements in which the most

recent nodes possessing the token are stored, so that the

algorithm does not visit that possibilities repeatedly.

Each token has a list of visited nodes, the tabu-like list.

This idea was proposed in the previous work [5], and it

can be seen in Algorithm 2. The TABU-like utilizes a

limited memory size in each token.

Algorithm 2 Using TABU-like heuristic in

Move Token (τi) using a defined value of

memory size processing at a node ν

1: α is the set of neighbors of node ν
2: β is the TABU-like list which has size equal to mem-

ory size
3: Set availableNode = α - β
4: if availableNode 6= ∅ then
5: node ρ is a node selected randomly from set

availableNode
6: token τi move from node ν to node ρ
7: if the number of item of β reach the memory size then
8: remove the first item from list β
9: add ρ to the end of list β

10: else
11: add ρ to the end of list β
12: end if
13: else
14: node ρ is a node selected randomly from set α
15: remove item ρ from list β
16: token τi move from node ν to node ρ
17: add ρ to the end of list β
18: end if

In this work, the memory size of one is considered

according to the result in [5]. For brevity, henceforth

we will use ‘TABU-like{1}’ to represent the usage

of TABU-like at ‘memory size’ equals to one. This is

equivalent to not allowing sending the token to the node

from which the current one received it. It is remarkable

that the size of information in TABU-like list affects

directly to the bandwidth usage in the network.

C. Depth-First Search (DFS)

DFS is commonly used as token movement tech-

nique [1], [12], [13] when dealing with tree based

topologies. It imitates the traversal of the classical Depth

First Search algorithm and, thus, is an ordering traversal.

This implementation was done according to the idea

used in [1]. In order to traverse systematically like

classical algorithm in distributed and dynamic systems,

DFS utilizes the neighbor list information provided by

the beaconing process.

In this implementation, it is necessary to keep in-

formation of the first node that sends the token to the

current device (henceforth, we refer to this first node

as ‘upper neighbor’), and to keep also information of

neighbors receiving token from this current device. In

this way, the node will definitely sends the token to all

its neighbors. Whenever the current node receives token

back from its neighbors (and this is not the first time this

node receiving token), the current node will send token

to the next neighbor in the neighbor list. Once the list is

finished, the token is sent back to the ‘upper neighbor’ if

it has not gone from the neighborhood. Otherwise, this

current node will send token to the first neighbor of the

current neighbor list. This implementation is described

in Algorithm 3.

Algorithm 3 Using DFS heuristic in Move Token (τi)

process of a node ν

1: α is the set of neighborhood of node ν
2: β is the DFS list in node ν
3: ̟ is ‘upper neighbor′

4: δ is the latest node that send τi to ν
5: if ̟ is empty then
6: ̟ = δ
7: end if
8: Set availableNode = α - β - ̟
9: if availableNode 6= ∅ then

10: node ρ is the first node from set availableNode
11: move token τi from node ν to node ρ
12: add ρ to the end of list β
13: else
14: clear list β
15: if ̟ is in the set α then
16: move token τi from node ν to node ̟
17: set ̟ to empty
18: else
19: ̟ = ν
20: Set availableNode = α - δ
21: node ρ is the first node from set availableNode
22: move token τi from node ν to node ρ
23: add ρ to the end of list β
24: end if
25: end if

D. Depth-First Search–Like (DFS-like)

DFS-like is introduced by imitating the traversal of

the classical Depth First Search algorithm (explained

above) but also includes some randomness. This is done

in the sense that every branch is explored in depth, but

it is not necessary to visit all the neighborhood before

backtracking the node. Each node records the choice of

node which token was sent to. If all neighbors are in

the DFS-like list, then all information in DFS-like list is

cleared and one select any node randomly. Then, records

this node to the end of the DFS-like list. The moving

token operation using ‘DFS-like’ heuristic is described

in Algorithm 4.

E. Memory Usage

A remarkable different point among those four heuris-

tics is the usage of memory. While in Randomness, there

is no memory usage, DFS, DFS-like and TABU-like

utilize either memory on node or in the token.

However, DFS, DFS-like and TABU-like utilize dif-

ferent kind and different size of memory. In DFS and

DFS-like, the list is stored inside the node. The differ-

ence between DFS and DFS-like regarding the memory

usage is that in DFS the mac address of the ‘upper

neighbor’ must be also stored, that means 6 extra bytes

is used. For TABU-like, each token carries a number

Algorithm 4 Using DFS-like heuristic in

Move Token (τi) process of a node ν

1: α is the set of neighborhood of node ν
2: β is the DFS-like list in node ν
3: δ is node that sends τi to ν
4: Set availableNode = α - β - δ
5: if availableNode 6= ∅ then
6: node ρ is a node selected randomly from set

availableNode
7: move token τi from node ν to node ρ
8: add ρ to the end of list β
9: else

10: clear list β
11: node ρ is a node selected randomly from set α
12: move token τi from node ν to node ρ
13: add ρ to the list β
14: end if

of information depending on its memory size and sends

over the network. Thus, the algorithm costly utilizes the

communication bandwidth. However, the previous work

[5] shows the benefit of TABU-like with memory size

equal to one. This means the bandwidth usage is small

and equal to 48 bits as overhead. Hence, the usage of

TABU-like{1} is still convincing to the current study.

IV. EXPERIMENT METHODOLOGY AND

MEASUREMENTS

A. Experiment methodology

The networks used in this work were generated by

Madhoc [14], an ad-hoc networks simulator that provides

mobility models allowing realistic motion of citizens

in variety of environments. Two real-world mobility

models, ‘Shopping Mall’ and ‘Highway’, were selected

in the simulations using the parameters summarized in

Table I.

TABLE I
PARAMETERS USED IN THE EXPERIMENTS

Shopping High
Mall way

Surface (km2) 0.32 1.0

Node Density (per km2) 1000 80

Number of Nodes 100 80

Avg. Number of Partitions 2.68 1.7

Number of Connections 389 405

Average Degrees 7.82 10.17

Velocity of Nodes (m/s) 0.3-3 20-40

Radio Transmission Range 40-80 m

We derived communication graphs from Madhoc

which performs simulation in discrete-time. So the com-

munication network corresponds to a series of static

graphs: G(t) for t ∈ {t1, t2, t3, ..., t40}. Between two

consecutive times ti and ti+1 the communication graph

remains the same. However, using such a short timing-

snapshot, 1/4 seconds between two consecutive times is

considered sufficient to reflect the reality. We made 100

runs for each experiment in order to have reliable results.

B. performanceRatio() function

At moment t, G(t) may be partitioned into a set

of m connected subgraphs. Having Γ as the set of all

spanning trees at moment t of G(t). The quality of

the algorithms can be assessed by number of trees per

connected subgraph. This quality is determined by the

following ratio.

performanceRatio(G(t)) =

(

| Γ |

m

)

(1)

The value of approaching to one means higher quality

of the constructed tree. Having a spanning tree per a

connected subgraph enables more efficient communica-

tion and management, since at least, information can

be disseminated systematically via the created spanning

tree. This means the algorithm is robust with respect to

the dynamism of the network because it can construct a

tree covering the connected subgraph.

communication edge

spanning tree edge(a) (b)

1

2

2 1

1

1

2

1

2

2 2

2

22
2

1

1

1
1

1

T

T

T
2

1

1

1
1

1

1

1

2

2

2

2
2

2

2
2 2

1

1

1

1

1

2

2

T

T

T

γ
1

γ
3

γ
2

γ
4

I(t) K(t)

Fig. 4. An example scenario for illustrating the proposed cost
functions for spanning forest

Figures 4(a) and (b) illustrate the measurement of

all cost functions proposed here. In the figure 4(a),

the communication graph I(t) has two connected sub-

graphs, and each connected subgraph has one span-

ning tree. On the contrary, the communication graph

K(t) depicted in figure 4(b) has only one connected

subgraph but four spanning trees (γ1, ..., γ4). Thus, the

performanceRatio(I(t)) and (K(t)) equal to 1 and 4,

respectively.

C. convergenceSpeedRate() function

The convergenceSpeedRate() is measured based

on the number of iterations in simulation. Let ∆ be

the number of iterations the algorithm required trying

to achieve the least performanceRatio() and ∆∗ be

the number of iterations required per G(t). Having

performanceRatio() equal to one within G(t) is an

ideal situation. However, having limited merging process

causes no guarante that performanceRatio() will be

one, in other words, it is always possible to have multiple

trees per connected component at any time t of graph G.

In such case, the number of iterations used within that

G(t) will be counted into ∆. The lower the value of

convergenceSpeedRate() is, the faster the algorithm

can converge a connected component into a tree. The

convergenceSpeedRate() can be written as below.

convergenceSpeedRate(G(t)) =

(

∆(G(t))

∆∗(G(t))

)

∗ 100

(2)

V. RESULTS

In this section we present the comparison results

of the four strategies for circulating the token in a

decentralized tree based algorithm. These four strategies

are: randomness, TABU-like{1}, DFS and DFS-like.

The comparison was made in terms of the speed of

the convergence of the tree and the performance ratio

explained both in the previous section. The results shown

are the average of 100 runs.

In the shopping mall environment, we can see that

DFS and DFS-like have the best behavior among these

four strategies, see Figure 5. Between them, DFS is

converging a little bit faster than the other, and also has

less number of trees per connected component, but the

difference is insignificant.

Figure 6 shows results obtained from the highway

scenario. In this environment DFS and DFS-like also

outperforms the other strategies without much difference

between themselves.

In any of the previous cases, the Randomness strategy

is the worst one always. This behavior was expected,

since using this random technique many nodes in the tree

can hardly possess the token, so the merging process in

those area is rarely happened. TABU-like{1} improves

Randomness because it ensures that one neighbor will

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40pe
rf

or
m

an
ce

R
at

io
()

time (1/4 second)
Random
DFS-like

Tabu-like(1)
DFS

 0

 20

 40

 60

 80

 100

co
nv

er
ge

nc
eS

pe
ed

R
at

e(
)

Fig. 5. Comparison of convergenceSpeedRate() measuring among all
studied algorithms in ‘Shopping Mall’ mobility model

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40pe
rf

or
m

an
ce

R
at

io
()

time (1/4 second)
Random
DFS-like

Tabu-like(1)
DFS

 0

 20

 40

 60

 80

 100
co

nv
er

ge
nc

eS
pe

ed
R

at
e(

)

Fig. 6. Comparison of convergenceSpeedRate() measuring among all
studied algorithms in ‘highway’ mobility models

not possess the token twice consecutively. This affirms

the intuition that a technique which traverses all the

nodes in the tree usually provides better results.

As the values do not not follow a normal distribution

in any case we apply the Kruskal-Wallis test in order to

obtain statistical significance with 95% probability in our

comparisons. The results show there is no significative

difference between DFS and DFS-like either in any of

the environments (mall and highway) or the two param-

eters measured (speed of convergence and performance

ratio), but there are many cases in which both are

significative better than TABU-like{1} or Randomness.

Randomness is statistically the worst strategy.

VI. CONCLUSION AND FUTURE WORK

Providing efficient communication in delay tolerant

mobile ad hoc networks is a difficult task which presents

a real challenge. In this work, four different strategies for

token movement through the tree topology: Randomness,

TABU-like{1}, Depth-First Search (DFS) and Depth-

First Search-like (DFS-like) were systematically studied

and compared in terms of the perfomance ratio and

the speed of the convergence. The performance ratio

measures the number of spanning trees per connected

component, the closer to one the better performance. The

speed of convergence gives an idea of how fast different

trees belonging to the same connected component merge

and form a solely tree composed of all the nodes in the

partition.

For doing the comparison, two different scenarios

were selected: (1) a shopping mall where the movement

of the device is slow, and (2) a highway where the

nodes move at high speeds. We found out that ordering

strategies for token traversal helps to merge trees faster.

This can be confirmed since both DFS and DFS-like

outperform the no ordering ones like randomness and

less ordering such as TABU-like{1}. We can suspect

that including some randomness in an ordering strategy

may help to reduce the convergence speed in some cases

(This is the difference between DFS and DFS-like).

Although, the differences between DFS and DFS-like

are not significant in any case.

As future work we plan to study the impact of these

techniques to the tree as such is used by any high level

application, i.e., when disseminating a message through

the whole network using this tree based topology, rout-

ing, etc. Since the token movement affects the creation

of the tree, therefore we also want to study how these

strategies impact on the robustness of application using

tree-based topology.

REFERENCES

[1] P. Ruiz, B. Dorronsoro, D. Khadraoui, and P. Bouvry, “BODYF–
a parameterless broadcasting protocol over dynamic forest,” in
Workshop on Optimization Issues in Grid and Parallel Computing

Environments, part of the High Performance Computing and

Simulation Conference (HPCS), 2008, pp. 297–303.
[2] A. Jüttner and A. Magi, “Tree based broadcast in ad hoc

networks,” Mobile Networks and Applications, vol. 10, no. 5,
pp. 753 – 762, 2005.

[3] H. Lim and C. Kim, “Multicast tree construction and flooding in
wireless ad hoc networks,” in 3rd ACM International Workshop

on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, 2000, pp. 61–68.
[4] N. Malpani, Y. Chen, and J. L. Welch, “Distributed token

circulation in mobile ad hoc networks,” IEEE Transactions on

Mobile Computing, vol. 4, no. 2, pp. 154–165, 2005.
[5] Y. Pigné, “Modélisation et traitement décentralisé des graphes

dynamiques - application aux réseaux mobiles ad hoc,” Ph.D.
dissertation, L’Université du Harve, December 2008.

[6] A. Casteigts, “Model driven capabilities of the DA-GRS model,”
ICAS ’06: Proceedings of the International Conference on Auto-

nomic and Autonomous Systems, p. 24, 2006.
[7] E. G. Goodaire and M. M. Parmenter, Discrete mathematics with

graph theory, 2nd ed. Printice-Hall, Inc., 2002.
[8] M. Gast, 802.11 Wireless Networks: The Definitive Guide, 2nd ed.

O’REILLY, April 2005.
[9] “IEEE standard 802.11: Wireless lan medium access control and

physical layer specifications,” IEEE Computer Society, August
1999.

[10] A. Piyatumrong, P. Bouvry, F. Guinand, and K. Lavangnananda,
“Trusted spanning tree for delay tolerant MANETs,” in 2008

IEEE/IFIP International Symposium on Trust, Security and Pri-

vacy for Pervasive Applications (TSP-08), vol. 2, December 2008,
pp. 293–299.

[11] F. Glover and M. Laguna, “Tabu search,” in Modern Heuristic

Techniques for Combinatorial Problems, C. Reeves, Ed. Black-
well Scientific Publishing, 1993, pp. 70–150.

[12] N. Bauer, M. Colagrosso, and T. Camp, “An agile approach
to distributed information dissemination in mobile ad hoc net-
works,” in Proceedings of the IEEE International Symposium on

a World of Wireless, Mobile and Multimedia Networks (WoW-

MoM). Washington, DC, USA: IEEE Computer Society, 2005,
pp. 131–141.

[13] I. Stojmenovic, M. Russell, and B. Vukojevic, “Depth first search
and location based localized routing and qos routing in wireless
networks,” in Intl. Conf. on Parallel Processing (ICPP’00), 2000.

[14] L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba,
“Simulating Realistic Mobility Models for Large Heterogeneous
MANETS,” in Demo proceeding of the 9th ACM/IEEE Inter-

national Symposium on Modeling, Analysis and Simulation of

Wireless and Mobile Systems (MSWIM’06). IEEE, October 2006,
pp. 129–141.

