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Abstract. Rockfall protection embankments are ground lev-
ees designed to stop falling boulders. This paper investi-
gates the behaviour of geocells to be used as components of
these structures. Geocells, or cellular confinement systems,
are composite structures associating a manufactured enve-
lope with a granular geomaterial. Single cubic geocells were
subjected to the impact resulting from dropping a spherical
boulder. The geocells were filled with fine or coarse mate-
rials and different boundary conditions were applied on the
lateral faces. The response is analysed in terms of the impact
force and the force transmitted by the geocell to its rigid base.
The influence on the geocell response of both the fill material
and the cell boundary conditions is analysed. The aim was to
identify the conditions resulting in greatest reduction of the
transmitted force and also to provide data for the validation
of a specific numerical model.

1 Introduction

Rockfalls are a major threat in mountainous regions for
roads, railways, buildings and inhabitants. Even low-energy
events, which are very frequent, can have tragic conse-
quences. Infrastructures at risk can be protected against
falling boulders with civil engineering structures placed
down the slope to stop or deviate the boulder: shelters, metal-
lic net fences or embankments. The choice between these
different passive interventions is mainly based on the site to-
pography and the energy of the falling boulder. For exam-
ple, embankments are effective when boulders have a trans-
lational kinetic energy higher than 5MJ (Descoeudres, 1997),
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whereas galleries are appropriate for road protection at the
toe of vertical cliffs.

Embankments are ground structures most often reinforced
with horizontal inclusions such as geotextiles or geogrids.
Reinforcement inclusions are used to steepen the embank-
ment slope exposed to impacts so as to prevent boulders from
get over the structure. Their efficiency in stopping falling
boulders mainly depends on their mass. These structures are
massive, with height varying from 3 up to 20 m. and length
up to more than a few hundred meters. As a consequence,
setting up such structures requires large areas, a problem on
mountainous sites.

The design of rockfall protection embankments requires
knowing the mass of the boulder to be stopped, its veloc-
ity and its maximal height of flight in the projected building
area. The first design requirement is stability versus gravity.
It is sometimes the only component considered. Indeed, de-
signing embankments that fully take into account the mech-
anisms at work during the impact is very complex because
the impact by a high-kinetic-energy boulder induces large
and irreversible deformations in the embankment. A num-
ber of analytical methods have been developed but remain
relatively approximate. For instance, Tissières (1999) com-
pared the boulder braking force to the embankment shear-
ing force assuming that during the impact a section of the
embankment is displaced as a rigid body. Generally speak-
ing engineers design the structure by modelling the impact
force by an equivalent static surcharge (Jaecklin, 2006). Nu-
merical simulations, based on the finite element method or
the discrete element method, appear to be more appropriate
and satisfactory in attempting to account for the complex-
ity of the impact on embankments (Burroughs et al., 1993;
Hearn et al., 1995; Peila et al., 2002, 2007; Plassiard et al.,
2004; Carotti et al., 2004; Sung et al., 2007). Indeed, even
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Fig. 1. Illustration of the principle of a cellular rockfall protection
embankment.

if complex, these approaches obtain fair agreement with the
few available real-scale experimental data bases (Burroughs
et al., 1993; Peila et al., 2002; Sung et al., 2007). Neverthe-
less, the design of embankments generally does not account
for the dynamic response of the structure satisfactorily.

Therefore a thorough study of these structures is still
needed. Some authors have investigated the behaviour of
granular geomaterials through real-scale impact experiments
on in-situ soil layers (Pichler et al., 2005), damping mate-
rial laid on rigid bases (Labiouse et al., 1994; Montani Stof-
fel, 1998; Calvetti et al., 2005; Schellenberg et al., 2008) as
well as on embankments (Burroughs et al., 1993; Peila et al.,
2002). Model tests on layers of damping materials (Chikata-
marla, 2005; Lorentz et al., 2006) and embankments (Lepert
and Cort́e, 1988; Blovsky, 2002) were also performed. It
is nevertheless difficult to extrapolate these results to other
types of structures and materials since both the mechanical
characteristics and thickness of the impacted material as well
as the boundary conditions strongly influence the system’s
response (Montani Stoffel, 1998; Calvetti, 1998).

Geocells are composite structures combining an envelope
with a granular fill material. The manufactured products used
as envelopes are mainly geotextiles, high density polyethy-
lene (HDPE) sheets or metallic meshes. Different forms of
geocells are employed in geotechnical applications: base re-
inforcement of roads (Yuu et al., 2008), flexible gravity walls
(Chen and Chiu, 2008), and sea coast and river bank erosion
control.

As for rockfall protection embankments, geocells can be
used to build sandwich protection structures. Indeed, by
changing the fill material it is possible to adapt the mechan-
ical characteristics of the geocell depending on its position
in the structure, similarly to what was proposed byYoshida
(1999). Figure 1 illustrates this principle for gabion cages
filled with fine and coarse materials. The aim of this type
of structure is to concentrate strains within both the front
and kernel parts, whereas low strains occur in the back part

(Fig. 1). This should reduce the width of the structure for a
given boulder’s kinetic energy.

Compared with more classical soil-reinforced rockfall pro-
tection embankments, the main difference is that deforma-
tions and degradations are accepted during the impact. The
kinetic energy of the boulder is dissipated in the front and
core-cells, with limited influence on the back of the struc-
ture. In case of a low-energy event, only the front-face geo-
cells will be deformed. Higher energy impacts will result in
front-face geocell degradation and, possibly, core-cell defor-
mation. The cellular nature of the structure facilitates main-
tenance work consisting in mesh repair or replacement of
damaged geocells.

The use of geocells thus offers an alternative for the con-
struction of rockfall protection embankments, at least for en-
ergy events up to 10 MJ (RiskYdrogéo, 2006). Moreover,
the same principle can be applied to enhance the impact re-
sistance of existing embankments.

This study considers gabion cages with either fine or
coarse granular noncohesive fill materials.

Many authors have studied cellular structures used for var-
ious applications and subjected to static loadings (Reiffsteck,
1998; Racana et al., 2002; Madhavi Latha et al., 2006; Dash
et al., 2007; Wesseloo et al., 2009). Scherbatiuk et al. (2008)
studied the stability of cellular structures subjected to dy-
namic loadings caused by blast. At the cell scale, the con-
finement effect of an envelope on a granular geomaterial has
mainly been studied under static loadings (Bathurst and Ra-
jagopal, 1993; Gourv̀es et al., 1996; Rajagopal et al., 1999;
Iizuka et al., 2004). In these studies, cells were mainly filled
with fine materials and had a cross-section like either a circle
or honeycomb. Agostini et al. (1987) presented data on the
compression response of geocells made up of wire netting
cages filled with coarse materials. To our knowledge the re-
sponse of cube-like geocells, filled either with fine or coarse
granular materials and subjected to loadings similar to those
resulting from the impact by a boulder has never been inves-
tigated.

To develop the use of cellular technology in rockfall
protection embankment, an intensive study (the REMPARe
project, http://www.rempare.fr) was initated, combining ex-
periments with numerical modelling following a multi-scale
approach, from the constitutive material to the structure
scale. The aim of the REMPARe project is to provide opera-
tional solutions for the design of such earthworks for small to
medium rock fall energies that includes the use of recycled
waste products such as used tyres. In this frame, the geo-
cell response was investigated under static loading before the
impact response of the geocells was studied.

The aim of this paper is to present and discuss the experi-
mental results obtained on the response of single cubic geo-
cells impacted by a boulder. The main parameters of concern
are the geocell fill material and the geocell boundary condi-
tions. The objective of the study was to identify the main
phenomena involved during the impact and to identify the
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Fig. 2. Scrapped tyres and 30% by mass tyre-sand mixture.

conditions resulting in a lower transmitted force. In addition,
these experiments were designed to provide data for the cal-
ibration of a numerical model of geocells filled with coarse
materials and developed using the discrete element method
(Bertrand et al., 2006).

2 Materials and method

2.1 Cell fill materials and envelope

The fill materials were coarse or fine granular noncohesive
materials. The former were crushed quarry limestone, 60
to 180 mm in grain size. This material is typical for a talus
slope. It is hereafter referred to as “stone”. The rock Young
modulus was 57 700 MPa. The average crushing resistance
of stones 100 mm in size was 30 kN. The latter consisted
of Hostun sand or scrapped tyres. Hostun sand is a well-
documented and well-graded sand whose size distribution
ranges from 0.08 to 1 mm and with a friction angle of 32.5◦

(cohesion nil). The scrapped tyres result from the punctur-
ing of end-of-life tyres. This material contains 30% by mass
of circular pieces 25 mm in diameter and 10 mm in average
thickness, the rest having no particular shape (Fig. 2). This
material was considered both for waste recycling purposes
and to take advantage of its particular mechanical charac-
teristics, very different from the properties of more classical
granular geomaterials.

Sand was used alone or as a mixture containing 30% by
mass of tyres. This mixture constitutes a reinforced and
lightweight composite material (Zornberg et al., 2004; Got-
teland et al., 2005).

The envelope was made up of a hexagonal, or double-
twisted, wire mesh. The mesh height and width were 80 mm
and 100 mm, respectively, and the wire had a 2.7 mm diame-
ter. The tensile strength of this wire mesh was 51 kN/m. For
fine fill materials, a containment non-woven needle punched
geotextile was used in combination with the wire mesh. The
geocells, or cells, considered in this study were cubic in
shape, 500 mm in height. Gabion cages are generally paral-
lelepiped in shape but subdivided into three cubic parts that
are considered here as the elementary unit. Prior to filling,
the cells were placed in a wooden box in order to prevent any
lateral deformation. Stone cells, i.e. geocells filled with the

Fig. 3. Cells filled with stones and sand.

coarse material, were filled placing the stones flat. Fine ma-
terials were poured dry then slightly compacted. No internal
connecting wire was placed across the cell, contrary to what
is generally done on real structures. The average cell weight
was 205, 203 and 195 kg for stones, sand and mixture cells,
respectively (Fig. 3). Their precise density is not known as
it was not possible to accurately determine the volume occu-
pied by the fill material.

2.2 Experimental methodology

The cells were subjected to vertical impact by a 260 kg spher-
ical boulder, 54 cm in diameter and made of a steel shell
filled with concrete. A hollow cylinder allowed placing a
±500 g tri-axial piezoelectric accelerometer close to its cen-
tre of gravity (Lambert, 2007). The filled cell was placed on
a rigid pedestal made of reinforced concrete (Fig. 4). It was
0.7 m in height and had a 1.2 m side square horizontal cross-
section. This deviates from the real conditions as illustrated
in Fig. 1 where the surface in contact with the rear of the cell
is not rigid. It deforms depending on the force transmitted
by the cell, modifying in turn the cell response. Neverthe-
less, considering both the scale of interest (the cell) and the
goals of this study a rigid support was considered.

To reproduce the possible boundary conditions prevailing
at the structure scale, three different test conditions were con-
sidered. The four lateral faces of the impacted cell were (i)
free to deform (ii) rigidly confined or (iii) confined by the
same material as the cell fill material (Fig. 5). These test
conditions will be respectively referred to as FD, RC and MC
conditions. Rigid confinement was obtained using three rigid
steel square frames. Despite its simplicity, it appeared to sat-
isfactorily confine the cell. The material surrounding the cell
in MC conditions was contained by a wood and steel struc-
ture 0.5 m in height and 1.2×1.2 m in horizontal section (the
whole surface of the pedestal was covered with this confin-
ing material and the cell). The RC and FD conditions pro-
vided asymptotic responses that can be easily compared with
results obtained from numerical simulations while the MC
conditions provided the most realistic boundary conditions.

The impacting boulder release system can drop the boulder
from height up to 7.5 m with an impact centred on the cell
and without boulder rotation.

www.nat-hazards-earth-syst-sci.net/9/459/2009/ Nat. Hazards Earth Syst. Sci., 9, 459–467, 2009
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Fig. 4. Sketch of the experimental set-up.

Fig. 5. Cells filled with stones in the different lateral boundary con-
ditions, after impact: free to deform – FD(a); rigid confinement –
RC (b) and material confinement – MC(c).

The evaluation of the response of the cells is mainly based
on the force applied by the boulder on the cell and the force
transmitted by the cell to its pedestal. The first is the impact
force, denotedFimp, which is obtained by multiplying the
deceleration of the boulder by its mass. The force transmit-
ted by the cell to the pedestal, denotedFtrans, could not be
measured directly beneath the cell because the stones were
coarse. It was measured by three force transducers support-
ing the rigid pedestal (capacity 500 kN each) laid on the con-
crete slab of the testing site (Fig. 4).

The final penetration of the boulder in the cell,P , was
also measured as the distance covered by the boulder from
the beginning of the impact to the stability position. For cells
filled with fine materials, this penetration was less than the
maximal penetration during the impact. The duration of the
impact,dimp, was deduced from the boulder’s acceleration
measurements. The restitution coefficient,R, was calculated
as the ratio between the reflected velocity and the incident
velocity.

3 Results

The results presented in the following concern 13.5 kJ im-
pacts obtained dropping the spherical boulder from a 5.5 m
height, giving an incident velocity of 10 m/s. The tests are
listed in Table 1. The test reference indicates the fill material
(“Ston”, “Sand” or “Mixt” respectively for stones, sand and
mixture) followed by the cell boundary conditions (FD, MC

Table 1. Main results of the impact tests.

Test F
max
imp F

max
trans dimp R P

ref. (kN) (kN) (ms) (-) (cm)

StonFD* 128–144 77–75 100–110 − 37
StonMC* 107 188–214 36–40 − 13
StonRC 242 377 26 0.12 8
SandFD 90 128 70 0.13 20
SandMC* 130 226 32 − 11
SandRC 346 601 22 0.18 6
MixtFD* 98–140 143–157 60 0.13 24
MixtMC 140 269 40 0.25 9

and RC). Tests labelled with a star were performed twice.
Tests in rigid confinement conditions on cells filled with the
tyre-sand mixture were not performed because we feared that
the rebound would be too great based on the results from
other test conditions.

Table 1 gives the main results from impact tests in the var-
ious conditions. In tests performed twice, both values are
presented if significantly different. The impact and transmit-
ted forces given are the maximum values. In some cases,
the restitution coefficient was low and not reliable (“–” in the
table).

Figure 6 shows the impact force and transmitted force
measured during impacts on sand cells and stone cells, in
the different boundary conditions. Scales are different de-
pending on the boundary condition in order to emphasize the
differences in curves shape. The curves obtained for cells
filled with the tyre-sand mixture are not presented because
they were similar in shape to the curves obtained with sand
cells.

The conclusions that can be drawn from these results con-
cern the fill materials and the lateral boundary conditions.
The fill material showed the following trends:

– The curves of the impact force on fine material cells
were rather smooth, whereas those obtained for stone
cells showed rapid force variations over the whole im-
pact duration. The average amplitude of the force drops
after 10 ms in MC and FD conditions was of 30 kN;

– In FD conditions the impact force curves exhibited a
pronounced peak at the beginning of the impact, either
followed by a quasi plateau (stone cell) or a progres-
sive force increase until a second peak was reached at a
higher force value (fine material cells) (Fig. 6);

– The second peak on the impact force curve for sand cells
in FD conditions, at about 42 ms, was immediately fol-
lowed by the maximum of the transmitted force (Fig. 6);

– Impacts on stone cells lasted longer, transmitted a lower
force and led to a higher cell penetration, whatever the
boundary conditions. Stones crushing was observed for

Nat. Hazards Earth Syst. Sci., 9, 459–467, 2009 www.nat-hazards-earth-syst-sci.net/9/459/2009/
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Fig. 6. Response in terms of impact force and transmitted force of geocells filled with stones or sand in different lateral boundary conditions:
(a) free to deform – FD;(b) material confinement – MC and(c) rigid confinement – RC.

all the boundary conditions and was generalised in RC
conditions;

– Both the impact and transmitted forces were lower with
sand cells than with mixture cells for all the boundary
conditions (Table 1, Fig. 7);

More specifically, for the boundary conditions:

– After 10 ms, the cell responses in terms of impact force
were very different depending on the boundary condi-
tions, while the curves were very similar before 5 ms
(Fig. 8);

– Restraining the lateral deformation (from FD to RC con-
ditions) led to (i) the reduction of both the penetration
and the impact duration by a factor of 3 to 4 (Table 1),
(ii) the increase in both the maximum values of the im-
pact and the transmitted force. Impact force on sand

cells appeared to be more sensitive to the boundary con-
ditions than on stone cells. The increase ratio from FD
to RC conditions was of 3.8 in the case of sand cells
vs. 1.7 for stone cells. In contrast, the maximum trans-
mitted force increase was similar for both fill materials,
with a ratio of about 5 (Table 1);

– Restraining the lateral deformation (from FD to RC con-
ditions) increased the coefficient of restitution. In fact,
the boulder rose again or rebounded with cells filled
with sand or tyre-sand mixtures and also after impacts
on stone cells in RC conditions (Table 1);

– The maximum force transmitted by the cells in FD con-
ditions was the lowest, followed by the cells in MC con-
ditions (Fig. 7);

www.nat-hazards-earth-syst-sci.net/9/459/2009/ Nat. Hazards Earth Syst. Sci., 9, 459–467, 2009
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Fig. 7. Maximum transmitted force in the different conditions. Rel-
ative value considering the stone cell in FD conditions as the refer-
ence.

In addition, except in the case of stone cells in the FD con-
ditions, the maximum transmitted force was higher than the
maximum impact force, with a maximum ratio of 2.

These results clearly show that both the boundary condi-
tions and the fill material have a great influence on the cell
response. As presented in Fig. 7, the transmitted force de-
pends essentially on the boundary conditions and less on the
fill material.

4 Discussion

From the beginning of the impact, the kinetic energy of the
impacting boulder is progressively transferred to the cell un-
der the form of kinetic energy and strain energy (Masuya and
Kajikawa, 1991). After transit through the cell, the energy is
transferred to the rigid base as strain energy. However, de-
pending on both the lateral boundary conditions and the fill
materials, the response of the cell to this energy transfer will
be different. The impact force curves illustrate this difference
in response.

In an impact on a stone cell, the rapid variations observed
on the impact force curves is explained by the coarse nature
of the fill material. The cell contains a limited number of
“particles” (about 100). In such a granular media, the forces
transit through force chains (Radjai et al., 1998), involving
only a fraction of the particles and forming column patterns.
Any particle movement or crushing in these columns causes
a sudden drop in the impact force (Tsoungui et al., 1999). For
laterally free-to-deform cells, both energy transfers are pos-
sible. Stones are crushed and progressively move outwards
(second picture on Fig. 9). The cell expands laterally, giving

rise to partial fluidisation by reducing the number of contacts
between stones (Bourrier et al., 2008), explaining the force
drop and plateau. By contrast, if the stone cell is rigidly con-
fined, the stones displacement is strongly restricted and the
kinetic energy of the boulder is mainly transferred as strain
energy, leading to a high number of crushed stones when in
excess. Thus, the boundary conditions govern how energy is
transferred through the cell.

For the same reasons, the ratio of kinetic vs. strain en-
ergy transferring through the cells filled with fine materials
is also governed by the boundary conditions. However, the
main difference is that the transfer of energy through the par-
ticle assembly causes it to compact (Scott and Pearce, 1975).
This stands out from impacts on rigidly confined cells where
the slope of the impact force curve increases up to the peak
(Fig. 6c). With the laterally free-to-deform cells, the sec-
ond peak, observed at about 42ms, is also caused by the fill
material compaction. In this situation, compaction results
from the confining effect by the envelope: when deformed,
the envelope applies a confining stress on the fill material
(Bathurst and Rajagopal, 1993). This confinement effect
is delayed because of (i) the initial cubic shape of the cell
and (ii) the hexagonal shape of the metallic mesh (Lambert,
2007). High-speed digital camera films showed that in this
situation the boulder rebound after impact was accompanied
by an elastic stress release of the envelop, explaining the re-
bound (Fig. 10).

Thus the prevailing phenomena occurring in the cell and
leading to energy transfer are actually different from one sit-
uation to another.

Moreover, the above-mentioned comments indicate that
the response of a laterally free-to-deform cell in terms of im-
pact force reveals its composite nature. The cell is composed
of two elements: the fill material and the envelope. The cell
dynamic response depends on the characteristics of both. On
the other hand, the confining effect by the envelope does not
play an important role in the case of confined cells (MC and
RC conditions) since it requires a large lateral deformation
of the cell which is not attained (Lambert, 2007).

Crushing is a fundamental phenomenon in the response
of stone cells. Stone crushing has two consequences. First,
it dissipates energy which is not quantified here. Second,
it limits the impact force to a threshold value which is pro-
portional to the crushing resistance of the stones (Lambert,
2007) and to the contact area between the impacting boul-
der and the cell. Indeed, the impact force equals the sum
of the forces transitting through the force chains in the cell.
The higher the crushing resistance of the stones, the higher
the force transitting through each chain and the larger the
contact area, the higher the number of force chains involved.
The impact force drops observed on stone cells in MC and
FD conditions can be associated with stones crushing. This
phenomenon also explains that in RC conditions the slope
of the impact force tends to diminish about 10 ms after con-
tact whereas it increases progressively up to the peak in the
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Fig. 8. Influence of the cell lateral boundary conditions on the impact force on cells filled with sand (left) and stones (right).

Fig. 9. Impact on a cell filled with stones and laterally free to de-
form (FD) att=0, 20, 40 and 80 ms.

case of a sand cell. The impact force limitation is clearly il-
lustrated in MC conditions, with fluctuations around 100 kN
between 0.01 and 0.03 s (Fig. 6b). This impact force lim-
itation results in a greater penetration of the boulder and
a longer-lasting impact. By comparison a fine fill material
progressively compacts with increasing boulder penetration
leading to the increase in the impact force. The influence of
sand compaction appears clearly whatever the boundary con-
ditions: the maximum impact force is always reached a few
milliseconds before the end of the impact, thus for the high-
est penetration. It is immediately followed by the maximum
transmitted force.

The impact force curves thus appear to be highly relevant
in understanding the behaviour of the impacted cells and in
interpreting the transmitted force curves. They also reveal the
dynamics of the energy transfer from the boulder to the cell.
Nevertheless, these data are of limited value considering this
study’s goal of determining the conditions for a lower trans-
mitted force. It is worth noting that the transmitted force is
most often higher than the impact force. Moreover, the ratio
between the two depends on the impacted structure. Various
authors (Masuya and Kajikawa, 1991; Montani Stoffel, 1998;
Calvetti, 1998; Calvetti et al., 2005) have observed this phe-
nomenon, referred to as dynamic amplification by Calvetti
et al. (2005). The ratio ranged from 1.1 to 3. The conse-
quence is that the impact force alone is definitely not suffi-
cient to estimate the transmitted force.

Fig. 10. Impact on a cell filled with sand and laterally free to deform
(FD) at the beginning of the impact(a), maximal penetration(b) and
during the rebound(c).

Figure 7 clearly shows that the optimal configuration for
the reduction of the transmitted force consists of a laterally
free-to-deform cell filled with stones. In this situation, the
cell is highly deformable and the force opposed by the cell to
the boulder penetration is limited. Moreover, the fill material
dissipates energy, mainly by friction and crushing. The tyre-
sand mixture is less effective than sand alone as fill material
for all the boundary conditions. Considering the differences
in the characteristics of these materials (unit weight, peak
strength, etc.) different behaviours were expected. How-
ever, the complexity of the phenomena involved in the im-
pact make it impossible to explain the trend observed. In
fact, the tyre-sand ratio of this mixture was defined based on
static tests (Gotteland et al., 2005) and this criterion appears
not to be satisfactory for dynamical loadings.

The boundary conditions have a greater influence on the
transmitted force than the type of fill material. Thus, opti-
mising the boundary conditions seems to be a valuable alter-
native to reduce the transmitted force.

Of course, other phenomena take place at the structure
scale, involving a set of cells, which cannot be investigated
from a single cell laid on a rigid base. For instance, diffusion

www.nat-hazards-earth-syst-sci.net/9/459/2009/ Nat. Hazards Earth Syst. Sci., 9, 459–467, 2009
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of forces within the structure is not considered. Obviously, a
laterally free-to-deform cell directly subjected to impact does
not diffuse the forces in the structure, contrary to a cell in
lateral contact with other cells. In this context, it is more
appropriate to consider stresses rather than forces. In the
case of soils, it is generally assumed that the stress diffuses
within a cone in the material (Calvetti, 1998; Montani Stof-
fel, 1998; Nomura et al., 2002). Montani Stoffel (1998) ob-
served that the diffusion angle for three cushion layers vary
significantly, ranging from 33 to 47◦, and that the distribu-
tion of stress beneath the soil layer is not uniform. In a cell
filled with different types of material and confined by other
cells, the diffusion problem is more complex. First, the en-
velope’s influence should not be neglected because it may
modify the diffusion mechanisms. Second, the few available
data concerning both the diffusion angle and the stress dis-
tribution in soil are not suitable for impacts on stone layers
or on tyre-sand mixture layers. Considering the differences
between the fill materials investigated here, one can postu-
late that taking into account diffusion will lead to different
conclusions than those drawn from the force-based criterion.
Moreover, the rigid base is not really representative of the
boundary conditions at the rear of the cell at the structure
scale. The impacted cell is expected to move inwards of the
structure, depending on the characteristics of this backing
and giving opportunity for other phenomena to take place.
One can expect a reduction of the impact force and an in-
crease of both the impact duration and the boulder penetra-
tion. These two points are being addressed within the frame-
work of the REMPARe project.

5 Conclusions

To investigate the behaviour of geocells as components of
rockfall protection embankments, a series of impact tests us-
ing a 260 kg spherical boulder were performed.

The response of the geocell was evaluated in terms of the
impact force and the force transmitted by the geocell to its
base. The effectiveness was evaluated in terms of the min-
imisation of the transmitted force. Based on this criterion,
the optimum consists of a geocell filled with a coarse gran-
ular material that is laterally free to deform. The coarse
granular fill material geocell appears to be the most effec-
tive whatever the geocell boundary conditions, because of
particle crushing. Laterally free-to-deform geocells transmit
the lowest force. Nevertheless, the transmitted force-based
criterion is not sufficient to evaluate the ability of a geocell
to reduce the effort transmitted in the impacted embankment
because it does not account for diffusion. New developments
are necessary to account for diffusion in the fill material.

In addition, these experiments provide a large data base
that can be used for developing numerical models. For
instance, a numerical model based on a discrete element
method was developed to describe gabion geocells (Bertrand

et al., 2006) and simulate the response of a structure com-
posed of an assembly of geocells (Nicot et al., 2007). The
relevance of such numerical models requires calibration and
validation procedures from experimental data.
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