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CNRS, Grenoble, France
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Abstract

We introduce a quasi-geostrophic model of core dynamics, which aims at describ-
ing core processes on geomagnetic secular variation timescales. It extends the for-
malism of Alfvén torsional oscillations by incorporating non-zonal motions. Within
this framework, the magnetohydrodynamics takes place in the equatorial plane; it
involves quadratic magnetic quantities, which are averaged along the direction of ro-
tation of the Earth. In addition, the equatorial flow is projected on the core-mantle
boundary. It interacts with the magnetic field at the core surface, through the radial
component of the magnetic induction equation. That part of the model connects
the dynamics and the observed secular variation, with the radial component of the
magnetic field acting as a passive tracer. We resort to variational data assimilation
to construct formally the relationship between model predictions and observations.
Variational data assimilation seeks to minimize an objective function, by computing
its sensitivity to its control variables. The sensitivity is efficiently calculated after in-
tegration of the adjoint model. We illustrate that framework with twin experiments,
performed first in the case of the kinematic core flow inverse problem, and then in
the case of Alfvén torsional oscillations. In both cases, using the adjoint model allows
us to retrieve core state variables which, while taking part in the dynamics, are not
directly sampled at the core surface. We study the effect of several factors on the
solution (width of the assimilation time window, amount and quality of data), and
we discuss the potential of the model to deal with real geomagnetic observations.

1 Introduction

Current descriptions of core dynamics rely on two sources of information: observations
of the magnetic field, and physical laws governing the evolution of the state of the core.
The Earth’s magnetic field is assumed to have an internal origin through the process of
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geodynamo; it is generated and sustained by fluid motions in the metallic liquid outer core,
and varies on a wide range of time scales reflecting the various time and space scales of
core magnetohydrodynamics.

The quality of observations of the Earth’s magnetic field has much improved since the
set-up of the first network of magnetic observatories by Gauss and co-workers in 1834,
which was followed by the large increase in the number of observatories at the beginning
of the twentieth century. Other turning points have occurred since: the introduction of
the proton precession magnetometer, the development of declination/inclination magne-
tometers (DIflux) widely used in observatories by the 1970’s, and finally the rise of the
Intermagnet network of digital observatories sharing modern measurement practices after
1990 (see, e.g., the review by Turner et al., 2007). The good temporal coverage of obser-
vatory data has now been supplemented by the excellent spatial coverage of satellite data.
Following the launch of three low Earth orbiting satellites -Oersted, CHAMP and SAC-C-
supplying geomagnetic data, a continuous satellite time series extends now to 10 years.

The magnetic field can be downward continued throughout the solid mantle to the fluid
core surface. Field models are built, describing the radial component of the main field and
its time evolution at the core-mantle boundary (CMB) (Hulot et al., 2007; Jackson and
Finlay, 2007). Calculating the geomagnetic secular variation, the first time derivative of
the main field time series, emphasizes rapid changes of the magnetic field, on characteristic
time scales ranging from years to centuries. Inversions of a snapshot of the geomagnetic
secular variation can be performed using the radial induction equation at the CMB, in
order to retrieve the large-scale part of the flow beneath it (Eymin and Hulot, 2005; Holme
and Olsen, 2006; Pais and Jault, 2008; Olsen and Mandea, 2008). The root mean square
(rms) speed of these flows is typically of the order on 15 km/y. Such inversions, however,
face non-uniqueness problems (Backus, 1968). Further assumptions are thus required to
remove the non-uniqueness, and a great part of the work consists in finding constraints
and regularizations to specify the flow (Holme, 2007, section 8.04.2). Alongside these
kinematic inversions, numerical models of the geodynamo have been available for more
than 10 years, since the pioneering work of Glatzmaier and Roberts (1995). The magnetic
field generated by those dynamical models explains features of the Earth’s magnetic field
(dipolar geometry, spatial spectrum); yet their parameters are far from those of the Earth’s
core (Christensen and Wicht, 2007, section 8.08.4). Rau et al. (2000) and Amit et al.
(2007) tried to connect these two approaches (core flow inversion and forward numerical
modelling) when inverting synthetic data from dynamo models. They found their core
flow inversion method and the additional regularization to be adequate for the retrieval of
large-scale flow and magnetic field patterns.

A quality-control of core flow models is the angular momentum they carry (Jault et al.,
1988). Comparison of these estimates with core angular momentum changes inferred from
decadal length-of-day variations is encouraging, yet discrepancies remain. Angular mo-
mentum series are also derived from atmospheric and oceanic flow models, based upon the
data assimilation methodology (Kalnay et al., 1996). Those variations of angular momen-
tum account very well for the observed seasonal and interannual changes in length-of-day
(Chen, 2005; Gross, 2007, section 3.09.4).
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Data assimilation, routinely used in atmospheric science and more recently in oceanog-
raphy, is now in early stages of use in the field of core physics. Applied to the core, this
technique should allow us to interpret the secular variation in terms of dynamics, thereby
enlarging the work done on kinematic core flow inversion. Resorting to a toy model,
Fournier et al. (2007) assimilated synthetic data in a one-dimensional model that retains
characteristic features of the induction and Navier-Stokes equations. They concluded that
a good knowledge of the observed magnetic field can be translated into a good knowledge of
core flow, through the process of data assimilation, which takes explicitly into account the
dynamical relationship that exists between magnetic and velocity fields. This conclusion
was also drawn by Sun et al. (2007), using a much similar toy model and a different im-
plementation of data assimilation (sequential as opposed to variational). In a preliminary
study, Liu et al. (2007) applied an optimal interpolation scheme to a three-dimensional
dynamo model, using a synthetic set of observations. They showed in particular that
assimilation of observations could partially alleviate the negative impact of wrong model
parameter values. Still, the values of the parameters used typically in that class of simu-
lations are far from being Earth-like, due to the numerical cost of their integration. There
is hope, however, that systematic and appropriate exploration of the parameter space of
those models will eventually yield scaling laws of the kind proposed by Christensen and
Aubert (2006), which will ultimately permit a reliable extrapolation between their output
and the observed secular variation. In the context of geomagnetic data assimilation, the
current situation is even worse, though, since one assimilation run requires several tens of
forward realisations.

A solution to this conundrum is to construct a simplified dynamical model, tailored to
the study of the secular variation. In this paper, we introduce a model which relies on quasi-
geostrophic dynamics. As a matter of fact, on rapid time scales as those characterizing
the secular variation, rotational forces prevail on magnetic forces in the bulk of the fluid
(Jault, 2008). The resulting two-dimensional flow interacts with the radial component of
the magnetic field (in that instance, a passive tracer) at the core-mantle boundary. The
quasi-geostrophic assumption has recently been used in the framework of kinematic core
flow inversions (Pais and Jault, 2008; Gillet et al., 2009). It also provides us with the tools
necessary to build a dynamical model of the geomagnetic secular variation.

Being quasi-geostrophic, this model comprises the equations for torsional Alfvén waves,
for which the dynamics is axisymmetric; Alfvén torsional waves are associated with geostrophic
(zonal) motions in the core (Braginsky, 1970). The frequency of these oscillations is pro-
portional to the rms strength of the magnetic field Bs perpendicular to the rotation axis
(s denotes the cylindrical radius). Accordingly, using a database of computed core flows,
Zatman and Bloxham (1997, 1999) and Buffett et al. (2009) have calculated radial profiles
of the quadratic cylindrical radial component of the magnetic field averaged on geostrophic
cylinders, {B2

s}, within the core.
Our quasi-geostrophic model generalizes that axisymmetric approach by adding non-

zonal motion and magnetic field. Theoretical solutions of the model include various families
of diffusionless hydromagnetic waves, some of which were first studied by Hide (1966) in
order to explain the observed secular variation.
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Figure 1. Geometry of the system and notations; a: Side view, b: Equatorial section. Σ is the

equatorial plane and the CMB is the outer sphere, located at r = ro. ri is the radius of the inner

core. Spherical (O, er, eθ, eϕ) and cylindrical (O, es, eϕ, ez) coordinate system bases are defined

at the core surface and in Σ respectively.

The goal of this paper is thus to describe a quasi-geostrophic forward model of the
Earth’s core fast dynamics, and to place it at the heart of a geomagnetic data assimilation
process. In section 2, we derive that quasi-geostrophic model, along with its link to the
observations at the CMB. Variational data assimilation is introduced in section 3 and its
principles are illustrated in section 4 with twin experiments. That section begins with the
study of the classical kinematic inversion of a steady core flow, set within that framework.
A second illustration is dedicated to the retrieval of the magnetic field sheared by Alfvén
torsional waves. Results are summarized and discussed in section 5.

2 Quasi-geostrophic forward model

We shall model the Earth’s outer core as a spherical fluid shell of inner radius ri and
outer radius ro. The fluid has density ρ, and it is electrically conducting. Its magnetic
diffusivity is η. The system is rotating at angular velocity Ω around the z-axis. Figure 1
sketches the geometry and summarizes the notations.

The fluid is characterized by its magnetic field B, its velocity u, and the reduced
pressure Π, that includes pressure and the centrifugal potential. We choose ro as length
scale and B0, a typical magnetic field intensity in the core interior, as the magnetic field
scale. Velocities are scaled with the Alfvén waves speed

VA =
B0√
µ0ρ

, (1)

in which µ0 is the magnetic permeability of free space. The pressure scale is ρV 2
A , and the
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time scale is the Alfvén waves period: TA = ro/VA.
The evolution of the magnetic field in the core is governed by the induction equation,

which has the dimensionless form,

∂tB = ∇× (u×B) + S−1∇2B. (2)

The Lundquist number S characterizes the ratio between the magnetic diffusion time
and the period of Alfvén waves (e.g. Roberts, 1967),

S =
roVA

η
. (3)

For the Earth’s core, S is of the order of 104 to 5× 104 (Jault, 2008). On secular variation
time scales, diffusion becomes negligible compared to induction, hence the large value of
S, which yields the frozen-flux approximation.

Assuming that the mantle is electrically insulating on secular variation time scales, the
magnetic field can be downward continued to the core-mantle boundary. In the case of a
perfectly conducting fluid (the frozen-flux limit), the radial component of the magnetic field
Br is the sole magnetic component continuous across the spherical CMB. At the top of the
core, Br interacts with core motions by means of the radial component of the diffusionless
version of equation (2) at r = ro,

∂tBr = −∇H · (uBr) , (4)

with the horizontal divergence operator ∇H · defined as

∇H · v = (sin θ)−1 ∂θ (sin θvθ) + (sin θ)−1 ∂ϕvϕ, (5)

where (r, θ, ϕ) are the spherical coordinates. It is that equation at the core-mantle bound-
ary that connects our model to the observations. The time-varying Br acts as a passive
tracer (a drifting buoy), because it interacts with the velocity field at the core surface and
does not affect the dynamics that sets up in the interior of the core (see below).

On secular variation time scales rotation forces are much larger than magnetic forces
in the bulk of the fluid. Jault (2008) suggests that rapidly rotating motions of lengthscale
l are axially invariant if the non-dimensional Lehnert number, λl, is small enough. That
number measures the ratio between the period of inertial waves, 1/Ω, and the period of
Alfvén waves, l/VA (Lehnert, 1954):

λl =
B0

Ω(µ0ρ)1/2l
; λro =

1

ΩTA

, (6)

Note that λl is a decreasing function of l. In his calculations, the flow appears to be
invariant in the direction parallel to the rotation axis, provided λl ≪ 1. For the Earth’s
core, with B0 of the order of 2 mT (Christensen et al., 2009) and l ≈ 106 m, λl ≈ 10−4.
Therefore, we shall assume that the flow is geostrophic at leading order. Working in the
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equatorial plane Σ (crosshatched in Figure 1), a cylindrical set of coordinates (s, ϕ, z), with
ez parallel to the axis of rotation, is well-suited to study the resulting columnar patterns.

The main force balance involves the Coriolis force and the pressure gradient

2ez × u0 = −∇Π0, (7)

where the superscript 0 denotes the main order. Taking the curl of equation (7) yields the
Proudman-Taylor theorem, namely the z-invariance of the flow.

Within a spherical container, u0 does not satisfy the non-penetration boundary condi-
tion at the CMB, except if it consists of cylindrical flows organized around the rotation
axis. Thus we have to add the first-order contribution in λro of the Coriolis force, leading
to

Dtu
0 + 2λ−1

ro ez × u1 = −∇Π1 + (∇×B)×B, (8)

where Dt denotes the material derivative Dt = ∂t+(u0 ·∇). At first-order, magnetic forces
are a natural candidate to trigger a departure from geostrophy, since magnetic energy is
large compared to kinetic energy in Earth’s core. Buoyancy forces are another candidate
that we could additionally take into account, which we discard for now for the sake of
simplicity. Viscous forces are neglected, while equation (8) shows that the Coriolis force
is scaled with the inverse of the Lehnert number λro . The non-penetration boundary
condition at the CMB: u1 · er = 0 at z = ±h,yields a linear dependence of u1 with respect
to z

u1
z(s > ri, ϕ, z) = zβu0

s(s, ϕ). (9)

If h =
√

r2o − s2 denotes the half-height of the column located at a given cylindrical radius
s, the slope of the upper surface is dh/ds, and we can define

β(s) = h−1dh/ds. (10)

The notation β has been chosen in reference to the β-plane approximation. This approx-
imation -with uniform β- is ubiquitous in geophysical fluid dynamics (e.g. Vallis, 2006,
section 2.3). It is convenient, indeed, to study planetary Rossby waves assuming that the
Coriolis parameter (f0 = 2Ω cos θ) varies linearly with latitude; β is then the northward
gradient of the Coriolis parameter.

According to our quasi-geostrophic approach, the flow in the outer core is nearly two-
dimensional, which makes it natural to take the vertical average of the Navier-Stokes
equation (8). The vertical average 〈·〉 of a quantity X is defined as

〈X〉 (s, ϕ) = 1

2h(s)

∫ h

−h

X (s, ϕ, z) dz. (11)

In a multiply-connected domain, the ϕ-averaged vorticity equation is not equivalent to
the ϕ-averaged Navier-Stokes equation (Plaut, 2003), as the former does not ensure the
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existence of the pressure field; accordingly, we describe the evolution of the non-zonal flow
uNZ by means of the axial vorticity equation, while the ϕ-averaged momentum equation
directly provides us with the time changes of the zonal velocity uZ = uZ

ϕeϕ. In the re-
mainder of this paper, the superscript capital Z marks zonal quantities. It should not be
confused with small z, which refers to the direction of rotation.

The non-zonal (NZ) velocity field uNZ is written as the curl of a z-independent non-
zonal streamfunction Ψ,

uNZ(s, ϕ) = ∇×Ψ(s, ϕ)ez. (12)

The non-zonal vorticity field ζ is defined by ζ = ∇× uNZ , and its vertical component is

ζz(s, ϕ) = −∇2
EΨ(s, ϕ), (13)

in which the equatorial Laplacian operator is defined by

∇2
E = s−1∂s (s∂s) + s−2∂2

ϕ. (14)

If we now curl the non-zonal part of the z-averaged Navier-Stokes equation (8), we find
that the vertical component of the vorticity equation is then identical to equation (17) of
Pais and Jault (2008), with an explicit right-hand side term,

Dtζz − 2λ−1
ro βs

−1∂ϕΨ =
(

s−1∂s∂ϕ + s−2∂ϕ
) (〈

B2
ϕ

〉

−
〈

B2
s

〉)

+
(

3s−1∂s − s−2∂2
ϕ + ∂2

s

)

〈BsBϕ〉 . (15)

The magnetic surface terms, which appear when taking the z-average of the Lorentz
force, are neglected because we assume the magnetic field at the core surface to be much
smaller than in the bulk of the fluid. The non-penetration boundary condition, at s = ro
and at the tangent cylinder s = ri, imposes Ψ = 0 at both boundaries.

The time evolution of the zonal velocity uZ
ϕ(s) = sωg(s) is governed by

Dtωg =
(

s3h
)

−1
∂s

(

s2h 〈BsBϕ〉
)

. (16)

The two flow equations (15) and (16) contain z-averaged squared magnetic quantities
〈B2

s〉,
〈

B2
ϕ

〉

and 〈BsBϕ〉, whose time evolution is in turn derived from the diffusionless
version of the induction equation (2)

∂t
〈

B2
s

〉

= −
[

u0 · ∇
] 〈

B2
s

〉

+ 2
〈

B2
s

〉

∂su
0
s + 2s−1 〈BsBϕ〉 ∂ϕu0

s, (17)

∂t
〈

B2
ϕ

〉

= −
[

u0 · ∇
] 〈

B2
ϕ

〉

− 2
〈

B2
ϕ

〉

∂su
0
s + 2s 〈BsBϕ〉 ∂s

(

s−1u0
ϕ

)

, (18)

∂t 〈BsBϕ〉 = −
[

u0 · ∇
]

〈BsBϕ〉+ s
〈

B2
s

〉

∂s
(

s−1u0
ϕ

)

+ s−1
〈

B2
ϕ

〉

∂ϕu
0
s, (19)

where we have made use of the solenoidal character of B and u.
The vertical averaging naturally sets the magnetohydrodynamics in the equatorial plane

Σ (Figure 1b). The flow is then projected at the CMB, where it interacts with the radial
magnetic field Br via equation (4) above.

An alternative model, where the velocity field entering the set of equations (17) to (19)
has a z-component given by (9) and a ϕ-component modified in order to ensure that the
total velocity field remains solenoidal, is discussed in appendix A.
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3 Variational data assimilation framework

In this section, we introduce the geomagnetic secular variation data assimilation prob-
lem with the notations suggested by Ide et al. (1997). In comparison with the 4DVar label
commonly used in data assimilation (e.g. Courtier, 1997), our framework is 1+2DVar, since
state variables are defined in two-dimensional spaces to which a third (temporal) dimension
is added - the 3DVar label is traditionally reserved for three-dimensional (in space) static
problems (Courtier, 1997).

The state vector x for the Earth’s core gathers the variables involved in the description
of the system state

x =
[

ωg,Ψ,
〈

B2
s

〉

,
〈

B2
ϕ

〉

, 〈BsBϕ〉 , Br

]T
, (20)

where superscript T means transpose. Observations y are available at Ty different epochs
andNy spatial locations during the assimilation time window [0, T ]; the size of y is typically
smaller than the dimension of x. The observation vector is related to the true core state
xt via the observation operator H:

y = Hxt + ǫ, (21)

in which ǫ is the observation error.
Variational data assimilation aims at adjusting a model solution xf to the observations

(Talagrand, 1997), by minimizing a misfit function which comprises the quadratic dis-
crepancy -if H is linear and errors are Gaussian- between the true observations and those
predicted by the computed state, JH (Courtier, 1997):

JH =

Ty
∑

j=1

[

Hjx
f
j − yj

]T

R−1
j

[

Hjx
f
j − yj

]

, (22)

where j is the discrete time index and R = E
(

ǫǫT
)

is the observation error covariance
matrix, E(·) denoting statistical expectation. The matrixR describes the level of confidence
we set in the observations.

It might be necessary to constrain the solution sought in order to enforce its uniqueness,
especially if the problem is non-linear. Constraining the assimilation refers to either adding
a background state xb from which the estimate shall not strongly deviate, or applying
additional constraints on the core state. Imposing a penalty, the goal of which is to favor a
solution with a moderate level of complexity (e.g. Courtier and Talagrand, 1987), described
by a matrix C applied to the state vector, consists in adding a second term to the objective
function, of the form

JC =

T
∑

j=0

xT
j Wjxj, (23)
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where W = CTC. The total misfit function J to minimize is then given by the sum

J =
αH

2
JH +

αC

2
JC , (24)

in which the two contributions are weighted by two scalars, αH and αC (Fournier et al.,
2007).

In practice, xf is the solution of a numerical non-linear model M, that describes the
temporal evolution of x at any discrete time tj ∈ [0, T ],

x
f
j+1 = Mjx

f
j ; (25)

that notation symbolically summarizes the set of equations developed in section 2. Since
the temporal history of the state is constructed with a dynamical model that couples its
various components, we can, in principle, retrieve information about every state variable,
even if only part of the state vector is directly probed by the observations on hand (Fournier
et al., 2007). Moreover, the initial condition x0, termed the control vector, uniquely de-
fines the model trajectory in state space. That reduces the dimension of the associated
inverse problem: we only seek the initial condition, x0, starting from which the temporal
evolution xa will best fit the observations; in assimilation parlance, this best solution is
called the analysis. The minimization of J (that is the search for xa) is performed with
a descent algorithm that involves the sensitivity of J to its control variables, x0: ∇x0

J .
Its transpose is efficiently estimated with the use of the adjoint model MT (Le Dimet and
Talagrand, 1986). For a given x0, one couples a forward integration of M with a backward
integration of MT to express the gradient of J . The adjoint model is that of the local
tangent linear equations (see e.g. Talagrand and Courtier, 1987; Giering and Kaminski,
1998). Introducing the adjoint variable a of x, the adjoint equation imposed by the cost
function (equation (24)) is (Fournier et al., 2007)

aj−1 = MT
j−1aj + αHH

T
j−1R

−1
j−1 (Hj−1xj−1 − yj−1 ) + αCWj−1xj−1 , (26)

where HT is the transpose of the observation operator (equation (21)), which projects a
vector from observation space to state space. Through equation (26), the adjoint field is
fed by observation residuals (the difference Hx − y), as soon as there is an observation
available.

The backward integration requires the knowledge of the model trajectory over the
assimilation time window. The storage of the complete trajectory may cause memory
issues, which are traditionally resolved using a checkpointing strategy. The state of the
system is stored at a limited number of discrete times, termed checkpoints. Over the
course of the backward integration of the adjoint model, these checkpoints are used to
recompute local portions of the trajectory on-the-fly, whenever those portions are needed
(e.g. Hersbach, 1998).

Non-linear optimization is performed with the M1QN3 routine (Gilbert and Lemaréchal,
1989), which implements a limited memory quasi-Newton algorithm that approximates the
inverse Hessian (second derivative) of J .
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4 Applications

We show two illustrations of variational data assimilation applied to fast core dynamics,
as described by our quasi-geostrophic model, with synthetic data. The methodology of twin
experiments is explained and applied to a steady non-zonal flow problem and, in a second
step, to a dynamical zonal model of torsional Alfvén waves. These two problems correspond
to two subsets of the model presented in section 2.

4.1 Twin experiments

Instead of being satellite or observatory data, observations in our twin experiments are
created from a synthetic true state, which is the result of the integration of the forward
model for a given set of initial conditions, xt

0. Synthetic data have the advantage of
representing only the physics involved in the model and are, in a first step, appropriate
to test the implementation of the variational data assimilation algorithm. A database of
observations is produced with equation (21).

To construct the observation catalog, we include some geophysical realism by averag-
ing the state at the core-mantle boundary. We choose the averaging window so that it
corresponds to the ignorance of the spherical harmonic coefficients of degree n > L. Then,
the product Hxt corresponds to the convolution over the core-mantle boundary of the true
state with a Jacobi polynomial of degree L (Backus et al., 1996, paragraph 4.4.4):

(Hxt)(θo, ϕo) =
L+ 1

4π

∫ π

θ=0

∫ 2π

ϕ=0

xt(θ, ϕ)P
(1,0)
L (cosα) sin θdθdϕ, (27)

in which (θo, ϕo) are the coordinates of the observation locations, α is the angular distance

between the points (θo, ϕo) and (θ, ϕ), and P
(1,0)
L is a Jacobi polynomial (Abramowitz and

Stegun, 1964, p. 773). In the following experiments, we set L = 15 and observations are
made at a fixed temporal frequency.

Next, we start the assimilation with a different set of initial conditions, called initial

guess, xg
0. After a forward integration, the computed observable, HḂr

f
in section 4.2 and

HBf
r in section 4.3, is compared (over the entire time window) with the observations,

and the discrepancy between the two gives the initial misfit (see equation (24)). After
assimilation, the decrease of the misfit and the relative difference between xt and xa, in
the l2-sense, are used to assess the quality of the recovered state.

4.2 The kinematic core flow problem

In this section, a connection is made between core flow kinematic inversions and data
assimilation. The steady flow hypothesis has been previously used by Voorhies and Backus
(1985) and Waddington et al. (1995) to break the non-uniqueness of the kinematic inversion
problem. Here, we study the effect of a steady non-zonal and equatorially symmetric flow
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on the evolution of the radial magnetic field, and more particularly its secular variation
Ḃr,

Ḃr = −∇H ·
(

uNZBr

)

. (28)

Symmetry with respect to the equator ensures uniqueness of the solution when Br and Ḃr

are perfectly known. The time scale characterizing this problem is the advection time, tadv.
The non-zonal velocity effectively enters equation (28) via the non-zonal streamfunction
Ψ(s, ϕ) (see equation (12)), projected at the core-mantle boundary. The state vector x

includes a parameter, the streamfunction Ψ, and a variable, the radial magnetic field
Br. Here, Ψ is called a parameter because it is steady in that experiment. We seek
the distribution of Ψ(s, ϕ) which best explains the observed synthetic database of secular
variation Ḃo

r at the top of the core.
The tangent linear form of (28) is

δḂr = P (δΨ, Br) + Q (Ψ, δBr) , (29)

∂tδBr = δḂr, (30)

where δΨ, δBr and δḂr are the differentials of Ψ, Br and Ḃr, respectively, and P and Q

the differentials of the right-hand side term of equation (28) with respect to Ψ and Br,

respectively (they are developed in appendix C). Let us introduce ΨT , BT
r and Ḃr

T
as the

adjoint variables of Ψ, Br and Ḃr. The adjoint model of equations (29) and (30) is then

ΨT =

T
∑

j=0

PT
(

Ḃrj

T
, Brj

)

, (31)

BT
r = QT

(

Ḃr
T
,Ψ

)

, (32)

in which PT ,QT are the adjoint functions of P and Q (see detailed equations in appendix C).
The link to the observations has been obtained from equation (24), and is computed at
each time step as in equation (26):

Ḃr
T

= αH

(

HT HḂr − HT Ḃo
r

)

. (33)

The trajectory of the true state is computed from the following set of initial conditions:

1. Bt
r(θ, ϕ, t = 0) is obtained from the CHAOS main field model (Olsen et al., 2006)

for epoch 2002, truncated at spherical harmonic degree and order 12. It is taken
outside the tangent cylinder and multiplied by a sine function of θ in order to have
Bt

r(θ, ϕ, t=0) = 0 at the tangent cylinder (see Figure 2),

2. Ψt(s, ϕ) is shown in Figure 3a, it is the non-zonal part of an inverted flow from Pais
et al. (2004) truncated at degree and order 4, and multiplied by cos2 θ = (1 − s2)
and a function of s, (s − ri), in order to satisfy the flow boundary conditions at
s = ri, ro. It is normalized in order to have a dimensionless rms velocity of order 1;
the scaling Vadv is such that

∫ 2π

0

∫ π−θc
θc

(u2
s + u2

ϕ) sin θdθdϕ = V 2
adv

∫ 2π

0

∫ π−θc
θc

sin θdθdϕ,
with θc = asin(ri/ro).
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Figure 2. Map of the main field at epoch 2002 truncated at spherical harmonic degree and order

12 modified from the CHAOS model (Olsen et al., 2006). True radial component of the magnetic

field Bt
r at initial time for the twin experiments. Contours are drawn each 0.5Brms

r (solid (resp.

dashed) for positive (resp. negative) values). Note that the problem is linear in Br.

We consider perfect observations, setting ǫ = 0 in equation (21). For the following
simulations, the numerical time step is 6 × 10−5 tadv for integration times ranging from
0.03 tadv to 0.57 tadv. Other numerical parameters relative to the simulations are given in
appendix B.

In this problem of seeking a steady streamfunction that explains the observations, we
want to show the benefit of including the temporal dimension (data assimilation) instead
of relying on a single observation epoch, as it is the case for a standard kinematic inversion.

We first consider solutions obtained with only one observation epoch and less obser-
vation locations (NO

θ = 50, NO
φ = 11) than grid points (Nθ = 200, Nφ = 15). We start

the assimilation with a first guess Ψg corresponding to the minimal hypothesis: Ψg = 0.
The solution we obtain gives us some information about what could be achieved within
the kinematic framework in that configuration. Figure 3b shows in particular that the true
state (Figure 3a) is not completely recovered, due to the truncation used in the construc-
tion of H and the limited number of observation locations, compared to the total number
of grid points.

Using this solution obtained from a single epoch inversion as a reference solution, we
can study the benefit we get resorting to a timeseries of observations, as opposed to a single
snapshot. In other words, we investigate whether the issue of spatial subsampling can be
partially fixed by considering the temporal dimension. To that end, we do experiments
with assimilation time windows ranging from 0.03 tadv to 0.57 tadv, at a given temporal
frequency of observation fy = 100 t−1

adv, keeping the same number of virtual magnetometers.
Results of a typical experiment are shown in Figure 3c, for which T = 0.57 tadv. The

large scale pattern is retrieved, but the solution is polluted by small spatial scales (no extra
smoothing term is added to the misfit function). We find, however, that the consideration

12
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Figure 3. Maps in the equatorial plane Σ of the steady streamfunction Ψ: a: true state, b:

analyzed state with a single epoch inversion, c: analyzed state with T = 0.57 tadv. Contours

are drawn each 0.05 (solid (resp. dashed) for positive (resp. negative) values). Extrema are

−0.33; 0.54 (a), −0.49; 0.54 (b) and −0.43; 0.56 (c).

of the temporal dimension improves the solution. Moreover, the distance between the true
streamfunction and the retrieved streamfunction becomes smaller when the assimilation
time window is widened (see Figure 4).

As described by Evensen (2007, chapter 6), if one enlarges the width of the assimilation
time window in a non-linear context, the misfit function presents more and more spikes
and minima. A very good first guess is thus needed to converge to the global minimum.
To circumvent this issue, we decided to use the results obtained over short assimilation
time windows as initial guesses for assimilation over longer time windows. That strategy
is analogous to the approach used in the atmospheric variational assimilation community,
which consists in solving a series of strong constraint inverse problems, defined for separate
subintervals in time (e.g. Evensen, 2007).

4.3 Forward and adjoint modeling of Alfvén torsional waves

In non-rotating magnetized flows, classical Alfvén waves result from the balance be-
tween inertial and magnetic forces.

In the Earth’s core, where the Coriolis force is large, Braginsky (1970) showed that a
special class of Alfvén waves comes into play, in which only the component of the magnetic
field normal to the axis of rotation, Bs, participates. Associated motions are geostrophic;
they are organized in axial cylinders about the axis of rotation, hence the name torsional
oscillations. The period of torsional waves depends on the strength and distribution of Bs

inside the core.
In order to study these waves, one can consider a subset of the complete dynamical

model. Since torsional waves are geostrophic and axisymmetric motions, let us discard the
non-zonal part of the flow and magnetic induction in equations (15) to (19).

In addition to the vertical average, 〈·〉, introduced in equation (11), we now define the

13
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the single epoch inversion.

average on a geostrophic cylinder, {·}, by

{X} (s) = 1

2π

∫ 2π

0

〈X〉 (s, ϕ) dϕ. (34)

In the following, we will not indicate explicitly the dependence on s of quantities averaged
on a geostrophic cylinder. Application of {·} to equation (16) yields

∂tωg =
(

s3h
)

−1
∂s

(

s2h {BsBϕ}
)

. (35)

Similarly, the equations governing the evolution of magnetic quantities become

∂t
{

B2
s

}

= 0, (36)

∂t {BsBϕ} = s
{

B2
s

}

∂sωg. (37)

Written in terms of the geostrophic angular velocity ωg, the torsional wave equation is

∂2
t ωg =

(

s3h
)

−1
∂s

(

s3h
{

B2
s

}

∂sωg

)

. (38)

Equation (38) can be transformed into a set of two first-order equations

∂tωg =
(

s3h
)

−1
∂sτ, (39)

∂tτ = s3h
{

B2
s

}

∂sωg, (40)

in which τ = s2h {BsBϕ} is an auxiliary variable.
We have taken as boundary condition for the angular velocity:

∂sωg = 0, at s = ro. (41)
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Then, the boundary condition,

∂sωg = 0, at s = ri, (42)

ensures the conservation of the total angular momentum carried by the fluid in the com-
putational domain.

Projected at the CMB, those motions interact with Br through equation (4), which
simplifies here into

∂tBr = −ωg∂ϕBr. (43)

The system state gathers the geostrophic angular velocity ωg, the variable τ , the cylindrical
average of the s-component of the magnetic field, {B2

s}, and the radial component of the
magnetic field Br at the CMB.

We define ωT
g , τ

T , {B2
s}

T
, BT

r as the adjoint variables of ωg, τ, {B2
s} , Br respectively.

The torsional oscillations adjoint model is

− ∂tω
T
g = ∂T

s

[

s3h
{

B2
s

}

τT
]

−BT
r ∂ϕBr, (44)

−∂tτ
T = ∂T

s

[

(

s3h
)

−1
ωT
g

]

, (45)

{

B2
s

}T
(s) =

T
∑

j=0

s3h (∂sωg)j τ
T
j + αCW

{

B2
s

}

, (46)

−∂tB
T
r = −∂T

ϕ

[

ωgB
T
r

]

, (47)

where ∂T
s and ∂T

ϕ are the adjoints of the differential operators ∂s and ∂ϕ (see appendix D
for more details on the adjoint system). The link to the constraint on {B2

s} has been
obtained from equation (24). The model is completed by the information supplied by
the observations, as in equation (33). The boundary conditions for the adjoint model are
τT = 0, at both s = ri and s = ro. The temporal and spatial discretizations of this problem
are described in appendix B.

For the experiments that follow, the set of initial profiles, which define the true state,
is:

1. the same Bt
r(θ, ϕ, t = 0) as in the kinematic core flow problem of section 4.2,

2. a Gaussian function for the angular velocities: ωt
g(s, 0) = ω0 exp [−σ−2

ω (s− sω)
2],

with σ−2
ω = 150 and sω = 0.65; it satisfies the boundary conditions (41) and (42), its

amplitude being scaled by ω0 (discussed hereafter),

3. τ t(s, 0) = 0,

4. an arbitrary function {B2
s}

t
(see the black curve in Figure 6, right) given by:

{B2
s}

t
(s) = c1 + c2 sin (π/2− L) + c3 exp

[

−σ−2
B (s− sB)

2], with c1 = 0.1, c2 = 0.02,
c3 = 1, σ−2

B = 20, sB = 0.8 and L = 14s. It is normalized in order to have a
dimensionless rms magnetic field of unity inside the core; the scaling B0 is such that
∫ 2π

0

∫ ro
ri

B2
sdsdϕ = B2

0

∫ 2π

0

∫ ro
ri

dsdϕ.
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Figure 5. Torsional wave twin experiments results: successive profiles of the angular velocity

ωg, showing the propagation of a torsional wave in the computational domain s ∈ [0.35, 1] during

1.16 Alfvén time TA. Initial condition (black curve) for ωg, and snapshots, at 0.12 (green), 0.18

(blue) and 1.16 TA (orange).

As the velocity has been scaled by the Alfvén velocity, ω0 is the ratio between the
Alfvén time and the advection time, ω0 = TA/tadv.

Assimilation is performed on both ωg and {B2
s}. We seek the steady profile of {B2

s} and
the initial profile of ωg which best explain the synthetic database of Bo

r . Our first guess
consists of flat profiles: ωg

g(s, 0) = 0.1ω0 and {B2
s}

g
= 0.6 (see the red curves in Figure 6).

We show here experiments with a fixed frequency of observations fy = 20 T−1
A and as

many observations locations as grid points. The observations are blurred by the averaging
kernel (equation (27)), which causes errors. Consequently, the analysis can develop small
scales, which are not very well constrained by the observations. We choose to reduce
the complexity of the solution by adding a smoothing term to the cost function, taking
αC = 10−8 in equation (24). Here we penalize only the strong spatial gradients of {B2

s}.
The reference case (with ω0 = 0.34 and T = 1.16 TA, see Figures 6 and 7) shows that both
the angular velocity and interior magnetic field are well recovered. As shown in Figure 7,
the error field is substantially weaker after assimilation.

On a technical note, the M1QN3 algorithm (Gilbert and Lemaréchal, 1989), used in
the optimization loop, stops in that case when the initial misfit is divided by a factor of
4× 105, which is reached in 214 iterations.

In order to assess the effect of the width of the assimilation window on the retrieved
state variables, we vary the assimilation time T between 0.12 and 1.16 TA, keeping ω0

constant, equal to 0.34 as above. The geostrophic angular velocity is in all cases completely
recovered (not shown) with similar spurious oscillations as in Figure 6 (left) near the outer
boundary. On the other hand, the area over which {B2

s} is correctly retrieved increases
with T , indicating that the assimilated area is controlled by the distance over which the
initial pulse has propagated (Figure 8, left). Figure 5 shows that, if T = 1.16 TA, the
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Figure 6. Torsional wave twin experiments results: true state (black), profile before assimilation

(red) and solution after assimilation (dashed-orange) for ωg (left) and
{

B2
s

}

(s) (right). The

parameters for that reference case are ω0 = 0.34 and T = 1.16 TA. Regularization has been

added to the spatial derivative of
{

B2
s

}

, of amplitude αC = 10−8 (See text for details).
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Figure 7. Relative difference between observed and computed HBr at final time,
[

Bo
r (T )− HBf

r (T )
]

/ ‖Bo
r (T )‖2 before assimilation (a) and after assimilation (b) for the refer-

ence case (same parameters as in Figure 6). Contours are drawn each 0.1 (a) and 10−1 (b)

(solid (resp. dashed) for positive (resp. negative) values). Extrema are −0.94; 0.86 (a) and

[−6.4; 7.2]×10−4 (b).
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Figure 8. Effect on the analysis of the assimilation time window of width T (left) and of the

amplitude of the initial pulse ω0 (right). Left: true state (black), profile before assimilation (red)

and solution after assimilation (dashed-green, dashed-double-dotted-blue, dashed-dotted-orange)

for
{

B2
s

}

(s), for different values of T (0.12, 0.18 and 1.16 TA respectively) for a fixed ω0 = 0.34.

Right: true state (black), profile before assimilation (red) and solution after assimilation (violet)

for
{

B2
s

}

(s). Dotted, dashed and dashed-dotted violet curves are obtained for different values of

the amplitude of the initial pulse ω0 (0.014, 0.14 and 1.4 respectively), keeping T fixed, equal to

0.18 TA.

wave has enough time to explore the whole domain. On the contrary, if T = 0.12 or
0.18 TA, a lesser portion of the domain is sampled by the wave, over which {B2

s} has
been effectively retrieved. The angular velocity is better recovered than {B2

s} because
it is directly connected to the observations, as opposed to {B2

s}. That can be seen in
the adjoint equations: ωT

g (equation (44)) depends on BT
r that contains Bo

r , the observed

quantity, whereas {B2
s}

T
(equation (46)) is only directly connected to τT . In turn, τT sees

ωT
g , which is ultimately linked to the observations.
For a fixed T , the dependence on the amplitude ω0 has been studied (Figure 8, right).

For ω0 = 0.014, ωg and {B2
s} are not well recovered. Starting from ω0 = 0.14, however,

increasing ω0 by more than one order of magnitude has little effect on the retrieval of {B2
s}

and no effect at all on ωa
g .

Let us stress that the convergence of the calculations presented here is also sensitive to
the profile of the initial condition (for both true state and first guess), and to the amount
of measurements, as in the steady case of section 4.2. Moreover, we have observed in other
instances (not shown) that convergence is sped up if the acceleration τ is not zero at initial
time. More generally, that particular example shows that the success of assimilation is
controlled by the intrinsic dynamics of the system under study, as well as a good guess of
its state.

Until now, we have assumed perfect observations: ǫ = 0 in equation (21). In the
prospect of future applications, observation error should be considered. In the next ex-
periments, observations contaminated by errors are assimilated. Centered, normally dis-
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Figure 9. Torsional wave twin experiments results obtained with noisy data: True profiles

(black), profile before assimilation (red) and solution after assimilation (orange, green) for ωg (left)

and
{

B2
s

}

(right). Dashed-orange curves have been computed with perfect observations, dashed-

dotted-green curves considering centered, normally distributed Gaussian observation errors of

standard deviation 10−1Brms
r added to the database. Regularization has been added on the spatial

derivative of
{

B2
s

}

, of amplitude αC = 10−8. The assimilation window width is T = 1.16 TA,

and ω0 = 0.34.

tributed Gaussian observation errors of standard deviation 10−1Brms
r are added to the

previous database. That experiment is carried out with an assimilation window width of
1.16 TA. Even with a database contaminated by observation errors, it is still possible to
recover the shape and strength of the true state (see Figure 9). {B2

s} seems less sensitive
to observation errors than ωg: we still have an extra penalty term in the misfit function as
in the perfect observations case, but the overall effect of small scales is actually to degrade
the solution for both fields.

For completeness, we have also decreased the temporal frequency of observation and
observed that the recovering of the true state was possible provided that the frequency of
observation, fy, was greater than 3 T−1

A .

5 Discussion

We have derived a quasi-geostrophic model of core dynamics, which aims at describing
core processes on geomagnetic secular variation timescales. Under the quasi-geostrophic
assumption, the magnetohydrodynamics takes place in the equatorial plane and is written
outside the tangent cylinder. The flow is defined by its zonal velocity and non-zonal
axial vorticity. The magnetic induction appears through z-averaged quadratic magnetic
quantities, while we assume that the magnitude of the magnetic field at the core surface is
smaller than in the core interior. In addition, the equatorial flow is projected on the core-
mantle boundary. It interacts with the magnetic field at the core surface, through the radial
component of the magnetic induction equation, in the frozen-flux approximation. That part
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of the model connects the dynamics and the observed secular variation, with the radial
component of the magnetic field acting as a passive tracer. We have resorted to variational
data assimilation to construct formally the relationship between model predictions and
observations. The use of an imperfect observation operator mimics our truncated vision
of the reality. We have extensively tested the variational data assimilation algorithm
with twin experiments owing to the non-prohibitive numerical costs of the computations.
Assimilation was controlled by the initial state and possibly some static model parameters.

Let us stress some important results from our numerical simulations. In our time-
dependent framework, we have found that increasing the time window width T always
improves the solution. In the steady core flow experiment case, that property has proven
useful in constraining intermediate flow length scales otherwise unconstrained by a sparse
distribution of observations. Here, the benefit originates from the dynamical relationship
which exists between successive observations through the radial component of the magnetic
induction equation. In the torsional oscillation case (an illustration of the dynamical model
presented in this study), the same property allowed us to retrieve the z-averaged quadratic
product of Bs (which is only remotely linked to the observed quantity) over the entire
domain provided that T was large enough for the wave to propagate over (and effectively
sample) the whole domain. Interestingly, it has not been necessary to include a dissipation
term in the forward model. We have investigated the sensitivity of the solution to the
frequency of observation in the presence of observation errors. Adding an extra smoothing
term to the cost function proved an efficient way to produce analyses with a moderate level
of complexity.

From the geophysical point of view, with a typical estimate of the magnetic field
strength in the core interior, 2 mT, one Alfvén time, TA, amounts to 6 years. We have
varied the frequency of observation from 2.5 to 20 T−1

A , 3 T−1
A appearing as a minimum to

recover the fields, which represents a two-year interval between observations. Therefore,
we expect that we may be able to resolve properly torsional waves using the last 10 years
of satellite measurements, since the most recent magnetic field models have a resolution of
a fraction of year (Olsen and Mandea, 2008).

Pais and Jault (2008) and Gillet et al. (2009) have recently used magnetic field models
obtained from satellite data in kinematic inversions of quasi-geostrophic core flows. Their
calculated core flows are dominated by a giant retrograde gyre. Gillet et al. (2009) suspect
that the weaker momentum of the gyre for the period 1960-1980, compared to the period
1990-2008, is an artifact produced by the lesser data quality before 1980. Resorting to a
toy model, Fournier et al. (2007) have demonstrated that the benefit due to the existence of
a denser network at the end of an assimilation window, is manifest over a substantial part
of the window, thanks to the variational data assimilation approach. In other words, the
recent high quality of observatory and satellite measurements can be in principle backward
propagated in order to reassimilate historical data series. It is then possible to imagine
that the refined series could contribute to a more precise description of both small and
large scales of the fluid circulation in the core.

The interplay between magnetic and rotation forces in a two-dimensional model has
been investigated in other contexts. Tobias et al. (2007) have recently studied a local two-
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dimensional β-plane numerical model to show the impact of a weak large-scale magnetic
field on the dynamics of the solar tachocline. Instead of using quadratic products of the
magnetic field as variables, they have written the magnetic field as a function of a unique
scalar potential A:

B(s, ϕ) = ∇× [A(s, ϕ)ez] . (48)

Then, the magnetic term in the vorticity equation becomes [∇× (Aez)] · ∇ [∇2
EA] (com-

pare with the right-hand side term of equation (15)), and the induction equation is

∂tA = −u ·∇A+ S−1∇2
EA. (49)

The ansatz (48) is restrictive, as axial invariance of the magnetic field is assumed. It enables
the inclusion of magnetic diffusion, the effect of which cannot be rigorously introduced in
the set of equations (17) to (19). The model given by equations (48) and (49) is also
attractive, since it is still able to describe a variety of physical situations. As an example,
Diamond et al. (2005) mention the transition from two-dimensional magnetohydrodynamic
turbulence at small length scales, to turbulence controlled by Rossby wave interactions
at larger length scales. Solutions of (48) and (49) (without the diffusion term) are also
solutions permitted by our equations (15) to (19). Investigating that simplified set of
equations thus appears as an appealing intermediate step before the actual implementation
of the less restrictive equations based upon quadratic magnetic quantities.
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A A first-order variant of the induction equation

To write equations (17) to (19), we have retained only the zeroth-order part of the
flow. We may wish to take into account, in these equations, the z-component of the flow
that enters in the Coriolis term in equation (15) and in the induction equation at the
core-mantle boundary (equation (4)).
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Thus, in order to ensure incompressibility, we define

uNZ
E (s, ϕ) = γ(s) [∇×Ψ(s, ϕ)ez] ; (50)

the continuity equation for uNZ
E + u1

zez yields γ(s) = h−1(s).
The non-zonal vorticity field ζ is then defined by ζ = ∇ × uNZ

E , and its vertical
component is

ζz(s, ϕ) = −∇2
E

[

h−1(s)Ψ(s, ϕ)
]

. (51)

Finally, the set of equations (17) to (19) becomes

∂t
〈

B2
s

〉

= − [u · ∇]
〈

B2
s

〉

− 2s−1
〈

B2
s

〉

us − 2s−1
〈

B2
s

〉

∂ϕuϕ + 2s−1 〈BsBϕ〉 ∂ϕus,(52)

∂t
〈

B2
ϕ

〉

= − [u · ∇]
〈

B2
ϕ

〉

− 2
〈

B2
ϕ

〉

∂sus + 2s 〈BsBϕ〉 ∂s
(

s−1uϕ

)

, (53)

∂t 〈BsBϕ〉 = − [u · ∇] 〈BsBϕ〉+ s
〈

B2
s

〉

∂s
(

s−1uϕ

)

+ s−1
〈

B2
ϕ

〉

∂ϕus

− [∇E · u] 〈BsBϕ〉 . (54)

B Numerical model

Fields are discretized in radius on a (possibly irregular) staggered grid (see Figure 10),
s = is∆s(s); is ∈ [0, Ns]; ωg(is + 1/2, j) and τ(is, j). Ψ, {B2

s} and τ are calculated on the
same spatial grid (note that {B2

s} is not defined on the endpoints). The latitudinal part
of Br is discretized on a meridian and every grid point is mapped on the CMB from the
grid point on Σ, except at the equator (see Figure 10); thus θ = iθ∆θ(θ); iθ ∈ [0, 2Ns − 1].

The azimuthal part of non-zonal fields, Ψ and Br is expanded in Fourier series:

Ψ(s, ϕ, t) =
mmax
∑

m=0

[am(s, t) cos (mϕ) + bm(s, t) sin (mϕ)] , (55)

Br(θ, ϕ, t) =

mmax
∑

m=0

[cm(θ, t) cos (mϕ) + dm(θ, t) sin (mϕ)] , (56)

in which the number of azimuthal Fourier mode, mmax, is related to the number of equidis-
tant grid points in longitude, Nϕ: mmax = (Nϕ − 1) /2.

The time step being ∆t, time is discretized using finite differences t = j∆t; j ∈ [0, Nt].
Spatial derivatives are computed with a finite difference scheme, except for the longi-

tudinal derivatives for which we use the Fast Fourier Transform in order to compute them
in spectral space.

For the simulations, the cylindrical radius is discretized in Ns = 100 grid points (in-
cluding the boundaries), the CMB in Nθ = 200 grid points in latitude and Nϕ = 33 (unless
otherwise specified) grid points in longitude.
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{B2

s
} , τ

ωg

Br

Figure 10. Sketch of a regular staggered radial grid in the equatorial plane, and its projection

on the CMB.

C Steady non-zonal flow model

We define the streamfunction at the top of the core, Ψo, as Ψo = Mθ
sΨ, where subscript

o refers to the outer boundary. Let Mθ
s be the operator which projects a vector from the

equatorial plane to the top of the core, and let Ms
θ be its transpose. The forward model is

the radial component of the induction equation at the top of the core,

Ḃr = −∇H ·
(

uNZBr

)

, (57)

= (sin θ cos θ)−1 [∂θΨo∂ϕBr − ∂ϕΨo∂θBr] + (cos θ)−2Ψo∂ϕBr. (58)

The tangent linear equation is

δḂr = (sin θ cos θ)−1 [∂θΨo∂ϕδBr − ∂ϕΨo∂θδBr] + (cos θ)−2Ψo∂ϕδBr (59)

+ (sin θ cos θ)−1 [∂θδΨo∂ϕBr − ∂ϕδΨo∂θBr] + (cos θ)−2 δΨo∂ϕBr,

∂tδBr = δḂr. (60)

We introduce the adjoint variables ΨT , BT
r and Ḃr

T
for Ψ, Br and Ḃr respectively. The

adjoint model is

ΨT = Ms
θ

T
∑

j=0

{

∂T
θ

[

(sin θ cos θ)−1 ∂ϕBrjḂrj

T
]

− ∂T
ϕ

[

(sin θ cos θ)−1 ∂θBrj Ḃrj

T
]

(61)

+ (cos θ)−2 ∂ϕBrj Ḃrj

T
}

cos2 θ,

BT
r = ∂T

ϕ

[

(sin θ cos θ)−1 ∂θΨoḂr
T
]

− ∂T
θ

[

(sin θ cos θ)−1 ∂ϕΨoḂr
T
]

(62)

+∂T
ϕ

[

(cos θ)−2ΨoḂr
T
]

,

Ḃr
T

= −∂tB
T
r ,
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where ∂T
ϕ and ∂T

θ are the adjoints of ∂ϕ and ∂T
θ , and −∂t indicates that the integration is

performed backward in time.

D Alfvén waves model

The forward equations are:

∂tωg =
[

s3h
]

−1
∂sτ, (63)

∂tτ = s3h
{

B2
s

}

∂sωg, (64)

∂tBr = −Mθ
sM

total

zonal
ωg∂ϕBr, (65)

where Mtotal

zonal
transforms a one-dimensional zonal vector into a two-dimensional one, by

duplicating it in each meridional plane. Let Mzonal

total
be its transpose. The forward model is

completed by the boundary conditions (41) and (42).

We define the adjoint variables ωT
g , τ

T , {B2
s}

T
, BT

r for ωg, τ, {B2
s} , Br respectively. The

adjoint model is

∂tω
T
g = ∂T

s

[

s3h
{

B2
s

}

τT
]

−M
zonal

total
M

s
θ

[

∂ϕBrB
T
r

]

, (66)

∂tτ
T = ∂T

s

[

(

s3h
)

−1
ωT
g

]

, (67)

F T (s) =
∑

j

s3hτTj
{

B2
s

}

(∂sωg)j + αCW
{

B2
s

}

, (68)

∂tB
T
r = −∂T

ϕ

[

Mθ
sM

total

zonal
ωgB

T
r

]

, (69)

where ∂T
s is the adjoint of the operator ∂s and the term in αC corresponds to the extra

penalty term in the misfit function (see also equation 23); W = ∂T
s ∂s in the experiments.

In order to enforce its positivity during the optimization phase, {B2
s} is rather written

{B2
s} = exp [F (s)], with F ∈ R and F T computed as indicated in equation (68).
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