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Abstract

A few years ago Selivanova gave an existence proof for some integrable models,
in fact geodesic flows on two dimensional manifolds, with a cubic first integral.
However the explicit form of these models hinged on the solution of a nonlinear third
order ordinary differential equation which could not be obtained. We show that an
appropriate choice of coordinates allows for integration and gives the explicit local
form for the full family of integrable systems. The relevant metrics are described by
a finite number of parameters and lead to a large class of models on the manifolds
S
2, H2 and P 2(R) containing as special cases examples due to Goryachev, Chaplygin,

Dullin, Matveev and Tsiganov.
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1 Introduction

LetM be a n-dimensional smooth manifold with metric g(X, Y ) = gij X
i Y j and let T ∗M

be its cotangent bundle with coordinates (x, P ), where P is a covector from T ∗
x M . Let us

recall that T ∗M is a smooth symplectic 2n-manifold with respect to the standard 2-form
ω = dPi ∧ dxi which induces the Poisson bracket

{f, g} =

n∑

i=1

(
∂f

∂xi
∂g

∂Pi
− ∂f

∂Pi

∂g

∂xi

)
.

In T ∗M the geodesic flow is defined by the Hamiltonian

H = K + V, K =
1

2

n∑

i,j=1

gij(x)Pi Pj, V = V (x), (1)

where gij is the inverse metric of gij .
An “observable” f : T ∗M → R, which can be written locally

f =
∑

i1+···+in≤m

f i1,···,in(x)Pi1 · · ·Pin , #(f) = m,

is a constant of motion iff {H, f} = 0. A hamiltonian system is said to be integrable in
Liouville sense if there exist n constants of motion (including H) generically independent
and in pairwise involution with respect to the Poisson bracket.

In what follows we will deal exclusively with integrable systems defined on two dimen-
sional manifolds. An integrable system is just made out of 2 independent observables H
and Q with {H,Q} = 0.

The general line of attack of this problem is based on the integer m = #(Q). For
m = 1 M is a surface of revolution and for m = 2 M is a Liouville surface [3].

For higher values of m only particular examples have been obtained, some of which
in explicit form. For M = S

2 and m = 3 the oldest explicit examples (early twentieth
century) were due to Goryachev and Chaplygin on the one hand and to Chaplygin on the
other hand (see [2][p. 483] and [9] for the detailed references). On the same manifold with
m = 4 there is the famous Kovalevskaya system [6] and some extension due to Goryachev
(see [8] for the reference).

More recently there was a revival of this subject due to Selivanova [7], [8] and Kiyohara
[5] who proved existence theorems of integrable systems for m = 3, 4 for the first author
and for any m ≥ 3 for the second author. As observed by Kiyohara himself for m = 3
the two classes of models are markedly different. Even more recently several new explicit
examples for m = 3 were given by Dullin and Matveev [4] and Tsiganov [9].

In this work we will focus on Selivanova’s integrable systems with a cubic first integral
discussed in [7]. The existence theorems she proved are not explicit since there remains
to solve a nonlinear ODE of third order. In Tsiganov’s article too a non-linear ODE of
fourth order four appears for which only special solutions could be obtained.

We will show that the solutions of these ODE are not required: the use of appropriate
coordinates allows to get locally the explicit form of the full family of integrable system.
Having the local form of the metric g on M one can determine the global structure of the
manifold. In view of the many parameters exhibited by the metric, the global analysis
gives rise to plenty of integrable models, some of which were discovered only recently.
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The plan of the article is the following: in Section 2 we consider the class of models
analyzed by Selivanova with the following leading terms for the cubic observable:

Q = p P 3

φ + 2q K Pφ + · · · , p ∈ R, q ≥ 0,

and the general differential system resulting of {H,Q} = 0 is given.

In section 3 we first integrate the special case where q = 0: the differential system is
reduced to a second order non-linear ODE. Its integration gives the local form of the inte-
grable system and the global analysis detrmines the manifolds according to the parameters
that appeared in the integration process.

In Section 4 we consider the general case q > 0. Here we have linearized, by an
appropriate choice of the coordinates, the possibly non-linear ODE of third order. In
Section 5, with the explicit local form of the metric, it is then straightforward (but lengthy
because an enumeration of cases is required) to determine on which manifolds the metric is
defined. We check that all the previously explicitly known integrable examples are indeed
recovered.

2 Cubic first integral

Let us consider the hamiltonian (1) with

K =
1

2

(
P 2

θ + a(θ)P 2

φ

)
, V = f(θ) cosφ+ g(θ), f(θ) 6≡ 0, (2)

and the cubic observable

Q = Q3 + Q1, (3)

with 



Q3 = p P 3
φ + 2q K Pφ, p ∈ R, q ≥ 0,

Q1 = χ(θ) sinφPθ +
(
β(θ) + γ(θ) cosφ

)
Pφ.

(4)

Lemma 1 The constraint {H,Q} = 0 is equivalent to the following differential system:

(a) χ ḟ = γf, χġ = β f,
(
˙= Dθ

)
,

(b) χ̇ = −q f, β̇ = 2q ġ, γ̇ + χ a = 2q ḟ , aγ + χ
ȧ

2
= 3(p+ qa)f.

(5)

Proof: The relation {H,Q} = 0 splits into three constraints

{K,Q3} = 0, {K,Q1}+ {V,Q3} = 0, {V,Q1} = 0. (6)

The first is identically true, the second one is equivalent to the relations (5 b) while the
last one is equivalent to (5 a) . 2

The special case q = 0 is rather difficult to obtain as the limit of the general case q 6= 0,
so we will first work it out completely.
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3 The special case q = 0

We can take p = 1 and obvious integrations give

χ = χ0 > 0, β = β0 ∈ R, γ = χ0

ḟ

f
, ġ =

β0
χ0

f, a = − γ̇

χ0

, (7)

and the last equation

γ̈ + 2
ḟ

f
γ̇ + 6f = 0. (8)

An appropriate choice of coordinates does simplify matters:

Lemma 2 The differential equation for u = ḟ as a function of the variable x = f is given
by

u

(
uu′

x

)′

+ cx = 0, c =
6

χ0

> 0.
(

′ = Dx

)
. (9)

Proof: The relations in (7) become

g′ =
β0
χ0

x

u
, γ = χ0

u

x
, a = −u

(u
x

)′

, (10)

and (8) gives (9). 2

The solution of this ODE follows from

Lemma 3 The general solution of (9) is given by

u = −ζ
2 + c0
2c

, (11)

with

ζ3 + 3c0 ζ − 2ρ = 0, 2(ρ− ρ0) = 3c2x2, (12)

and integration constants (ρ0, c0).

Proof: Let us define ζ ′ = −c x/u. This allows a first integration of (9), giving
uu′

x
= ζ .

From this we deduce

cu′ = −ζζ ′ =⇒ 2c u = −ζ2 − c0,

which in turn implies

[
ζ2 + c0

]
ζ ′ = 2c2 x =⇒ ζ3 + 3c0 ζ − 2ρ = 0, (13)

which concludes the proof. 2

It is now clear that the initial coordinates (θ, φ) chosen on S2 will not lead, at least
generically, to a simple form of the hamiltonian! To achieve a real simplification for the
observables the symplectic coordinates change (θ, φ, Pθ, Pφ) → (ζ, φ, Pζ, Pφ) gives:
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Theorem 1 Locally, the integrable system has for explicit form





H =
1

2

(
F P 2

ζ +
G

4F
P 2

φ

)
+ χ0

√
F cosφ− β0 ζ,

Q = P 3

φ − 2χ0

(√
F sin φPζ + (

√
F )′ cosφPφ

)
+ 2β0 Pφ,

(
′ = Dζ

)
, (14)

with
F = −2ρ0 + 3c0 ζ + ζ3, G = 9c20 + 24ρ0 ζ − 18c0 ζ

2 − 3ζ4. (15)

Proofs: One may obtain these formulas by elementary computations and some scalings
of χ0, β0 and H .

Alternatively, one can check that (15) implies the relations

G′ = −12F, G = F ′2 − 2F F ′′, (16)

which allows for a direct check of {H,Q} = 0. As proved in [7] this system does not exhibit
any linear or quadratic constant of motion and (H,Q) are algebraically independent. 2

We are now in position to analyze the global geometric aspects related to the metric

g =
dζ2

F
+

4F

G
dφ2, φ ∈ [0, 2π). (17)

One has first to impose the positivity of both F and G for this metric to be riemannian.
This gives for ζ some interval I whose end-points are possible singularities of the metric.
To ascertain that the metric is defined on some manifold one has to ensure that these
singularities are apparent ones and not true curvature singularities.

Let us define, for the cubic F , its discriminant ∆ = c30 + ρ20.

Theorem 2 The metric (17):

(i) For ∆ < 0 is defined on S
2 iff

F = (ζ − ζ0)(ζ − ζ1)(ζ − ζ2), ζ0 < ζ < ζ1 < ζ2.

The change of coordinates

sn (u, k2) =

√
ζ − ζ0
ζ1 − ζ0

, k2 =
ζ1 − ζ0
ζ2 − ζ0

∈ (0, 1), (18)

gives for integrable system 1





H =
1

2

(
P 2

u +
D(u)

s2c2d2
P 2

φ

)
+ χ0 k

2 scd cosφ− β0 k
2s2,

Q = 4P 3

φ − χ0

(
sinφPu +

(scd)′

scd
cosφPφ

)
+ 2β0 Pφ,

D(u) = (1− k2s4)2 − 4k2 s4c2d2, u ∈ (0, K).

(19)

1We use the shorthand notation: s, c, d respectively for sn (u, k2), cn (u, k2), dn (u, k2).
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(ii) For ∆ = 0 is defined on H
2 iff

F = (ζ − ζ1)
2(ζ + 2ζ1), −2ζ1 < ζ < ζ1, (ζ1 > 0).

The change of coordinates

ζ = ζ1(−2 + 3 tanh2 u), u ∈ (0,+∞), (20)

gives for integrable system 2





H =M2

1 +M2

2 −
(
1− 3

C2

)
M2

3 + χ0 T (1− T 2) cosφ− β0 T
2,

Q = 4M3

3 − χ0

(
M1 − 3T cosφM3

)
+ 2β0M3.

(21)

(iii) For ∆ > 0 is not defined on a manifold.

Proof of (i): If ∆ < 0 the cubic F has three simple real roots ζ0 < ζ1 < ζ2. If we take
ζ ∈ (ζ2,+∞) then F is positive. The relation G′ = −12F shows that in this interval G

is decreasing from G(ζ2) = F ′2(ζ2) > 0 to −∞ and will vanish for some ζ̂ > ζ2. Hence

to ensure positivity for F and G we must restrict ζ to the interval (ζ2, ζ̂). Since at ζ = ζ̂
the function F does not vanish while G does, this point is a curvature singularity and the
metric cannot be defined on a manifold.

The positivity of F is also ensured if we take ζ ∈ (ζ0, ζ1). In this interval G decreases
monotonously from G(ζ0) to G(ζ1) = F ′2(ζ1) > 0. Let us analyze the singularities at the
end points. For ζ close to ζ0 we have for approximate metric

g ≈ 4

F ′(ζ0)

[
dζ2

4(ζ − ζ0)
+
F ′2(ζ0)

G(ζ0)
(ζ − ζ0) dφ

2

]
. (22)

The relation (16) gives G(ζ0) = F ′2(ζ0), so the change of variable ρ =
√
ζ − ζ0 allows to

write

g ≈ 4

F ′(ζ0)

(
dρ2 + ρ2 dφ2

)
, (23)

which shows that ρ = 0 is an apparent singularity, due to the choice of polar coordinates,
which could removed by switching back to cartesian coordinates. So the point ζ = ζ0 can
be added to the manifold.

A similar argument works for ζ = ζ1. In fact these end-points are geometrically the
poles of the manifold and the index theorem for ∂φ gives for Euler characteristic χ = 2,
showing that the manifold is indeed S

2. Then, using the change of variable (18), it is a
routine exercise in elliptic functions theory to operate the symplectic coordinates change
(ζ, φ, Pζ, Pφ) → (u, φ, Pu, Pφ) which, after several scalings of the observables and of
their parameters, gives (19). Notice that one can also, by direct computation, check that
{H,Q} = 0 from the formulas given in (19). 2

Proof of (ii): In this case we have

F = (ζ + 2ζ1)(ζ − ζ1)
2, G = −3(ζ + 3ζ1)(ζ − ζ1)

3, ζ1 = −ρ1/30 .

2We use the shorthand notation S, C, T respectively for sinhu, coshu, tanhu.
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For ζ1 < 0 the positivity of F implies ζ ∈ (2|ζ1|,+∞) and G decreases and vanishes for

ζ̂ = 3|ζ1| leading to a curvature singularity. The case ζ1 = 0 is also excluded since then
G ≤ 0 and the remaining case is ζ1 > 0. The positivity of F and G requires ζ ∈ (−2ζ1, ζ1).
The singularity structure is most conveniently discussed thanks to the coordinates change
(20) which brings the metric to the form

g =
4

3ζ1

{
du2 +

sinh2 u

1 + 3 tanh2 u
dφ2

}
, u ∈ (0,+∞), (24)

from which we conclude that the manifold is H2. Then starting from (14), the symplectic
change of coordinates (ζ, φ, Pζ, Pφ) → (u, φ, Pu, Pφ), and some scalings, gives





H =
1

2

(
P 2

u +
(1 + 3 T 2)

S2
P 2

φ

)
+ χ0 T (1− T 2) cosφ− β0 T

2,

Q = 4P 3

φ − χ0

(
sin φPu +

1− 3T 2

T
cosφPφ

)
+ 2β0 Pφ,

(25)

Defining the generators of the so(2, 1) Lie algebra in TH2 to be

M1 = sin φPu +
cosφ

T
Pφ, M2 = cos φPu −

sinφ

T
Pφ, M3 = Pφ, (26)

transforms the observables (25) into (21). 2

Proof of (iii): For ∆ > 0 the cubic F has a single real zero ζ0. The positivity of F
requires that ζ ∈ (ζ0,+∞). Since G′ = −12F the function G decreases from G(ζ0) to

−∞. Since G(ζ0) > 0 there exists ζ̂ > ζ0 for which G(ζ̂) = 0. So positivity restricts

ζ ∈ (ζ0, ζ̂) and ζ̂ is a curvature singularity showing that the metric cannot be defined on
a manifold. 2

Remarks:

1. The integrable system (21) corresponds to the limit of (19) when ζ2 → ζ1 or k
2 → 1.

Then the elliptic functions degenerate into hyperbolic functions. Let us emphasis that in
this limit the observables behave smoothly while the manifold changes drastically . Let us
also observe that H is globally defined on the manifold while Q is not.

2. In [7] Selivanova proved an existence theorem for an integrable system on S2 with
a cubic observable (case (i) of her Theorem 1.1). The observables are

H =
ψ′2(y)

2

(
P 2

y + P 2

φ

)
+
ψ′2(y)

2
(ψ(y)− ψ′′(y)) cosφ,

Q = P 3

φ − 3

2
ψ′(y) sinφPy +

3

2
ψ(y) cos φPφ,

(
′ = Dy

)
, (27)

where ψ(y) is a solution of the ODE

ψ′ ψ′′ = ψ ψ′′ − 2ψ′′2 + ψ′2 + ψ2, ψ(0) = 0, ψ′(0) = 1, ψ′′(0) = τ. (28)

Comparing (27) and (14) for β0 = 0 makes it obvious that we are dealing with the same
integrable system, up to diffeomorphism. The local identification follows from

ψ(y) = −(ζ2 + c0)

2
√
F

,

√
G

F
dζ = ±

√
3 dy, (29)
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and we have checked that the ODE (28) is a consequence of the relations (29) and (16).
We see clearly that Selivanova’s choice of the coordinate y led to a complicated ODE, very
difficult to solve. In fact one should rather find coordinates such that the ODE becomes
tractable, as we did.

4 Local structure of the integrable systems for q > 0

As already observed, if one insists in working with the variable θ, the differential system
(5) can be reduced either to a third order [7] or to a fourth order [9] non-linear ODE. The
key to a full integration of this system is again an appropriate choice of coordinates on the
manifold.

Theorem 3 Locally, the integrable system (H,Q) has for explicit form





H =
1

2ζ

(
F P 2

ζ +
G

4F
P 2

φ

)
+

√
F

2qζ
cosφ+

β0
2qζ

,

Q = p P 3

φ + 2q H Pφ −
√
F sin φPζ − (

√
F )′ cosφPφ,

(
′ = Dζ

)
, (30)

with the polynomials

F = c0 + c1ζ + c2ζ
2 +

p

q
ζ3, G = F ′2 − 2F F ′′. (31)

Proofs: Starting from (5) the functions β and g are easily determined to be

β =
β0
χ2
, g =

β0
2qχ2

. (32)

The functions γ and a can be expressed in terms of f and its derivatives with respect to
χ as

γ = −qχ f ′, a = −q2
(
ff ′′ +

3

χ
ff ′

)
. (33)

Then the last relation in (5) reduces to a second order linear ODE

χ (ff ′)′′ + 9 (ff ′)′ +
15

χ
ff ′ =

6p

q3
, (34)

which is readily integrated to

f = ±
√
c2 + f1 χ2 +

c1
χ2

+
c0
χ4
, f1 =

p

4q3
. (35)

The remaining functions become

a =
q2

f 2

(
c21 − 4c0c2

χ6
− 12c0f1

χ4
− 6c1f1

χ2
− 4c2f1 − 3f 2

1 χ
2

)
,

γ =
q

f

(
−f1χ2 +

c1
χ2

+
2c0
χ4

)
.

(36)
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The observables can be written, up to a scaling of the parameters, in terms of F and G
defined by

F = 4q2 χ4 f 2 = c0 + c1ζ + c2ζ
2 + g1ζ

3, g1 =
p

q
, ζ = χ2,

G = 16q2 χ6 f 2 a = c21 − 4c0c2 − 12c0g1ζ − 6c1g1ζ
2 − 4c2g1ζ

3 − 3g21ζ
4.

(37)

To simplify matters the symplectic change of coordinates (θ, φ, Pθ, Pφ) → (ζ, φ, Pζ, Pφ).
gives the required result, up to scalings.

Alternatively (37) implies the relations

G′ = −12
p

q
F, G = F ′2 − 2F F ′′, (38)

which allow a direct check of {H,Q} = 0. As proved in [7] this system does not ex-
hibit any other conserved observable linear or quadratic in the momenta, and (H,Q) are
algebraically independent. 2

Remarks:

1. The limit q = 0 is quite tricky: it is why we analyzed it separately in the previous
section.

2. Let us observe that the kinetic parts of H in (14) and (30) are conformally related.

3. It is still possible to come back to the coordinate θ but the price to pay is the
integration of the relation √

ζ

F
dζ = −dθ, (39)

which can be done using elementary functions for c0 = 0.

5 The global structure

Let us now examine the global geometric aspects of the metric

g =
ζ

F
dζ2 +

4 ζ F

G
dφ2, φ ∈ [0, 2π), (40)

taking into account the following observations:

1. The positivity constraints are ζF (ζ) > 0 and G(ζ) > 0. They define the end-
points of some interval I for ζ . In some cases, discussed in detail later on, one can obtain
extensions beyond some of the end-points.

2. For the observables to be defined it is required that F ≥ 0 ∀ζ ∈ I.

3. As already observed any point ζ0 with F (ζ0) 6= 0 and G(ζ0) = 0 is a curvature
singularity.

4. The point ζ = 0 is a curvature singularity for F (0) 6= 0 and G(0) 6= 0.
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In order to have a complete description of all the possible integrable models, we will
present them in three sets:

1. The first set p = 0 with a simpler geometric structure.

2. The second set p > 0 somewhat similar to the q = 0 case.

3. The third set p < 0 which displays the richest structure.

5.1 First set of integrable models

Since p = 0 we have

F = c0+ c1ζ+ c2ζ
2 = c2(ζ − ζ1)(ζ − ζ2), G = c21−4c0c2, (c0, c1, c2) ∈ R

3. (41)

Theorem 4 In this set we have the following integrable models:

(i) Iff c2 > 0 and 0 < ζ2 < ζ the metric (40) is defined in H
2 and





H =
1

2

M2
1 +M2

2 −M2
3

ρ+ cosh u
+
α sinh u cos φ+ β

ρ+ cosh u
, u ∈ (0,+∞),

Q = HM3 − αM1, ρ =
ζ2 + ζ1
ζ2 − ζ1

∈ (−1,+∞).

(42)

(ii) Iff c2 < 0 and 0 < ζ1 < ζ < ζ2 the metric (40) is defined in S
2 and





H =
1

2

L2
1 + L2

2 + L2
3

1 + ρ cos θ
+
α ρ sin θ cosφ+ β

1 + ρ cos θ
, θ ∈ (0, π),

Q = H L3 + αL1, ρ =
ζ2 − ζ1
ζ2 + ζ1

∈ (0,+1).

(43)

(iii) Iff c2 = 0 the metric (40) is defined in R
2 and





H =
1

2

P 2
x + P 2

y

1 + ρ2(x2 + y2)
+

2α ρ2 x+ β

1 + ρ2(x2 + y2)
, (x, y) ∈ R

2,

Q = H Lz − αPy, ρ > 0.

(44)

In all cases α and β are free parameters.

Proof of (i): The positivity condition G > 0 shows that F has two real and distinct roots
ζ1 < ζ2, so we will write

F = c2(ζ − ζ1)(ζ − ζ2), G = c22(ζ1 − ζ2)
2. (45)

Then imposing the positivity of ζF one has to deal with the iff part of the proof by an
enumeration of all possible cases for the triplet (0, ζ1, ζ2), including the possibility of one ζi
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being zero. Taking into account the remarks given at the end of Section 4, one concludes
that for c2 > 0, we must take ζ > ζ2 > 0. The change of coordinates

ζ =
ζ2 − ζ1

2

(
ρ+ cosh u

)
, (ζ2,+∞) → (0,+∞), ρ =

ζ2 + ζ1
ζ2 − ζ1

.

brings the metric (40) to the form

g =
ζ2 − ζ1
2c2

(
ρ+ cosh u

)(
du2 + sinh2 u dφ2

)
, u ∈ (0,+∞), (46)

which is conformal to the canonical metric on H
2. Using the definitions (26) we obtain

(42), up to scalings. 2

Proof of (ii): For c2 < 0 positivity requires either 0 < ζ1 < ζ < ζ2 or ζ1 < ζ < ζ2 < 0. In
both cases the change of coordinates

ζ =
ζ1 + ζ2

2

(
1 + ρ cos θ

)
, (ζ1, ζ2) → (π, 0), ρ =

ζ2 − ζ1
ζ2 + ζ1

,

brings the metric (40) to one and the same form

g =
ζ1 + ζ2
2c2

(
1 + ρ cos θ

)(
dθ2 + sin2 θ dφ2

)
, θ ∈ (0, π), (47)

which is conformal to the canonical metric on S
2 for ρ ∈ (0,+1). Using the so(3) Lie

algebra generators acting in T ∗
S
2

L1 = sin φPθ +
cos φ

tan θ
Pφ, L2 = cosφPθ −

sinφ

tan θ
Pφ, L3 = Pφ, (48)

one obtains (43), up to scalings. 2

Proof of (iii): For c2 = 0 we have G = c21 > 0.
If c1 < 0 we can write F = |c1|(ζ1 − ζ) and positivity requires ζ ∈ (0, ζ1). If ζ1 6= 0

then ζ = 0 is a curvature singularity because F (0) and G(0) are not vanishing.
If c1 > 0 we have F = c1(ζ − ζ1). If ζ1 < 0 positivity requires either ζ > 0, but ζ = 0

is a curvature singularity, or ζ < ζ1 and then F is negative. If ζ1 = 0 the metric becomes

g =
1

c1

(
dζ2 + 4ζ2 dφ2

)
,

so to recover flat space we have to take φ̃ = 2φ ∈ [0, 2π) and in H appears a term of

the form cos(φ̃/2) which does not define a function in R
2. Eventually, if ζ1 > 0 if we take

ζ < 0 the point ζ = 0 is singular, so we are left with ζ > ζ1. The change of coordinates

ζ = ζ1(1 + ρ2 r2), ρ > 0, x = r cosφ, y = r sinφ,

brings the metric (40) to the form

g =
4ζ21ρ

2

c1
(1 + ρ2 r2)(dx2 + dy2), (x, y) ∈ R

2. (49)
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Using the e(3) Lie algebra generators (Px, Py, Lz = xPy − yPx) we obtain (44), up to
scalings. 2

The remaining cases are given by p 6= 0. It is convenient to rescale F by |p|/q and G
by p2/q2 in order to have

F = ǫ(ζ3 + f0ζ
2 + c1ζ + c0), ǫ = sign(p), G = F ′2 − 2FF ′′, G′ = −12 ǫ F, (50)

and for the observables, up to scalings





H =
1

2ζ

(
F P 2

ζ +
G

4F
P 2

φ

)
+ α

√
F

ζ
cosφ+

β

ζ
,

Q = ǫ P 3

φ + 2H Pφ − 2α
(√

F sinφPζ + (
√
F )′ cosφPφ

)
,

(51)

So the metric is still given by (40). We will denote by ∆ǫ the discriminant of F according
to the sign of ǫ.

5.2 Second set of integrable models

It is given by p > 0 or ǫ = +1. We have:

Theorem 5 The metric (40):

(i) For ∆+ < 0 is defined on S
2 iff

F = (ζ − ζ0)(ζ − ζ1)(ζ − ζ2), 0 < ζ0 < ζ < ζ1 < ζ2.

The integrable system, using the notations of Theorem 2 case (i), is





H =
1

2ζ+(u)

(
P 2

u +
D(u)

s2c2d2
P 2

φ

)
+ αk2

scd

ζ+(u)
cosφ+

β

ζ+(u)
,

Q = 4P 3

φ + 2H Pφ − α

(
sin φPu +

(scd)′

scd
cosφPφ

)
,

ζ+(u) = ρ+ k2 sn2 u, u ∈ (0, K), ρ = ζ0
ζ2−ζ0

> 0.

(52)

(ii) For ∆+ = 0 is defined on H
2 iff

F = (ζ − ζ0)(ζ − ζ1)
2, 0 < ζ0 < ζ < ζ1.

The integrable system, using the notations of Theorem 2 case (ii), is




H =
1

2ζ+(u)

{
M2

1 +M2

2 −
(
1− 3

C2

)
M2

3

}
+ α

T (1− T 2)

ζ+(u)
cosφ+

β

ζ+(u)
,

Q = 4M3

3 + 2HM3 − α
(
M1 − 3T cosφM3

)
,

ζ+(u) = ρ+ tanh2 u, u ∈ (0,+∞), ρ = ζ0
ζ1−ζ0

> 0.

(53)

(iii) For ∆+ > 0 is not defined on a manifold.
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Proof of (i): The iff part results from a case by case examination of all possible orderings
of the 4-plet (0, ζ0, ζ1, ζ2), including the possibility of one of the ζi being zero. We will
not give the full details which can be easily checked by the reader, taking into account
the remarks presented at the end of Section 4. The reader can check that with F =
(ζ−ζ0)(ζ−ζ1)(ζ−ζ2) and 0 < ζ0 < ζ < ζ1 < ζ2, the polynomial F is positive and vanishes
at the end-points (ζ0, ζ1) while G is strictly positive. It follows that ζ = ζ0 and ζ = ζ1
are poles and the manifold is S2. Operating the same coordinate change as in Theorem 2,
case (i), one obtains (52). 2

Proof of (ii): The polynomial G becomes G = (ζ1 − ζ)3(3ζ + ζ1 − 4ζ0). The change of
variable

ζ = (ζ1 − ζ0)(ρ+ th2u), (ζ0, ζ1) → (0,+∞), ρ =
ζ0

ζ1 − ζ0
> 0,

transforms the observables, up to scalings, into





H =
1

2ζ+(u)

(
P 2

u +
1 + 3T 2

S2
P 2

φ

)
+

α

ζ+(u)
T (1− T 2) cos φ+

β

ζ+(u)
,

Q = 4P 3

φ + 2H Pφ − α sinφPu − α
(1− 3T 2)

T
cosφPφ,

ζ+(u) = ρ+ tanh2 u.

(54)

Using the relations (26) one gets (53). 2

Proof of (iii): Examining all the possible cases gives no manifold for the metric. 2

5.3 Third set of integrable models

It is given by p < 0 or ǫ = −1. It displays a richer structure and for clarity we will split
up the description of the integrable systems into several theorems.

Theorem 6 The metric (40) for ∆− < 0 is defined on S
2 iff:

(i) either F = (ζ − ζ0)(ζ − ζ1)(ζ2 − ζ), ζ0 < ζ1 < ζ < ζ2 (ζ1 > 0).

The change of coordinates

sn (u, k2) =

√
ζ2 − ζ

ζ2 − ζ1
, k2 =

ζ2 − ζ1
ζ2 − ζ0

∈ (0, 1), (55)

gives for integrable system





H =
1

2ζ−(u)

(
P 2

u +
D(u)

s2c2d2
P 2

φ

)
+ α

k2 scd

ζ−(u)
cos φ+

β

ζ−(u)
,

Q = −4P 3

φ + 2H Pφ + α

(
sinφPu +

(scd)′

scd
cos φPφ

)
,

ζ−(u) = k2
(
ρ− sn2 u

)
, u ∈ (0, K), ρ = ζ2

ζ2−ζ1
> 1.

(56)
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(ii) or F = (ζ0 − ζ)(ζ − ζ1)(ζ − ζ2) and G(0) = 0, 0 < ζ < ζ0 < ζ1 < ζ2.

The integrable system is





H =
1

2
f (L2

1 + L2

2) +
1

2

(
h

3f
− cos2 θ f

)
L2
3

sin2 θ
+

+α
sin θ

√
f

(cos2 θ)1/3
cosφ+

β

(cos2 θ)1/3
,

Q = −4

9
L3

3 + 2H L3 + 3α (cos θ)1/3
(√

f L1 + (
√
f)′ cos φL3

)
,

(57)

where f(θ) = f̂(cos θ) with

f̂(µ) =

(
µ2/3 − ζ1

ζ0

)(
µ2/3 − ζ2

ζ0

)

µ4/3 + µ2/3 + 1
, µ ∈ (−1,+1), (58)

and h(θ) = ĥ(cos θ) with

ĥ(µ) = −µ2 +
4

3

(
1 +

ζ1 + ζ2
ζ0

)
µ4/3 − 2

(ζ1 + ζ2
ζ0

+
ζ1ζ2
ζ20

)
µ2/3 + 4

ζ1ζ2
ζ20

. (59)

The parameter ζ0 is:

ζ0 =
ζ1ζ2

(
√
ζ1 +

√
ζ2)2

< ζ1. (60)

Proof of (i): The change of variable indicated gives (56) by lengthy but straightforward
computations. 2

Remark: The previous analysis does not describe appropriately the special case ζ0 = 0
for which elliptic functions are no longer required. In this case the coordinates change

ζ =
ζ1 + ζ2

2
− ζ1 − ζ2

2
cos θ, (ζ1, ζ2) → (π, 0),

gives for the metric

g = dθ2 +
sin2 θ

1 + sin2 θ G(cos θ)
dφ2, (61)

with

G(µ) =
3µ2 + 4ρµ+ 1

4(ρ+ µ)2
, ρ =

ζ2 + ζ1
ζ2 − ζ1

> 1. (62)

The integrable system is





H =
1

2

(
P 2

θ +
( 1

sin2 θ
+G(cos θ)

)
P 2

φ

)
+ α

sin θ√
U

cosφ+
β

U
,

Q = −P 3

φ + 2H Pφ + 2α
√
U sin φPθ + 2α

(sin θ
√
U)′

sin θ
cosφPφ.,

U = ρ+ cos θ,

(63)

on which we recognize the Dullin-Matveev system [4].
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Proof of (ii): One has

G(0) = (ζ1 − ζ2)
2 ζ20 − 2ζ1ζ2(ζ1 + ζ2) ζ0 + ζ21ζ

2

2 .

Its vanishing determines uniquely ζ0 in terms of (ζ1, ζ2) as given by (60). At this stage
positivity requires ζ ∈ (0, ζ0). Let us make the change of variable ζ = ζ0 µ

2/3. The metric
becomes

g =
4

9

{
dµ2

(1− µ2)f̂(µ)
+ 3(1− µ2)

f̂(µ)

ĥ(µ)
dφ2

}
, µ ∈ (0, 1).

All the functions in the metric are even functions of µ: we can therefore take µ ∈ (−1,+1)
extending the metric beyond µ = 0. One can check that the points µ = ±1 are poles and
therefore we get again for manifold S

2. The change of variable µ = cos θ with θ ∈ (0, π)
gives then for result (57). 2

Let us proceed to:

Theorem 7 (a) The metric (40) for ∆− = 0 is defined on S
2 iff:

(i) either F = ζ2(ζ0 − ζ), 0 < ζ < ζ0, and we have




H =
1

2

(
L2

1 + L2

2 + 4L2

3

)
+ α sin θ cosφ+

β

cos2 θ
, θ ∈ (0, π),

Q = −4L3

3 + 2H L3 + α
(
cos θ L1 − 2 sin θ cosφL3

)
,

(64)

which is the Goryachev-Chaplygin top.

(ii) or F = (ζ − ζ1)
2(ζ0 − ζ) and G(0) = 0, 0 < ζ < ζ0.

The integrable system is of the form (57) with the functions

f̂(µ) =

(
4− µ2/3

)2

µ4/3 + µ2/3 + 1
, ĥ(µ) = (4− µ2/3)3, µ ∈ (−1,+1). (65)

(b) The metric (40) for ∆− = 0 is defined on H
2 iff:

F = (ζ − ζ1)
2(ζ0 − ζ), 0 < ζ1 < ζ < ζ0.

The integrable system, in the notations of Theorem 2, case (ii), is




H =
1

2ζ−(u)

{
M2

1 +M2

2 −
(
1− 3

C2

)
M2

3

}
+ α

T (1− T 2)

ζ−(u)
cosφ+

β

ζ−(u)
,

Q = −4M3

3 + 2HM3 + α
(
M1 − 3T cos φM3

)
,

ζ−(u) = ρ− tanh2 u, u ∈ (0,+∞), ρ = ζ0
ζ0−ζ1

> 1.

(66)

Proof of (a)(i): We have F = ζ2(ζ0 − ζ) and G = ζ3(4ζ0 − 3ζ) and ζ ∈ (0, ζ0) from
positivity. Taking for new variable θ such that ζ = ζ0 cos2 θ we get for the metric

g = 4

(
dθ2 +

sin2 θ

1 + 3 sin2 θ
dφ2

)
, θ ∈ (0, π/2). (67)
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As it stands the manifold is P 2(R) (see [1][p. 268]). However we can also extend the metric
taking θ ∈ (0, π): then the manifold extends to S

2 since θ = 0 and θ = π are poles and in
this case we recover Goryachev-Chaplygin top. The observables can be transformed into
(64). 2

Proof of (a)(ii): In this case we have G(0) = ζ31 (ζ1 − 4ζ0) which fixes ζ0 = ζ1/4. The
argument then proceeds as in the proof of Theorem 6, case (ii). 2

Proof of (b): The proof is identical to the one for Theorem 5, case (ii), except for the
change of coordinates, which is now

ζ = ζ0 − (ζ0 − ζ1) tanh
2 u : (ζ0, ζ1) → (0,+∞).

One gets (66) by similar arguments. 2

Theorem 8 The metric (40) for ∆− > 0 is defined on S
2 iff:

F = (ζ0 − ζ)(ζ − ζ1)(ζ − ζ1) and G(0) = 0, 0 < ζ < ζ0.

The integrable system is of the form (57) with the functions

f̂(µ) =

(
µ2/3 − ζ1

ζ0

)(
µ2/3 − ζ1

ζ0

)

µ4/3 + µ2/3 + 1
, µ ∈ (−1,+1), (68)

and

ĥ(µ) = −µ2 +
4

3

(
1 +

ζ1 + ζ1
ζ0

)
µ4/3 − 2

(ζ1 + ζ1
ζ0

+
|ζ1|2
ζ20

)
µ2/3 + 4

|ζ1|2
ζ20

. (69)

We have two possible values for ζ0 which are

ζ0 =
|ζ1|2

ζ1 + ζ1 ± 2|ζ1|
. (70)

Proof: We have
G(0) = (ζ1 − ζ1)

2 ζ20 − 2(ζ1 + ζ1)|ζ1|2 ζ0 + |ζ1|4.
Its vanishing gives for ζ0 the roots (70). The subsequent analysis is identical to that already
given in the proof of Theorem 6, case (ii). 2

It is interesting to examine the explicitly known integrable systems, with a metric
defined in S

2 and with a cubic observable already given in the literature:

1. The Goryachev-Chaplygin top given by Theorem 6, case (ii).

2. The Dullin-Matveev top [4] is given in the remark after Theorem 6.

3. If we restrict, in Theorem 8, the parameters according to

ζ0 = −(ζ1 + ζ1) and ζ20 = |ζ1|2, =⇒ f = 1, g = 4− µ3,

we recover the Goryachev top




H =
1

2

(
L2

1 + L2

2 +
4

3
L2

3

)
+ α

sin θ

(cos2 θ)1/3
cosφ+

β

(cos2 θ)1/3
,

Q = −4

9
P 3

φ + 2H Pφ + 3α (cos θ)1/3 L1.

(71)
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The two new examples given by Tsiganov in [9] are not defined on a manifold.
Remarks:

1. All of the previous examples belong to the third set with p < 0.

2. Considering the genus of the algebraic curve y2 =
F (ζ)

ζ
let us observe that the

Goryachev-Chaplygin and Dullin-Matveev systems have zero genus while the Goryachev
system has genus one.

3. In general the potential V as well as the observable Q are not defined on the whole
manifold.

6 Conclusion

We have exhaustively constructed all the integrable models, on two dimensional manifolds,
characterized by the following form of the observables





H =
1

2

(
P 2

θ + a(θ)P 2

φ

)
+ f(θ) cos φ+ g(θ)

Q = p P 3

φ + q
(
P 2

θ + a(θ)P 2

φ

)
Pφ + χ(θ) sinφPθ +

(
β(θ) + γ(θ) cosφ

)
Pφ

(72)

The main lesson from the failure of [7] to solve the problem has to do with the crucial
role of the coordinates choice, which determines the structure of the ODE to be solved
eventually. This is a familiar phenomenon to people dealing with Einstein equations:
despite their diffeomorphism invariance, finding exact solutions relies on an adapted choice
of coordinates which can simplify, or even linearize the differential system to be integrated.

Acknowledgments: we are greatly indebted to K. P. Tod for his kind and efficient help
in the analysis of the metrics singularities of Section 5.

References

[1] A. L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin
Heidelberg New-York (2002).

[2] A. V. Bolsinov, V. V. Kozlov and A. T. Fomenko, Russ. Math. Surv., 50 (1995)
473-501.
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