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We consider the Navier-Stokes system in a bounded domain with a smooth boundary. Given a sufficiently regular time-dependent global solution, we construct a finite-dimensional feedback control that is supported by a given open set and stabilizes the linearized equation. The proof of this fact is based on a truncated observability inequality, the regularizing property for the linearized equation, and some standard techniques of the optimal control theory. We then show that the control constructed for the linear problem stabilizes locally also the full Navier-Stokes system.

Introduction.

Let Ω ⊂ R 3 be a connected bounded domain located locally on one side of its smooth boundary Γ = ∂Ω. We consider the controlled Navier-Stokes system in Ω:

∂ t u + u • ∇ u -ν∆u + ∇p = h + ζ, ∇ • u = 0, (1.1) 
u Γ = 0.

(1.2)

Here u = (u 1 , u 2 , u 3 ) and p are unknown velocity field and pressure of the fluid, ν > 0 is the viscosity, u • ∇ stands for the differential operator u 1 ∂ 1 + u 2 ∂ 2 + u 3 ∂ 3 , h is a fixed function, and ζ is a control taking values in the space E of square-integrable functions in Ω whose support in x is contained in a given open subset ω ⊂ Ω. The problem of exact controllability for (1.1), (1.2) was in the focus of attention of many researchers starting from the early nineties, and it is now rather well understood. Namely, it was proved that, given a time T > 0 and a smooth solution û of (1.1), (1.2) with ζ ≡ 0, for any initial function u 0 sufficiently close to û(0) one can find a control ζ : [0, T ] → E such that the solution of problem (1.1), (1.2) supplemented with the initial condition u(0, x) = u 0 (x) (1.3) is defined on [0, T ] and satisfies the relation u(T ) = û(T ). We refer the reader to [START_REF] Coron | Global exact controllability of the Navier-Stokes equations on a manifold without boundary[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF]Exact local controllability of two-dimensional Navier-Stokes equations[END_REF][START_REF]Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF][START_REF] Yu | Remarks on exact controllability for the Navier-Stokes equations[END_REF][START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF] for the exact statements and the proofs of these results.

Even though the property of exact controllability is quite satisfactory from the mathematical point of view, many problems arising in applications require that the control in question be feedback, because closed-loop controls are usually more stable under perturbations (e.g., see the introduction to Part 3 in [START_REF] Coron | Control and Nonlinearity[END_REF]). This question has found a positive answer in the context of stabilization theory. It was intensively studied for the case in which the target solution û is stationary (in particular, the external force is independent of time). A typical result in such a situation claims that, given a smooth stationary state û of the Navier-Stokes system and a constant λ > 0, one can construct a continuous linear operator K û : L 2 → E with finite-dimensional range such that the solution of problem (1.1) -(1.3) with ζ = K û(uû) and a function u 0 sufficiently close to û is defined for all t ≥ 0 and converges to û at least with the rate e -λt . We refer the reader to the papers [START_REF] Fursikov | Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control[END_REF][START_REF] Fursikov | Stabilization for the 3D Navier-Stokes system by feedback boundary control[END_REF][START_REF] Raymond | Feedback boundary stabilization of the two-dimensional Navier-Stokes equations[END_REF][START_REF]Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations[END_REF][START_REF] Raymond | Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite-dimensional controllers[END_REF][START_REF] Badra | Stabilization of parabolic nonlinear systems with finite-dimensional feedback or dynamical controllers[END_REF] for boundary stabilization and to [START_REF] Barbu | Feedback stabilization of Navier-Stokes equations[END_REF][START_REF] Barbu | Internal stabilization of Navier-Stokes equations with finitedimensional controllers[END_REF][START_REF] Barbu | Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high-and low-gain feedback controllers[END_REF] for stabilization by a distributed control.

The aim of this paper is to establish a similar result in the case when the target solution û depends on time. Namely, we will prove the following theorem, whose exact formulation is given in Section 4.

Main Theorem. Let (û, p) be a global smooth solution for problem (1.1), (1.2) with ζ ≡ 0 such that ess sup

(t,x)∈Q ∂ j t ∂ α x û(t, x) ≤ R for j = 0, 1, |α| ≤ 1,
where Q = R + × Ω and R > 0 is a constant. Then for any λ > 0 and any open subset ω ⊂ Ω there is an integer M = M (R, λ, ω) ≥ 1, an M -dimensional space E ⊂ C ∞ 0 (ω, R 3 ), and a family of continuous linear operators K û(t) : L 2 (Ω, R 3 ) → E, t ≥ 0, such that the following assertions hold.

(a) The function t → K û(t) is continuous in the weak operator topology, and its operator norm is bounded by a constant depending only on R, λ, and ω. (b) For any divergence free function u 0 ∈ H 1 0 (Ω, R 3 ) that is sufficiently close to û(0) in the H 1 -norm problem (1.1) -(1.3) with ζ = K û(t)(uû(t)) has a unique global strong solution (u, p), which satisfies the inequality

|u(t) -û(t)| H 1 ≤ Ce -λt |u 0 -û(0)| H 1 , t ≥ 0.
Note that this theorem remains true for the two-dimensional Navier-Stokes system, and in this case, it suffices to assume that the initial function u 0 is close to û(0) in the L 2 -norm. Furthermore, the approach developed in this paper applies equally well to the case when the control acts via the boundary. This situation will be addressed in a subsequent publication.

As was mentioned above, the problem of feedback stabilization is rather well understood for stationary reference solutions. Let us explain informally the additional difficulties arising in the non-stationary case and reveal a common mechanism of stabilization. A well-known argument based on the contraction mapping principle enables one to prove that a control stabilizing the linearized problem locally stabilizes also the nonlinear equation. Thus, it suffices to study the linearized problem. The main idea in the stationary case is to split it into a system of two autonomous equations, the first of which is finite-dimensional and has the zero solution as a possibly unstable equilibrium point, whereas the second is exponentially stable due to the large negative eigenvalues of the Laplacian. One then applies methods of finite-dimensional theory (e.g., the pole assignment theorem [21, Section 2.5]) to find a stabilizing feedback control for the first equation and proves that using the same control in the original problem yields an exponentially decaying solution; see [START_REF] Barbu | Feedback stabilization of Navier-Stokes equations[END_REF][START_REF] Barbu | Internal stabilization of Navier-Stokes equations with finitedimensional controllers[END_REF][START_REF] Raymond | Feedback boundary stabilization of the two-dimensional Navier-Stokes equations[END_REF][START_REF] Barbu | Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high-and low-gain feedback controllers[END_REF][START_REF]Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations[END_REF][START_REF] Raymond | Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite-dimensional controllers[END_REF][START_REF] Badra | Stabilization of parabolic nonlinear systems with finite-dimensional feedback or dynamical controllers[END_REF].

It is difficult to apply this approach in the case of time-dependent reference solutions, because a non-autonomous equation does not necessarily admits invariant subspaces. However, the above-mentioned scheme for stabilization is based essentially on the so-called Foiaş-Prodi property for parabolic PDE's [START_REF] Foiaş | Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2[END_REF]. It says, roughly speaking, that if the projections of two solutions to the unstable modes converge to each other as time goes to infinity, then the difference between these solutions goes to zero. It turns out that the conclusion remains true if the projections are close to each other at times proportional to a fixed constant. The main idea of this paper is to choose a control that ensures the equality at integer times for the projections of two solutions to the unstable modes. More precisely, we consider the following problem obtained by linearizing (1.1), (1.2) around a non-stationary solution û(t, x):

∂ t v + û • ∇ v + v • ∇ û -ν∆v + ∇p = ζ, ∇ • v = 0, v Γ = 0. (1.4)
Let us assume that, for a sufficiently large integer N , we have constructed a continuous linear operator ζ : L 2 (Ω, R 3 ) → L 2 ((0, 1); E) such that, for any initial function v 0 , the solution of (1.4

) with ζ = ζ(v 0 ) issued from v 0 satisfies the relation Π N v(1) = 0,
where Π N stands for the orthogonal projection in L 2 onto the subspace spanned by the first N eigenfunctions of the Stokes operator in Ω. In this case, using the Poincaré inequality and regularizing property of the resolving operator for (1.4), we get

|v(1)| L 2 = |(I -Π N )v(1)| L 2 ≤ C 1 α -1/2 N |v(1)| H 1 ≤ C 2 α -1/2 N |v 0 | L 2 + | ζ(v 0 )| L 2 ((0,1);E) ≤ C 3 α -1/2 N |v 0 | L 2 , (1.5) 
where {α j } denotes the increasing sequence of the eigenvalues for the Stokes operator and C i , i = 1, 2, 3, are some constants not depending on N . The fact that C 3 is independent of N is a crucial property, and its proof is based on a truncated observability inequality (see Section 5.3 in Appendix). It follows from

(1.5) that, if N is sufficiently large, then |v(1)| L 2 ≤ e -λ |v 0 | L 2 .
Iterating this procedure, we get an exponentially decaying solution. Once an exponential stabilization of the linearized problem (1.4) is obtained, the existence of an exponentially stabilizing feedback control can be proved with the help of the dynamic programming principle. We refer the reader to Section 3 for an accurate presentation of the results on the linearized equation and some further comments on the existence of Lyapunov function, derivation of a Riccati equation for the feedback control operator, and the dimension of controllers.

The paper is organized as follows. In Section 2, we introduce the functional spaces arising in the theory of the Navier-Stokes equations and recall some well-known facts. Section 3 is devoted to studying the linearized problem. In Section 4, we establish the main result of the paper on local exponential stabilization of the full Navier-Stokes system. The Appendix gathers some auxiliary results used in the main text.

Notation. We write N and R for the sets of non-negative integers and real numbers, respectively, and we define N 0 = N \ {0}, R + = (0, +∞), and R s = (s, +∞). We denote by Ω ⊂ R 3 a bounded domain with a C 2 -smooth boundary Γ = ∂Ω, and for τ ∈ R, we set I τ = (τ, τ + 1), Q τ = I τ × Ω, and Q = R + × Ω. The partial time derivative ∂ t u of a function u(t, x) will be denoted by u t .

For a Banach space X, we denote by | • | X the corresponding norm, by X ′ its dual, and by •, • X ′ ,X the duality between X ′ and X.

If X and Y are Banach spaces and I ⊆ R is an open interval, then we write

W (I, X, Y ) := {f ∈ L 2 (I, X) | f t ∈ L 2 (I, Y )},
where the derivative f t = df dt is taken in the sense of distributions. This space is endowed with the natural norm

|f | W (I, X, Y ) := |f | 2 L 2 (I, X) + |f t | 2 L 2 (I, Y ) 1/2 .
Note that if X = Y , then we obtain the Sobolev space W 1,2 (I, X).

If I ⊂ R is a closed interval, then C(I, X) stands for the space of continuous functions f : I → X with the norm

|f | C(I,X) = max t∈I |f (t)| X .
For a given space Z of functions f = f (t) defined on an interval of R and a constant λ > 0, we define

Z λ := {f ∈ Z | e (λ/2)t f ∈ Z}.
This space is endowed with the norm

|f | Z λ := |f | 2 Z + |e (λ/2)t f | 2 Z 1/2 .
Throughout the paper, we deal with two integers, N and M . Roughly speaking, N stands for the number of unstable modes in the linearized Navier-Stokes system and M denotes the space dimension of the control function arising in various problems.

C [a1,...,a k ] denotes a function of non-negative variables a j that increases in each of its arguments.

C i , i = 1, 2, . . . , stand for unessential positive constants.

2. Preliminaries.

Functional spaces and reduction to an evolution equation.

In what follows, we will confine ourselves to the 3D case, although all the results remain valid for the 2D Navier-Stokes equations.

Let Ω ⊂ R 3 be a connected bounded domain located locally on one side of its C 2smooth boundary Γ = ∂Ω. It is natural to study the incompressible Navier-Stokes system as an evolution equation in the subspace H of divergence free vector fields tangent to the boundary:

H := {u ∈ L 2 (Ω, R 3 ) | ∇ • u = 0 in Ω, u • n = 0 on Γ}.
Here L 2 (Ω, R 3 ) is the space of square integrable vector fields (u 1 , u 2 , u 3 ) in Ω, ∇ • u := ∂ 1 u 1 +∂ 2 u 2 +∂ 3 u 3 is the divergence of u, and n is the normal vector to the boundary Γ. Let us denote by H s (Ω) the Sobolev space of order s and by H s (Ω, R 3 ) the space of vector fields in Ω whose components belong to H s (Ω). To simplify notation, we will often write L 2 and H s ; the context will imply the domain on which these spaces are considered. Define

V := {u ∈ H 1 (Ω, R 3 ) | ∇ • u = 0 in Ω, u = 0 on Γ}, U := H 2 (Ω, R 3 ) ∩ V.
Note that U coincides with the natural domain D(L) of the Stokes operator L = -νΠ∆, where Π is the orthogonal projection in L 2 (Ω, R 3 ) onto H. The spaces H, V and U are endowed with the scalar products

(u, v) H := (u, v) L 2 (Ω,R 3 ) , (u, v) V := Lu, v V ′ ,V , (u, v) D(L) := (Lu, Lv) L 2 (Ω,R 3 ) ,
respectively, and we denote by

| • | H , | • | V and | • | D(L) the corresponding norms.
Finally, for any integer k ≥ 0, we introduce the space Banach W k of measurable vector functions u = (u 1 , u 2 , u 3 ) defined in Q such that

|u| W k := j,α ess sup (t,x)∈Q ∂ j t ∂ α x u(t, x) < ∞, (2.1) 
where the sum is taken over 0 ≤ j ≤ k and |α| ≤ 1. In the case k = 1, we will write W instead of W 1 .

It is well known (e.g., see [START_REF] Temam | Navier-Stokes equations: Theory and numerical analysis[END_REF]) that problem (1.1), (1.2) is equivalent to the following evolutionary equation in H:

u t + Lu + Bu = Π(h + ζ), (2.2) 
where Bu : V → V ′ is defined by Bu := B(u, u) with

B(u, v), w V ′ ,V = 3 i,j=1 Ω u i (∂ i u j )w j dx.
In the following, we will deal also with linear equations obtained from (2.2) after replacing B by one of the operators B(û) and B * (û), where û ∈ W is a fixed function,

B(û)v = B(v, û) + B(û, v)
, and B * (û) stands for the formal adjoint of B(û) with respect to the scalar product on H:

B * (û)v, w V ′ ,V = 3 i,j=1 Ω (v j ∂ i ûj -ûj ∂ j v i )w i dx.
Namely, let us consider the problem

r t + Lr + Br = f, t ∈ I 0 = (0, 1), (2.3) 
r(0) = r 0 , (2.4) 
where B = B(û) or B * (û). Lemma 2.1. For any û ∈ W, u 0 ∈ H, and f ∈ L 2 (I 0 , V ′ ), problem (2.3), (2.4) has a unique solution r ∈ W (I 0 , V, V ′ ), which satisfies the inequality

|r| 2 C( Ī0, H) + I0 |r| 2 V dt + I0 |r t | 2 V ′ dt ≤ C [|û| W 0 ] |r 0 | 2 H + |f | 2 L 2 (I0,V ′ ) , (2.5) 
where Ī stands for the closure of an interval I ⊂ R. Moreover, if f ∈ L 2 (I 0 , H), then we have the inclusions

√ tv ∈ C( Ī0 , V ), √ tv ∈ L 2 (I 0 , U ) and the estimate | √ tr| 2 C( Ī0, V ) + I0 ( √ t|r| U ) 2 dt ≤ C [|û| W 0 ] (|r 0 | 2 H + |f | 2 L 2 (I0,H) ). (2.6)
Finally, if r 0 ∈ V and f ∈ L 2 (I 0 , H), then r ∈ W (I 0 , U, H) and

|r| 2 C( Ī0, V ) + I0 |r| 2 D(L) dt + I0 |r t | 2 H dt ≤ C [|û| W 0 ] (|r 0 | 2 V + |f | 2 L 2 (I0,H) ). (2.7)
The proof of this lemma is based on a well-known argument, and we will not present it here. We refer the reader to the books [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Navier-Stokes equations: Theory and numerical analysis[END_REF] for more general results on existence, uniqueness, and a priori estimates for solutions linear and nonlinear Navier-Stokes type problems.

Setting of the problem. Let us fix a function

h ∈ L 2 (R + , H) and suppose that û ∈ L 2 (R + , V ) ∩ W solves the Navier-Stokes system ût + Lû + B û = h, t > 0.
Given a function u 0 ∈ H and a sub-domain ω ⊆ Ω, our goal is to find a finitedimensional subspace E ⊂ L 2 (ω, R 3 ) and a control ζ ∈ L 2 loc (R + , E) such that the solution of the problem

u t + Lu + Bu = h + Πζ, u(0) = u 0 (2.8)
is defined for all t > 0 and converges exponentially to û, i.e.,

|u(t) -û(t)| H ≤ C e -κt for t ≥ 0,
where C and κ are positive constants.

Let us write L 2 (Ω, R 3 ) as a direct sum L 2 (Ω, R 3 ) = H ⊕ H ⊥
, where H ⊥ denotes the orthogonal complement of H in L 2 . For each positive integer N , we now define N -dimensional spaces E N ⊂ L 2 and F N ⊂ H as follows. Let {φ i | i ∈ N 0 } be an orthonormal basis in L 2 (Ω, R 3 ) formed by the eigenfunctions of the Dirichlet Laplacian and let 0 < β 1 ≤ β 2 ≤ . . . be the corresponding eigenvalues. Furthermore, let {e i | i ∈ N 0 } be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let 0 < α 1 ≤ α 2 ≤ . . . be the corresponding eigenvalues. For each N ∈ N 0 , we introduce the N -dimensional subspaces

E N := span{φ i | i ≤ N } ⊂ L 2 (Ω, R 3 ), F N := span{e i | i ≤ N } ⊂ H and denote by P N : L 2 (Ω, R 3 ) → E N and Π N : L 2 (Ω, R 3 ) → F N the
corresponding orthogonal projections. We will show that the required control space can be chosen in the form E M = χE M , where χ ∈ C ∞ 0 (Ω) is a given function not identically equal to zero, and the integer M is sufficiently large.

Let us note that, seeking a solution of (2.8) in the form u = û + v, we obtain the following equivalent problem for v:

v t + Lv + Bv + B(û)v = Πζ, v(0) = v 0 , (2.9) 
where v 0 = u 0u(0). It is clear that it suffices to consider the problem of exponential stabilization to zero for solutions of (2.9). Thus, in what follows, we will study problem (2.9).

3. Main result for linearized system. We fix a function û

∈ L 2 loc (R + , V )∩W.
In what follows, it will be convenient to write the control ζ entering (2.9) in the form ζ = χP M η, where η takes its values in L 2 (Ω, R 3 ) and χ ∈ C ∞ 0 (Ω) is a nonzero function not identically equal to zero. Thus, we study the problem

v t + Lv + B(û)v = Π(χP M η), (3.1) 
v(0) = v 0 , (3.2) 
where v 0 ∈ H. We refer the reader to [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Navier-Stokes equations: Theory and numerical analysis[END_REF] for precise definitions of the concept of a solution for (3.1) (and all other Navier-Stokes type PDE's).

3.1. Existence of a stabilizing control. We begin with the following result, which shows that one can choose a finite-dimensional control exponentially stabilizing the zero solution for (3.1).

Theorem 3.1. For each v 0 ∈ H and λ > 0, there is an integer

M = C [|û|W ,λ] ≥ 1 and a control η û,λ (v 0 ) ∈ L 2 (R + , E M ) such that the solution v of system (3.1), (3.2) satisfies the inequality |v(t)| 2 H ≤ κ 1 |v 0 | 2 H e -λt , t ≥ 0, (3.3) 
where

κ 1 = C [|û|W ,λ] > 0 is a constant not depending on v 0 . Moreover, the mapping v 0 → η û,λ (v 0
) is linear and satisfies the inequality

e ( λ/2)t η û,λ (v 0 ) L 2 (R+,EM ) ≤ κ 2 |v 0 | H , (3.4 
)

for 0 ≤ λ < λ, where κ 2 = C [|û|W ,λ,(λ-λ) -1 ] . Finally, if v 0 ∈ V , then |v(t)| 2 V ≤ κ 3 |v 0 | 2 V e -λt , t ≥ 0, (3.5) 
where

κ 3 = C [|û|W ,λ] > 0 does not depend on v 0 .
To prove this theorem, we will need two auxiliary lemmas. For each τ ≥ 0, consider equation (3.1) on the time interval I τ = (τ, τ + 1) and supplement it with the initial condition

v(τ ) = w 0 . (3.6) 
Let us denote by S û,τ (w 0 , η) the operator that takes the pair (w 0 , η) to the solution of (3.1), (3.6). By Lemma 2.1, the operator S û,τ is continuous from

H to C( Īτ , H) ∩ L 2 (I τ , V ) and from V to C( Īτ , V ) ∩ L 2 (I τ , U
). We will write S û,τ (w 0 , η)(t) for the value of the solution at time t. Lemma 3.2. For each N ∈ N there is an integer

M 1 = C [λ,|û|W ,N ] ≥ 1 such that, for every w 0 ∈ H, one can find a control η ∈ L 2 (I τ , E M1 ) for which Π N S û,τ (w 0 , η)(τ + 1) = 0.
Moreover, there is a constant C χ depending only on |û| W (but not on N and τ ) such that

|η| 2 L 2 (Qτ ) ≤ C χ |w 0 | 2 H . (3.7) 
Proof. Let us fix ǫ > 0 and consider the following minimization problem. Problem 3.3. Given M, N ∈ N and w 0 ∈ H, find the minimum of the quadratic functional

J ǫ (v, η) := |η| 2 L 2 (Qτ , R 3 ) + 1 ǫ |Π N S û,τ (w 0 , η)(τ + 1)| 2 H on the set of functions (v, η) ∈ W (I τ , V, V ′ )×L 2 (Q τ , R 3
) that satisfy (3.1) and (3.6).

Theorem 5.2 implies that Problem 3.3 has a unique minimizer (v ǫ , ηǫ ), which linearly depends on w 0 ∈ H. We now derive some estimates for the norm of the optimal control ηǫ .

To this end, the general theory of linear-quadratic optimal control problems is applicable. We use here a version of the Karush-Kuhn-Tucker theorem (see Theorem 5.1). Let us define the affine mapping

F : W ( Īτ , V, V ′ ) × L 2 (Q τ , R 3 ) → H × L 2 (I τ , V ′ ), v, η) → (v(0) -w 0 , v t + Lv + B(û)v -Π(χP M η)
and note that its derivative is surjective. Hence, by the Karush-Kuhn-Tucker theorem, there is a Lagrange multiplier (µ ǫ , q ǫ ) ∈ H × L2 (I τ , V ) such that1 

J ′ ǫ (v ǫ , ηǫ ) -(µ ǫ , q ǫ ) • F ′ (v ǫ , ηǫ ) = 0. It follows that, for all (z, ξ) ∈ W ( Īτ , V, V ′ ) × L 2 (Q τ , R 3 ), we have 2 ǫ (Π N vǫ (τ + 1), z(τ + 1)) H + (z(τ ), µ ǫ ) H + Iτ z t + Lz + B(û)z, q ǫ V ′ ,V dt = 0, (3.8) 2 Iτ (η ǫ , ξ) L 2 dt + Iτ -Π(χP M ξ), q ǫ V ′ ,V dt = 0. (3.9)
Relation (3.8) implies that q ǫ is the solution of the problem

q ǫ t -Lq ǫ -B * (û)q ǫ = 0, t ∈ I τ , (3.10) 
q ǫ (τ + 1) = -2ǫ -1 Π N vǫ (τ + 1). (3.11) 
Furthermore, it follows from (3.9) that 2η ǫ = P M (χq ǫ ).

(3.12)

Combining (3.1), (3.10), and (3.12), we derive

d dt (q ǫ , vǫ ) H = (q ǫ t , vǫ ) H + (q ǫ , vǫ t ) H = (Lq ǫ + B * (û)q ǫ , vǫ ) H + (q ǫ , -Lv ǫ -B(û)v ǫ + Π(χP M ηǫ )) H = (q ǫ , Π(χP M ηǫ )) H = 1 2 |P M (χq ǫ )| 2 L 2 .
Integrating in time over the interval I τ , we obtain

Iτ P M (χq ǫ (t)) 2 L 2 dt = 2 (q ǫ (τ + 1), vǫ (τ + 1)) H -(q ǫ (τ ), vǫ (τ )) H .
Recalling now (3.11), we see that 2(q ǫ (τ + 1), vǫ (τ + 1)) H = -ǫ|q ǫ (τ + 1)| 2 H and therefore

Iτ |P M (χq ǫ )| 2 L 2 dt + ǫ|q ǫ (τ + 1)| 2 H = -2(q ǫ (τ ), vǫ (τ )) H . (3.13)
We wish to use the truncated observability inequality (5.9) to estimate the right-hand side of (3.13). To this end, we take M = M 1 , where M 1 is the integer constructed in Proposition 5.3. Then, for every α > 0, we can write

Iτ |P M (χq ǫ )| 2 L 2 dt + ǫ|q ǫ (τ + 1)| 2 H ≤ α|q ǫ (τ )| 2 H + α -1 |v ǫ (τ )| 2 H ≤ αD χ Iτ |P M χq ǫ | 2 L 2 dt + α -1 |v ǫ (τ )| 2 H .
Setting α = (2D χ ) -1 , we obtain

Iτ |P M (χq ǫ )| 2 L 2 dt + 2ǫ|q ǫ (τ + 1)| 2 H ≤ 4D χ |w 0 | 2 H . (3.14)
In particular, the family of functions

{P M (χq ǫ ) | ǫ > 0} is bounded in L 2 (Q τ , R 3 )
, and the family of solutions

{v ǫ | ǫ > 0} for problem (3.1), (3.6) is bounded in L 2 (I τ , V ). It follows that the family {v ǫ t | ǫ > 0} is bounded in L 2 (I τ , V ′
). Thus, we can find a sequence ǫ n → 0 + such that

η ǫn = 1 2 P M (χq ǫn ) ⇀ η 0 in L 2 (I τ , E M ), vǫn ⇀ v 0 in L 2 (I τ , V ), vǫn t ⇀ v 0 t in L 2 (I τ , V ′ ),
where 

η 0 ∈ L 2 (I τ , E M ) and v 0 ∈ W (I τ , V, V ′ )
|Π N vǫ (τ + 1)| 2 H = ǫ 2 4 |q ǫ (τ + 1)| 2 H ≤ ǫD χ 2 |w 0 | 2 H → 0 as ǫ → 0.
This convergence implies that Π N v 0 (τ + 1) = 0. Furthermore, it follows from (3.14) that the function η 0 satisfies inequality (3.7) with C χ = 4D χ . The proof of the lemma is complete. In view of Lemma 3.2, it makes sense to consider the following minimization problem.

Problem 3.4. Given integers M, N ≥ 1 and a function w 0 ∈ H, find the minimum of the quadratic functional

J(η) := |η| 2 L 2 (Qτ , R 3 ) on the set of functions (v, η) ∈ W (I τ , V, V ′ ) × L 2 (I τ , E M ) satisfying equations (3.1), (3.6) and the condition Π N v(τ + 1) = 0.
The following result shows that the control η constructed in Lemma 3.2 can be chosen to be a linear function of the initial state.

Lemma 3.5. Let N ≥ 1 be an arbitrary integer and let M be the integer constructed in Lemma 3.2. Then for any w 0 ∈ H Problem 3.4 has a unique minimizer

(v û,τ , ηû,τ ) ∈ W (I τ , V, V ′ ) × L 2 (I τ , E M ).
Moreover, the mapping w 0 → (v û,τ , ηû,τ ) is linear and continuous in the corresponding spaces, and there is a constant C χ depending only on |û| W (but not on N and τ ) such that

|η û,τ | 2 L 2 (Iτ , EM ) ≤ C χ |w 0 | 2 H . (3.15) Proof. Let us fix N ∈ N, set W N (I τ , V, V ′ ) := {v ∈ W (I τ , V, V ′ ) | Π N v(τ + 1) = 0},
and define X as the space of functions (v, η) ∈ W N (I τ , V, V ′ )×L2 (I τ , E M ) that satisfy equation (3.1). In view of Lemma 3.2 and the linearity of (3.1), X is a nontrivial Banach space, and the operator A : X → H taking (v, η) to v(0) is surjective. Thus, by Theorem 5.2, Problem 3.4 has a unique minimizer (v û,τ , ηû,τ ), which linearly depends on w 0 . Inequality (3.15) follows immediately from (3.7), because the norm of ηû,τ (w 0 ) in the space L 2 (I τ , E M ) is necessarily smaller than the norm of the control function η constructed in Lemma 3.2.

Proof of Theorem 3.1. Let us fix a sufficiently large N ≥ 1 and denote by M 1 the integer M constructed in Lemma 3.2. The main idea of the proof was outlined in the introduction: we use the operator ηû,τ constructed in Lemma 3.5 to define an exponentially stabilizing control η û,λ consecutively on the intervals I n = (n, n + 1), n ≥ 0. Namely, let us fix an initial function v 0 ∈ H and set 2 η û,λ (t) = ηû,0 (v 0 )(t) for t ∈ I 0 .

Assuming that η û,λ is constructed on the interval (0, n) and denoting by v(t) the corresponding solution on [0, n], we define

η û,λ (t) = ηû,n (v(n))(t) for t ∈ I n .
By construction, η û,λ is an E M1 -valued function square integrable on every bounded interval. Moreover, the linearity of ηû,τ implies that η û,λ linearly depends on v 0 . We claim that, if N ∈ N is sufficiently large, then the solution v of system (3.1), (3.2) with η = η û,λ satisfies inequalities (3.3) and (3.5).

Indeed, it follows from (2.6) that

|v(1)| 2 V = |S û,0 (v 0 , ηû,0 (v 0 ))(1)| 2 V ≤ C [|û|W ] |v 0 | 2 H + |χ| 2 L ∞ (Ω) |η û,0 (v 0 )| 2 L 2 (I0, EM ) ,
where we set E = E M1 to simplify the notation. Since Π N v(1) = 0, we obtain

α N |v(1)| 2 H ≤ |v(1)| 2 V ≤ C [|û|W ] |v 0 | 2 + |χ| 2 L ∞ (Ω) |η û,0 (v 0 )| 2 L 2 (I0, EM ) .
Using the continuity of ηû,0 (see Lemma 3.5) and setting

C ′ χ := C χ |χ| 2 L ∞ (Ω) , we derive |v(1)| 2 H ≤ α -1 N |v(1)| 2 V ≤ α -1 N (C [|û|W ] + C ′ χ )|v 0 | 2 .
Taking N so large that

α N ≥ e λ (C [|û|W ] + C ′ χ ), we obtain |v(1)| 2 H ≤ e -λ |v 0 | 2 H .
We may repeat the above argument on every the interval I n and conclude that

|v(n + 1)| 2 H ≤ e -λ |v(n)| 2 H .
By induction, we see that the solution v of problem (3.1), (3.2) with η = η û,λ satisfies the inequality

|v(n)| 2 H ≤ e -λn |v 0 | 2 H . (3.16)
On the other hand, in view of (2.6), we have

|v| 2 C( Īn, H) ≤ C [|û|W ] |v(n)| 2 H + |χ| 2 L ∞ |η û,n (v(n))| 2 L 2 (In, EM ) ≤ (C [|û|W ] + C ′ χ )|v(n)| 2 H .
Combining this with (2.5), we see that v satisfies inequality (3.3).

We now prove (3.4). It follows from (3.15) and (3.16) that, for any λ < λ, we have

|e ( λ/2)t η û,λ | 2 L 2 (R+, EM ) = n∈N |e ( λ/2)t ηû,n (v(n))| 2 L 2 (In, EM ) ≤ C ′ χ n∈N e λ(n+1) |v(n)| 2 H ≤ C ′ χ e λ n∈N e ( λ-λ)n |v 0 | 2 H ≤ κ 2 |v 0 | 2 H . (3.17) 
It remains to prove inequality (3.5). In view of (2.6), we have

| √ t -nv| 2 C( Īn, V ) ≤ C [|û|W ] |v(n)| 2 H + 3|χ| 2 L ∞ (Ω) |η û,n (v(n))| 2 L 2 (In, EM ) ≤ C [|û|W ] + 3C ′ χ |v(n)| 2 H .
Combining this with (3.16), we see that

|v(n + 1)| 2 V ≤ C 1 |v(n)| 2 H ≤ C 1 e -λn |v 0 | 2 H .
In view of (2.7), for n ≥ 1 we derive

|v| 2 C( Īn, V ) ≤ C [|û|W ] |v(n)| 2 V + 3|χ| 2 L ∞ (Ω) |η û,n (v(n))| 2 L 2 (In, EM ) ≤ C 2 e -λ(n-1) |v 0 | 2 H ,
whence it follows that

|v(t)| 2 V ≤ C 3 e -λt |v 0 | 2 H for t ≥ 1.
Using again inequality (2.7), we conclude that (3.5) holds. The proof of the theorem is complete.

Feedback control.

In this section, we show that the exponentially stabilizing control constructed in Theorem 3.1 can be chosen in a feedback form. Namely, let us fix a nonzero function χ ∈ C ∞ 0 (Ω) and denote by E M the vector space spanned by the functions χφ j , j = 1, . . . , M . Note that, due to elliptic regularity, the eigenfunctions φ j are infinitely smooth in Ω, whence it follows, in particular, that E M is contained in C ∞ 0 (ω, R 3 ) for any ω ⊃ supp χ. We will prove the following theorem. (i) The function t → K λ û (t) is continuous in the weak operator topology, and its operator norm is bounded by κ.

(ii) For any s ≥ 0 and v 0 ∈ H, the solution of the problem

v t + Lv + B(û)v = ΠK λ û (t)v, (3.18) v(s) = v 0 (3.19)
exists on the half-line R s and satisfies the inequality

e λ(t-s) |v(t)| 2 H + t s e λ(τ -s) |v(τ )| 2 V + |v t (τ )| 2 V ′ dτ ≤ κ|v 0 | 2 H , t ≥ s, (3.20) Moreover, if v 0 ∈ V , then e λ(t-s) |v(t)| 2 V + t s e λ(τ -s) |v(τ )| 2 D(L) +|v t (τ )| 2 H dτ ≤ κ|v 0 | 2 V , t ≥ s. (3.21)
To prove this theorem, we will need two auxiliary lemmas. Let us consider the following problem.

Problem 3.7. Given s ≥ 0, λ > 0, M ∈ N and w 0 ∈ H, find the minimum of the functional

M λ s (v, η) := Rs e λt (|v| 2 V + |η| 2 L 2 ) dt on the set of functions (v, η) ∈ W λ (R s , V, V ′ ) × L 2 λ (R s , L 2 (Ω, R 3 
)) that satisfy equation (3.1) and the initial condition v(s) = w 0 .

(

The following lemma establishes the existence of an optimal solution and gives a formula for the optimal cost. Lemma 3.8. For any û ∈ W and λ > 0 there is an integer M = C [|û|W ,λ] ≥ 1 such that Problem 3.7 has a unique minimizer (v * s , η * s ). Moreover, there is a continuous operator Q s,λ û : H → H such that

M λ s (v * s , η * s ) = Q s,λ û w 0 , w 0 , (3.23) |Q s,λ û | L(H) ≤ Ce λs , (3.24) 
where L(H) stands for the space of continuous linear operators in H with the natural norm and

C = C [|û|W ,λ] > 0 is a constant. Finally, Q s,λ
û continuously depends on s in the weak operator topology.

Proof. Let X be the space of functions (v, η)

∈ W λ (R s , V, V ′ ) × L 2 λ (R s , L 2
) that satisfy (3.1) and endow it with the norm M λ s (v, η) 1/2 . It is straightforward to see that X is a Hilbert space. Using Theorem 3.1 with a constant λ > λ and the initial point moved to s, one can construct an integer M = C [|û|W , λ] ≥ 1 such that, for any w 0 ∈ H and an appropriate control η ∈ L 2 λ(R s , E M ), we have

|v(t)| 2 H ≤ κ 1 e -λ(t-s) |w 0 | 2 H , |η(t)| 2 EM ≤ κ 2 e -λ(t-s) |w 0 | 2 H ,
where v stands for the solution of (3.1), (3.22). Furthermore, by Lemma 2.1, we have

Iτ e λt |v| 2 V dt ≤ e λ(τ +1) Iτ |v| 2 V dt ≤ C [|û|W ,λ] e λτ |v(τ )| 2 H
for any τ ≥ 0.

Combining the above three inequalities, we conclude that

M λ s (v, η) = Rs e λt (|v| 2 V + |η| 2 L 2 ) dt ≤ C [ λ,( λ-λ) -1 ,|û|W ] e λs |w 0 | 2 H . (3.25)
It follows that X is nonempty, and the mapping A : X → H taking (v, η) to v(0) is surjective. Thus, by Theorem 5.2, Problem 3.7 has a unique minimizer (v * s , η * s ) = (v * s (w 0 ), η * s (w 0 )), which linearly depends on w 0 . We now prove (3.23) and (3.24). It follows from (3.25) that the mapping

(a, b) → Rs e λt ((v * s (a), v * s (b)) V + (η * s (a), η * s (b)) L 2 ) dt
is a continuous bilinear form on H which is bounded by C 2 e λs on the unit ball. Therefore, the optimal cost can be written as (3.23), where Q s,λ û is a bounded selfadjoint operator in H whose norm satisfies (3.24).

It remains to establish the continuity of Q s,λ û in the weak operator topology. To this end, it suffices to prove that (Q s,λ û w, w) → (Q s0,λ û w, w) as s → s 0 for any w ∈ H.

(3.26)

We will prove this convergence for s 0 > 0; in the case s 0 = 0, the proof is simpler.

Let us fix τ ≤ s 0 and denote by (v * τ , η * τ ) the optimal solution of Problem 3.7 with s = τ and w 0 = w. Note that, for any bounded interval I ⊂ R τ , the norms of the functions v * τ and η * τ in the spaces W (I, V, V ′ ) and L 2 (I, L 2 ), respectively, are bounded uniformly in τ . It is straightforward to see that the restriction of (v * τ , η * τ ) to the half-line R s with s > τ is the optimal solution of Problem 3.7 with w 0 = v * τ (s); cf. Lemma 3.10 below. Therefore, abbreviating Q s = Q s,λ û , we can write

Q s v * τ (s), v * τ (s) = ∞ s e λt |v * τ (t)| 2 V + |η * τ (t)| 2 L 2 dt. Setting ∆ s τ (w) = |(Q s v * τ (s), v * τ (s)) -(Q s w, w)|, for s ≥ τ we have (Q s w, w) -(Q s0 w, w) ≤ ∆ s τ (w) + ∆ s0 τ (w) + s s0 e λt |v * τ (t)| 2 V + |η * τ (t)| 2 L 2 dt .
The third term on the right-hand side of this inequality goes to zero as s → s 0 . Therefore convergence (3.26) will be established if we prove that ∆ s τ (w) → 0 as τ, s → s 0 . To this end, note that the above-mentioned boundedness of v * τ implies that

|v * r (s) -w| L 2 → 0 as τ, s → s 0 .
Combining this with the fact that the norm of Q s is bounded on finite intervals (see (3.24)), we arrive at the required assertion. We now consider another minimization problem closely related to Problem 3.7 with s = 0. Problem 3.9. Given λ > 0 and v 0 ∈ H, find the minimum of the functional

N λ s (v, η) := (0, s) e λt (|v| 2 V + |η| 2 L 2 ) dt + (Q s,λ û v(s), v(s))
on the set of functions (v, η) ∈ W ((0, s), V, V ′ ) × L 2 ((0, s), L 2 (Ω, R 3 )) that satisfy (3.1), (3.2), where M is the integer constructed in Lemma 3.8. Theorem 5.2 implies that Problem 3.9 has a unique minimizer (v • s , η • s ), which is a linear function of v 0 ∈ H. The following lemma is the dynamic programming principle for Problem 3.7 with s = 0.

Lemma 3.10. Under the hypotheses of Lemma 3.8, the restriction of (v * 0 , η * 0 ) to the interval (0, s) coincides with (v • s , η • s ) and the restriction of (v * 0 , η * 0 ) to the halfline R s coincides with (v * s , η * s )(v * 0 (s)). Proof. We will confine ourselves to the proof of the first assertion, because the second one is obvious. Let us define the function

(z * 0 , θ * 0 )(t) := (v • s , η • s )(v 0 )(t) for t ∈ (0, s), (v * s , η * s )(v • s (s))(t) for t ∈ R s .
Then we have

M λ 0 (z * 0 , θ * 0 ) = N λ s (v • s , η • s ).
On the other hand, the definition of (v • s , η • s ) implies that

N λ s (v • s , η • s ) ≤ N λ s (v * 0 , η * 0 )| (0,s) ≤ M λ 0 (v * 0 , η * 0 ),
whence it follows that

M λ 0 (z * 0 , θ * 0 ) ≤ M λ 0 (v * 0 , η * 0 ).
The uniqueness of minimizer for Problem 3.7 with s = 0 implies that (z * 0 , θ * 0 ) = (v * 0 , η * 0 ), and the required assertion follows. Proof of Theorem 3.6. Step 1. It is straightforward to see that Problem 3.9 satisfies the hypotheses of the Karush-Kuhn-Tucker Theorem 5.1, in which

X = W ((0, s), V, V ′ ) × L 2 ((0, s), L 2 (Ω, R 3 )), Y = H × L 2 ((0, s), V ), J = N λ
s , and F : X → Y is the affine operator taking (v, η) to v(0)w 0 , v t + Lv + B(û)v -Π(χP M η) . Hence, there is a Lagrange multiplier (µ s , q s ) ∈ H ×L 2 ((0, s), V ) such that

(N λ s ) ′ (v • s , η • s ) -(µ s , q s ) • F ′ (v • s , η • s ) = 0.
It follows that, for all z ∈ W ((0, s), V, V ′ ) and ξ ∈ L 2 ((0, s), L 2 ), we have

2 s 0 e λt (v • s , z) V dt + 2(Q s,λ û v • s (s), z(s)) H + (z(0), µ s ) H + s 0 z t + Lz + B(û)z, q s V ′ ,V dt = 0, (3.27) 2 s 0 e λt (η • s , ξ) L 2 dt + s 0 -Π(χP M ξ), q s V ′ ,V dt = 0. (3.28)
In particular, we conclude from (3.27) that

(q s ) t -Lq s -B * (û)q s = 2e λt Lv • s (t). (3.29)
Since q s , v • s ∈ L 2 ((0, s), V ), we see that ∂ t q s ∈ L 2 ((0, s), V ′ ), and therefore q s ∈ W ((0, s), V, V ′ ), whence it follows that q s ∈ C([0, s], H). Using again (3.27), we derive 

q s (s) = -2Q s,λ û v • s (s). ( 3 
η • s (s) = -e -λs P M χQ s,λ û v • s (s).
Recalling Lemma 3.10 and using the fact that s is arbitrary, we conclude that η * 0 is a continuous function of time with range in E M and that η * 0 (t) = -e -λt P M χQ t,λ û v * 0 (t) for all t ≥ 0.

Thus, the optimal trajectory v * 0 for Problem 3.7 with s = 0 satisfies (3.18), where

K λ û (t) := -e -λt χP M χQ t,λ û .
It is clear that K λ û (t) is a linear continuous operator from H to E M . Moreover, it continuously depends on t in the weak operator topology, because so does the family Q t,λ û . Finally, it follows from (3.24) that the norm of K λ û (t) is bounded by a constant depending only on λ and |û| W . We have thus constructed a feedback control K λ û (t) possessing the properties mentioned in (i). Moreover, repeating the above arguments for Problem 3.7 with an arbitrary s > 0, we conclude that its optimal solution (v * s , η * s ) satisfies the relation η * s (t) = -e -λt P M (χQ t,λ û v * s (t)) for t ≥ s. Hence, if v(t) is the solution of problem (3.18), (3.19), then v(t), -e -λt P M (χQ t,λ û v(t)) = v * s (t), η * s (t) for t ≥ s.

Combining this with (3.24), we conclude that

Q s,λ û v 0 , v 0 = Rs e λt |v(t)| 2 V + e -λt P M (χQ t,λ û v(t)) 2 L 2 dt ≤ C e λs |v 0 | 2 H . (3.32)
Step 2. We now prove inequalities (3.20) and (3.21) for solutions of problem (3.18), (3.19). Let us fix v 0 ∈ H and denote by v the solution of (3.18), (3.19). It is straightforward to see that the function z(t) = e (λ/2)t v(t) satisfies the equation

z t + Lz + B(û)z = λ 2 z + K λ û (t)z. (3.33)
Taking the scalar product of (3.33) with 2z and using the uniform boundedness of the family K λ û (t), we derive

d dt |z(t)| 2 H + 2|z(t)| 2 V = λ|z(t)| 2 H + 2(K λ û (t)z, z) -2(B(û)z(t), z(t)) H ≤ C [|û|W ,λ] |z(t)| 2 H
Integrating this inequality over the interval (s, t) with t > s, recalling the definition of z, and using Lemmas 3.8, 3.10 and inequality (3.32), we obtain

e λt |v(t)| 2 H + 2 (s, t) e λτ |v(τ )| 2 V dτ ≤ e λs |v 0 | 2 H + C 1 (s, t) e λτ |v(τ )| 2 H dτ ≤ e λs |v 0 | 2 H + C 1 Rs e λτ |v(τ )| 2 H dτ ≤ C 2 e λs |v 0 | 2 H . (3.34) 
Furthermore, it follows from (3.18) that

e λt |v t (t)| 2 V ′ ≤ C 3 e λt |v(t)| 2 V .
Combining this with (3.34), we arrive at the inequality

e λt |v(t)| 2 H + 2 (s, t) e λτ |v(τ )| 2 V + |v t (τ )| 2 V ′ dτ ≤ C 4 e λs |v 0 | 2 H ,
which is equivalent to (3.20).

We now assume that v 0 ∈ V . Taking the scalar product of (3.33) with 2Lz, and using the Schwarz inequality and the uniform boundedness of the family K λ û (t), we derive

d dt |z(t)| 2 V + 2|z(t)| 2 D(L) = λ(z, Lz) H + 2(K λ û (t)z, Lz) -2(B(û)z(t), Lz(t)) H ≤ |Lz| 2 H + C [|û|W ,λ] |z(t)| 2 V .
Integrating this inequality over the interval (s, t) and using (3.20), we obtain

e λt |v(t)| 2 V + (s, t) e λτ |v(τ )| 2 D(L) dτ ≤ e λs |v 0 | 2 V + C 5 (s,t) e λτ |v(τ )| 2 V dτ ≤ C 6 e λs |v 0 | 2 V . (3.35) 
Furthermore, relation (3.18) implies that

e λt |v t (t)| 2 H ≤ C 6 e λt |v(t)| 2 D(L) .
Combining this with (3.35), we arrive at (3.21).

We conclude this section with a few remarks. Remarks 3.11. (a) Once a feedback control is constructed, it is easy to find a time-dependent Lyapunov function for the problem in question. Indeed, let U (s, t) be the operator taking v 0 ∈ H to v(t), where v stands for the solution of (3.18), (3.19). It is straightforward to check that the functional

Φ(t, w) = ∞ t |U (t, τ )w| 2 L 2 (Ω,R 3 ) dτ
decays along the trajectories of (3.18). It is difficult, however, to write down this functional in a more explicit form.

(b) The operator Q t,λ û defining the optimal cost satisfies the following Ricatti equation:

Q -(Q L(û) + L * (û)Q) -e -λs Q(ΠχP M χΠ)Q = -e λs L, (3.36) 
where L(û) = L + B(û). Since this equation does not play any role in this paper, we confine ourselves to its formal derivation. Let v be the solution of (3.18), (3.19) with v 0 ∈ H and let η(t) = -e -λt P M χQ t v(t), where we set Q t = Q t,λ û . By the dynamic programming principle (cf. Lemma 3.10), the restriction of (v, η) to the half-line R τ is the optimal solution of Problem 3.7 with s = τ and w 0 = v(τ ). Therefore, we have (cf. the equality in (3.32))

Q τ v(τ ), v(τ ) = Rτ e λt |v(t)| 2 V + e -λt P M (χQ t v(t)) 2 L 2 dt.
Differentiating this relation with respect to τ and carrying out some simple transformations, we obtain

Qτ -(Q τ L(û) + L * (û)Q τ ) -e -λτ Q τ (ΠχP M χΠ)Q τ + e λτ L v(τ ), v(τ ) = 0.
Setting τ = s and recalling that v(s) = v 0 is arbitrary, we conclude that Q s satisfies (3.36).

(c) In the case of a stationary reference solution û, it is possible to give a rather sharp description of the dimension M for the feedback controller whose range depends on û; e.g., see [START_REF] Barbu | Internal stabilization of Navier-Stokes equations with finitedimensional controllers[END_REF][START_REF] Badra | Stabilization of parabolic nonlinear systems with finite-dimensional feedback or dynamical controllers[END_REF][START_REF] Raymond | Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite-dimensional controllers[END_REF]. In our situation, the range of the controller depends only on the norm of û, and its space dimension is determined by the integer M 1 in the truncated observability inequality (5.9) with a sufficiently large integer N . However, the feedback operator depends on time, and its image may be infinite-dimensional in time. It would be interesting to find out if it is possible to reduce the space dimension of the controller in our situation using further information about û. 

v t + Lv + Bv + B(û)v = K λ û (t)v, t ∈ R + ; (4.1) 
v(0) = v 0 , (4.2) 
where the operator K λ û (t) is constructed in Theorem 3.6. Given a constant λ > 0, we denote by Z λ the space of functions z ∈

C(R + , V ) ∩ L 2 loc (R + , U ) such that |z| Z λ := sup t≥0 e λt |z(t)| 2 V + (t, t+1) e λτ |z(τ )| 2 D(L) dτ 1/2 < ∞.
The following theorem is the main result of this paper. Theorem 4.1. Given û ∈ W and λ > 0, let M = C [|û|W ,λ] be the integer constructed in Theorem 3.6. Then there are positive constants ϑ and ǫ depending only on |û| W and λ such that for |v 0 | V ≤ ǫ the solution v of system (4.1), (4.2) is well defined for all t ≥ 0 and satisfies the inequality

|v(t)| 2 V ≤ ϑe -λt |v 0 | 2 V for t ≥ 0. (4.3)
Proof. We will use the contraction mapping principle. We fix a constant ϑ > 0 and a function v 0 ∈ V and introduce the following subset of Z λ :

Z λ ϑ := {z ∈ Z λ | z(0) = v 0 , |z| 2 Z λ ≤ ϑ|v 0 | 2 V }.
We define a mapping Ξ :

Z λ ϑ → C(R + , V ) ∩ L 2 loc (R + , U
) that takes a function a ∈ Z λ to the solution of the problem

b t + Lb + B(û)b = K λ û b -Ba, t ∈ R + , (4.4) b(0) = v 0 . (4.5) 
Suppose we have shown the following proposition. Proposition 4.2. Under the hypotheses of Theorem 4.1, there exists ϑ > 0 such that the following property holds: for any γ ∈ (0, 1) one can find a constant ǫ = ǫ γ > 0 such that for any v 0 ∈ V with |v 0 | V ≤ ǫ the mapping Ξ takes the set Z λ ϑ into itself and satisfies the inequality

|Ξ(a 1 ) -Ξ(a 2 )| Z λ ≤ γ|a 1 -a 2 | Z λ for all a 1 , a 2 ∈ Z λ ϑ . (4.6) 
Thus, if |v 0 | V is sufficiently small, then the contraction mapping principle implies that there is a unique fixed point v ∈ Z λ ϑ for Ξ. It follows from the definition of Ξ and Z λ ϑ that v is a solution of problem (4.1), (4.2) and satisfies the required inequality (4.3). We claim that v is the unique solution of (4.1), (4.2) in the space C(R + , V )∩L 2 loc (R + , U ). Indeed, if w is another solution, then the difference z = v-w vanishes at t = 0 and satisfies the equation

z t + Lz + B(z, v) + B(w, z) + B(û)z = K λ û (t)z.
Taking the scalar product of this equation with z in H, carrying out some standard transformations (e.g., see [START_REF] Temam | Navier-Stokes equations: Theory and numerical analysis[END_REF]), and using the uniform boundedness of the feedback control K λ û (t) as an operator in H, we see that z ≡ 0. Hence, to complete the proof of the theorem, it suffices to establish the above proposition. This is done in the next subsection.

Remark 4.3. The hypotheses of Theorem 4.1 can be relaxed. Namely, it suffices to assume that the reference solution û satisfies the condition

sup τ ≥0 |û| L ∞ (Qτ ) + |û t | L 2 (Qτ ) < ∞.
Indeed, as is proved in [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF], the observability inequality (5.8) remains valid in this situation. It follows that the truncated observability inequality (5.9), which is the key point of our approach, is also true. One can check that all the proofs can be carried out under the above weaker hypothesis. However, some calculations become cumbersome, and for the sake of clarity of the paper, we have imposed the more restrictive condition û ∈ W.

Proof of Proposition 4.2.

Step 1. We first derive an estimate for solutions of the equation

z t + Lz + B(û)z = K λ û z + f (t), (4.7) 
where f ∈ L On the other hand, it is easy to see that the analogue of Lemma 2.1 is true for equation (4.7). In particular, for any s ≥ 0 we have the estimates

e (λ/2)s c(s) ds = ∞ k=1 (k-1, k) e (λ/2)s c(s) ds ≤ ∞ k=1 e (λ/2)k (k-1, k) |c(s)| 2 ds 1/2 ≤ ∞ k=1 e -(λ/2)(k-2) (k-1, k) e 2λs |c(s)| 2 ds 1/2
(t -s)|U (s, t)z 0 | 2 V ≤ C 3 |z 0 | 2 H + (s,t) |f (τ )| 2 H dτ , (4.12 
)

|U (s, t)z 0 | 2 V + (s,s+1) |U (s, τ )z 0 | 2 D(L) dτ ≤ C 3 |z 0 | 2 V + (s,t) |f (τ )| 2 H dτ , (4.13) 
where s ≤ t ≤ s + 1, and C 3 > 0 does not depend on s. Combining (4.11) with inequality (4.12) in which z 0 = U (0, s)z(0) and t = s + 1, we obtain 

|z(s + 1)| 2 V ≤ C 3 |U (0, s)z(0)| 2 H + (s,s+1) |f (τ )| 2 H dτ ≤ C 4 e -
|z(τ )| 2 D(L) dτ ≤ C 3 |z 0 | 2 V + (0,1) |f (τ )| 2 H dτ . (4.15)
The required inequality (4.8) follows immediately from (4.14) and (4.15).

Step 2. We now prove that Ξ maps the set Z λ ϑ into itself. Inequality (4.8) with 

f (t) = -Ba(t) implies that |Ξ(a)| 2 Z λ ≤ C 1 |v 0 | 2 V + sup t≥0 (t,
∈ Z λ ϑ , then |Ξ(a)| Z λ ≤ C 7 |v 0 | V + |a| 2 Z λ ≤ C 7 1 + ϑ|v 0 | V |v 0 | V . (4.17) 
Setting ϑ = 2C 7 and choosing ǫ > 0 so small that C 7 (1 + ϑǫ) ≤ ϑ, we see that if |v 0 | V ≤ ǫ, then Ξ maps the set Z λ ϑ into itself.

Step 3. It remains to prove that Ξ satisfies inequality (4.6). Let us take two functions a 1 , a 2 ∈ Z λ ϑ and set a = a 1a 2 and z = Ξ(a 1 ) -Ξ(a 2 ). Then the function z satisfies the initial condition z(0) = 0 and equation (4.7) with f = Ba 2 -Ba 1 . Therefore, by inequality (4.8), we have

|Ξ(a 1 ) -Ξ(a 2 )| 2 Z λ ≤ sup t≥0 (t,t+1) e 2λs |Ba 1 -Ba 2 | 2 H ds. (4.18)
Using a standard estimate for B(u, v) and the inequality

|u| 2 L ∞ ≤ C|u| V |u| D(L) , we derive |Ba 1 -Ba 2 | 2 H = |B(a 1 , a) -B(a, a 2 )| 2 H ≤ C 8 |a 1 | L ∞ |a| V + |a| L ∞ |a 2 | V 2 ≤ C 9 |a 1 | V |a 1 | D(L) |a| 2 V + |a| V |a| D(L) |a 2 | 2 V .
It follows that 

(t,t+1) e 2λs |Ba 1 -Ba 2 | 2 H ds ≤ C 10 |a 1 | 2 Z λ + |a 2 | 2 Z λ |a| 2 Z λ . ( 4 
) -Ξ(a 2 )| 2 Z λ ≤ 2ϑC 10 |v 0 | 2 V |a 1 -a 2 | 2 Z λ .
Choosing ǫ > 0 so small that 2ϑC 10 ǫ 2 ≤ γ 2 , we see that if |v 0 | V ≤ ǫ, then (4.6) holds. This completes the proof of the proposition.

Appendix.

5.1. Karush-Kuhn-Tucker theorem. Let X and Y be Banach spaces and let J : X → R and F : X → Y be two continuously differentiable functions. Consider the following minimization problem with constraints: J(x) → min, F (x) = 0.

(5.1)

We will say that x ∈ X is a local minimum for (5.1) if F (x) = 0 and there is a neighborhood U ∋ x such that J(x) ≤ J(x) for any x ∈ U such that F (x) = 0. A proof of the following theorem can be found in [START_REF] Ioffe | Theory of Extremal Problems[END_REF]. Theorem 5.1. Let x ∈ X be a local minimum for (5.1) and let the derivative F ′ (x) : X → Y be a surjective operator. Then there is y * ∈ Y * such that

J ′ (x) + y * • F ′ (x) = 0.
(5.2) 5.2. Quadratic functionals with linear constraint. Let X and Y be normed vector spaces, let J(x, y) be a bounded symmetric bilinear form on X that is weakly continuous with respect to each of its arguments, and let A : X → Y be a continuous surjective linear operator. Given a vector y ∈ Y, consider the minimization problem

J(x) → min, Ax = y, (5.3) 
where J(x) = J(x, x). We will say that x ∈ X is a global minimum for (5.3) if Ax = y and J(x) ≤ J(x) for x ∈ X such that Ax = y. The following result is rather standard in the optimal control theory, even though we were not able to find in the literature the statement we need. Theorem 5.2. Suppose that J(x) is non-negative and vanishes only for x = 0, and the set {x ∈ X : J(x) ≤ c} is weakly compact for any c > 0. Then problem (5.3) has a unique global minimum x ∈ X , and the function L : Y → X taking y to x is linear.

Proof. Existence. Let m ≥ 0 be the infimum of J on A -1 (y) and let {x n } ⊂ A -1 (y) be a sequence such that J(x n ) → m. Since the set {x ∈ X : J(x) ≤ m + 1} is weakly compact, we can assume that {x n } converges weakly to a vector x ∈ X . Now note that 0

≤ J(x n -x) = J(x n ) -2 J(x n , x) + J(x).
Combining this with the weak continuity of J, we see that

J(x) ≤ lim inf n→∞ J(x n ) = m.
Thus, x is a global minimum for (5.3).

Uniqueness. Since the only point of X at which J vanishes is x = 0, a standard argument proves that J is strictly convex, that is,

J x1+x2 2 ≤ 1 2 J(x 1 ) + J(x 2 ) for all x 1 , x 2 ∈ X ,
and the equality holds if and only if x 1 = x 2 . This immediately implies that the global minimum is unique.

Linearity. Let y ∈ Y and z ∈ A -1 (0). For all λ > 0, we have A(Ly ± λz) = y, and the definition of L implies that J(Ly) ≤ J(Ly ± λz). It follows that 0 ≤ λJ(z) ± 2 J(Ly, z) for all λ > 0. Letting λ go to 0, we see that J(Ly, z) = 0 for all y ∈ Y, z ∈ A -1 (0).

( Then Ak = 0, and by (5.4), we have

J(k) = J(k, k) = α J(La, k) + β J (Lb, k) - J(L(αa + βb), k) = 0.
It follows that k = 0, and therefore L is linear.

Truncated observability inequality.

We first recall a well-known observability inequality for the linearized Navier-Stokes system. Let us fix a function û ∈ L 2 (I τ , V ) ∩ W τ , where W τ stands for the space of measurable vector-functions on Q τ such that (cf.(2.1))

|u| Wτ := j,α ess sup (t,x)∈Qτ

∂ j t ∂ α x u(t, x) < ∞,
where the sum is taken over j = 0, 1 and |α| ≤ 1. Consider the problem q t -Lq -B * (û)q = 0, t ∈ I τ , (

q(τ + 1) = q 1 , (

where q 1 ∈ H. By Theorem 2.2 in [START_REF] Yu | Remarks on exact controllability for the Navier-Stokes equations[END_REF] (see also [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF]), for any open subset ω ⊂ Ω there is a constant C ω such that The following proposition shows that if q 1 belongs to a finite-dimensional subspace of H, then the function χq on the right-hand side of (5.8) can be replaced by P M (χq) with a sufficiently large M . Proposition 5.3. For any N ≥ 1 there is an integer M 1 = C [|û|W τ ,N ] ∈ N 0 such that any solution q for system (5.5), (5.6) with q 1 ∈ F N = Π N H satisfies the inequality for a suitable constant D χ depending only on χ.

To prove the proposition, we need the following lemma. Lemma 5.4. For any solution q of system (5.5), (5.6) with q 1 ∈ F N , we have where the constant C depends only on N , Ω, and |û| W . Proof. We argue by contradiction. Suppose there is a sequence (q n 1 , ûn ) ∈ F N × (L 2 (I τ , V ) ∩ W τ ), with (|û n | Wτ ) bounded, such that the solution q n of the problem q n t -Lq n -B * (û n )q n = 0, t ∈ I τ , (5.11)

q n (τ + 1) = q n 1 (5.12)

satisfies the inequality t ) are bounded in L ∞ (Q τ ) for |α| ≤ It follows from Lemma 2.1 that the sequences (q n ) and (q n t ) are bounded in L 2 (I τ , D(L)) and L 2 (I τ , H), respectively. Since the unit ball in a Hilbert space is weakly compact and the unit ball in L ∞ (Q τ ) is compact in the weak * topology, there is a subsequence of (q n 1 , q n , ûn ) (for which we preserve the same notation), a unit vector q ∞ 1 ∈ F N , and functions q ∞ ∈ W (I τ , D(L), H) and û∞ ∈ W τ such that

q n 1 → q ∞ 1 in F N , q n → q ∞ in L 2 (I τ , V ),
∂ t q n ⇀ ∂ t q ∞ in L 2 (I τ , H), ûn → û∞ in L 2 (I τ , H),

∂ j t ∂ α x ûn ⇀ * ∂ j t ∂ α x û∞ in L ∞ (Q τ ),
where j = 0, 1 and |α| ≤ 1. Combining this with the boundedness of the sequences (û n ) and (q n ) in the corresponding spaces, we can easily pass to the limit in (5.11), (5.12) and derive the equations

q ∞ t -Lq ∞ -B * (û ∞ )q ∞ = 0, t ∈ I τ , (5.14) 
q ∞ (τ + 1) = q ∞ 1 .

(5.15) Furthermore, since multiplication by χ is a continuous operator in L 2 (I τ , H 1 ), we also have

χq n → χq ∞ in L 2 (I τ , H 1 (Ω, R 3 
)).

(5.16) Therefore, passing to the limit in inequality (5.13) as n → ∞, we conclude that

Iτ |χq ∞ | 2 L 2 dt = 0.
(5.17)

Applying now the observability inequality (5.8) to equation (5.14) considered on the interval (τ + r, τ + 1) with 0 ≤ r < 1, we conclude that q ∞ (t) = 0 for τ ≤ t < τ + 1.

Since q ∞ ∈ C( Īτ , V ), we obtain q ∞ 1 = q ∞ (τ + 1) = 0. This contradicts the fact that q ∞ 1 ∈ F N is a unit vector. The contradiction obtained proves that (5.10) Combining this with (5.8), we arrive the required inequality (5.9).

Theorem 3 . 6 .

 36 Given û ∈ W and λ > 0, let M = C [|û|W ,λ] ∈ N be the integer constructed in Theorem 3.1. Then there are a family of continuous operators K λ û (t) : H → E M and a constant κ = C [|û|W ,λ] such that the following properties hold.

4 .

 4 Stabilization of the nonlinear problem. 4.1. Main result. Let us consider the nonlinear problem

. 4 )

 4 For a, b ∈ Y and α, β ∈ R, let us set k := αLa + βLb -L(αa + βb).

|q(τ )| 2 H ≤ C ω Iτ |q| 2 L 2 2 |χq| 2 L 2 2 H

 2222222 (ω,R 3 ) dt,(5.7) Since supp χ ∩ Ω = ∅, the domain ω χ := {x ∈ Ω | |χ(x)| > ρ} is nonempty for a sufficiently small ρ > 0. It follows from (5.7) that|q(τ )| 2 H ≤ C ωχ Iτ |q| 2 L 2 (ωχ,R 3 ) dt ≤ C ωχ ρ -Iτ dt.Thus, setting D ′ χ := C ωχ ρ -2 , for any solution of system (5.5), (5.6), we have the observability inequality |q(τ )|

Iτ |χq(t)| 2 H 1 (

 21 Ω,R 3 ) dt ≤ C Iτ |χq(t)| 2 L 2 (Ω,R 3 ) dt,(5.10)

  = C [|û|W ,λ] is a constant. Indeed, recall that U (s, t) denotes the operator taking v 0 ∈ H to v(t), where v stands for the solution of (3.18),(3.19). By the Duhamel formula, we can write z as

		2 loc (R + , H). Namely, we will show that
	sup t≥0	e λt |z(t)| 2 V +	(t,t+1)	e λs |z(s)| 2 D(L) ds ≤ C 1 |z(0)| 2 V +sup t≥0 (t,t+1)	e 2λs |f (s)| 2 H ds ,
						(4.8)
	where C 1 z(t) = U (0, t)z(0) +	U (s, t)f (s) ds.	(4.9)
						(0, t)
	Combining this with (3.20), we derive
						2
		|z(t)| 2 H = 2|U (0, t)z(0)| 2 H + 2	(0, t)	|U (s, t)f (s)| H ds
						2
				= 2κe -λt |z(0)| 2 H + 2κe -λt	(0, t)	e (λ/2)s |f (s)| H ds	.	(4.10)
	Now note that, for any non-negative function c(t) and any λ > 0, we have
		sup t≥0 (0, t)	e (λ/2)s c(s) ds ≤	(0, +∞)

  Now note that |Ba| H ≤ C 6 |a| V |a| D(L) , whence it follows that

			t+1)	e 2λs |Ba(s)| 2 H ds .	(4.16)
	sup t≥0 (t,t+1)	e 2λs |Ba(s)| 2 H ds ≤ C 2 6 sup t≥0 (t,t+1)	e λs |a| 2 V	e λs |a| 2 D(L) ds ≤ C 2 6 |a| 4 Z λ .

Substituting this into (4.16), we see that if a

  Since the equations are linear, there is no loss of generality in assuming that |q n 1 | = 1. The boundedness of (|û n | Wτ ) implies that (∂ α

	Iτ	|χq n | 2 H 1 dt > n	Iτ	|χq n | 2 L 2 dt.	(5.13)
		x	ûn ) and (∂ α x	ûn

  holds. Proof of Proposition 5.3. We use Lemma 5.4 to derive Recall that β j stands for the j th eigenvalue of the Dirichlet Laplacian. Choosing the integer M = M 1 so large thatβ -1 M1 C [N,|û|W τ ] ≤ 1 2, we obtain

	Iτ	|χq| 2 L 2 dt ≤	Iτ	|P M (χq)| 2 L 2 dt +	Iτ	|(1 -P M )χq| 2 L 2 dt
		≤	Iτ	|P M (χq)| 2 L 2 dt + β -1 M	Iτ	|(1 -P M )(χq)| 2 H 1 dt
		≤	Iτ	|P M (χq)| 2 L 2 dt + β -1 M	Iτ	|χq| 2 H 1 dt
		≤	Iτ	|P M (χq)| 2 L 2 dt + β -1 M C [N,|û|W τ ]	Iτ	|χq| 2 L 2 dt.
			Iτ	|χq| 2 L 2 dt ≤ 2	

Iτ |P M1 (χq)| 2 L 2 dt.

The space H × L

(Iτ , V ) is regarded as the dual of H × L 2 (Iτ , V ′ ), and the sign • stands for the composition of two linear operators.

Recall that the operator ηû,τ depends on N .
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