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INTERNAL EXPONENTIAL STABILIZATION FOR NAVIER–STOKES

EQUATIONS BY MEANS OF FINITE-DIMENSIONAL DISTRIBUTED CONTROLS

VIOREL BARBU, SÉRGIO S. RODRIGUES, ARMEN SHIRIKYAN

Abstract. We consider the Navier–Stokes system in a bounded domain with a smooth boundary.
Given a sufficiently regular global solution, we construct a finite-dimensional feedback control that is
supported by a given open set and stabilizes the linearized equation. The proof of this fact is based
on a truncated observability inequality, the regularizing property for the linearized equation, and some
standard techniques of the optimal control theory. We then show that the control constructed for the
linear problem stabilizes locally also the full Navier–Stokes system.

Keywords: Navier–Stokes system, exponential stabilization, feedback control

Contents

1. Introduction 1
Notation 3
2. Preliminaries 3
2.1. Functional spaces and reduction to an evolution equation 3
2.2. Setting of the problem 4
3. Main result for linearized system 4
3.1. Existence of a stabilizing control 5
3.2. Feedback control 8
4. Stabilization of the nonlinear problem 11
4.1. Main result 11
4.2. Proof of proposition 4.2 12
5. Appendix 13
5.1. Karush–Kuhn–Tucker theorem 13
5.2. Quadratic functionals with linear constraint 13
5.3. Truncated observability inequality 14
References 16

1. Introduction

Let Ω ⊂ R
3 be a connected bounded domain located locally on one side of its smooth boundary

Γ = ∂Ω. We consider the controlled Navier–Stokes system in Ω:

∂tu+ 〈u · ∇〉u − ν∆u+∇p = h+ ζ, ∇ · u = 0,(1)

u
∣

∣

Γ
= 0.(2)

Here u = (u1, u2, u3) and p are unknown velocity field and pressure of the fluid, ν > 0 is the viscosity,
〈u · ∇〉 stands for the differential operator u1∂1 + u2∂2 + u3∂3, h is a fixed function, and ζ is a control
taking values in the space E of square-integrable functions in Ω whose support in x is contained in a
given open subset ω ⊂ Ω. The problem of exact controllability for (1), (2) was in the focus of attention of
many researchers starting from the early nineties, and it is now rather well understood. Namely, it was
proved that, given a time T > 0 and a smooth solution û of (1), (2) with ζ ≡ 0, for any initial function u0

sufficiently close to û(0) one can find a control ζ : [0, T ] → E such that the solution of problem (1), (2)
supplemented with the initial condition

(3) u(0, x) = u0(x)

is defined on [0, T ] and satisfies the relation u(T ) = û(T ). We refer the reader to [6, 10, 11, 12, 13, 7] for
the exact statements and the proofs of these results.

Even though the property of exact controllability is quite satisfactory from the mathematical point
of view, many problems arising in applications require that the control in question be feedback, because
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closed-loop controls are usually more stable under perturbations (e.g., see the introduction to Part 3
in [5]). This question has found a positive answer in the context of stabilization theory. It was intensively
studied for the case in which the target solution û is stationary (in particular, the external force is
independent of time). A typical result in such a situation claims that, given a smooth stationary state û
of the Navier–Stokes system and a constant λ > 0, one can construct a continuous linear operator
Kû : L2 → E with finite-dimensional range such that the solution of problem (1) – (3) with ζ = Kû(u− û)
and a function u0 sufficiently close to û is defined for all t ≥ 0 and converges to û at least with the
rate e−λt. We refer the reader to the papers [8, 9, 16, 17, 18, 1] for boundary stabilization and to [2, 4, 3]
for stabilization by a distributed control.

The aim of this paper is to establish a similar result in the case when the target solution û depends
on time. Namely, we will prove the following theorem, whose exact formulation is given in Section 4.

Main Theorem. Let (û, p̂) be a global smooth solution for problem (1), (2) with ζ ≡ 0 such that

ess sup
(t,x)∈Q

∣

∣∂
j
t ∂

α
x û(t, x)

∣

∣ ≤ R for j = 0, 1, |α| ≤ 1,

where Q = R+ × Ω and R > 0 is a constant. Then for any λ > 0 and any open subset ω ⊂ Ω there is

an integer M = M(R, λ, ω) ≥ 1, an M -dimensional space E ⊂ C∞
0 (ω,R3), and a family of continuous

linear operators Kû(t) : L
2(Ω,R3) → E, t ≥ 0, such that the following assertions hold.

(a) The function t 7→ Kû(t) is continuous in the weak operator topology, and its operator norm is

bounded by a constant depending only on R, λ, and ω.

(b) For any divergence free function u0 ∈ H1
0 (Ω,R

3) that is sufficiently close to û(0) in the H1-norm

problem (1) – (3) with ζ = Kû(t)(u − û(t)) has a unique global strong solution (u, p), which

satisfies the inequality

|u(t)− û(t)|H1 ≤ Ce−λt|u0 − û(0)|H1 , t ≥ 0.

Note that this theorem remains true for the two-dimensional Navier–Stokes system, and in this case,
it suffices to assume that the initial function u0 is close to û(0) in the L2-norm. Without going into
details, we now describe the main ideas of the proof. We emphasize that the methods developed in the
above-mentioned works do not apply to the non-stationary case, because they use essentially the spectral
properties of the linearized operator and, hence, the fact that the coefficients of the linearized equation
do not depend on time.

Well known methods based on the contraction mapping principle enables one to prove that a control
stabilizing the linearized equation locally stabilizes also the nonlinear equation. Therefore, it suffices to
consider the following problem obtained by linearizing (1), (2) around û:

(4) ∂tv + 〈û · ∇〉v + 〈v · ∇〉û− ν∆v +∇p = ζ, ∇ · v = 0, v
∣

∣

Γ
= 0.

Let us assume that, for a sufficiently large integer N , we have constructed a continuous linear operator
ζ̄ : L2(Ω,R3) → L2((0, 1); E) such that, for any initial function v0, the solution of (4) with ζ = ζ̄(v0)
issued from v0 satisfies the relation ΠNv(1) = 0, where ΠN stands for the orthogonal projection in L2

onto the subspace spanned by the first N eigenfunctions of the Stokes operator in Ω. In this case, using
the Poincaré inequality and regularizing property of the resolving operator for (4), we get

|v(1)|L2 = |(I −ΠN )v(1)|L2 ≤ C1α
−1/2
N |v(1)|H1

≤ C2 α
−1/2
N

(

|v0|L2 + |ζ̄(v0)|L2((0,1);E)

)

≤ C3 α
−1/2
N |v0|L2 ,(5)

where {αj} denotes the increasing sequence of the eigenvalues for the Stokes operator and Ci, i = 1, 2, 3,
are some constants not depending on N . The fact that C3 is independent of N is a crucial property,
and its proof is based on a truncated observability inequality (see Section 5.3 in Appendix). It follows
from (5) that, if N is sufficiently large, then |v(1)|L2 ≤ e−λ|v0|L2 . Iterating this procedure, we get
an exponentially decaying solution. Once an exponential stabilization of the linearized problem (4) is
obtained, the existence of an exponentially stabilizing feedback control can be proved with the help of
the dynamic programming principle. We refer the reader to Section 3 for an accurate presentation of
the results on the linearized equation.

In conclusion, let us mention that the approach described above works equally well in the case when
the control acts via the boundary. This situation will be addressed in a subsequent publication.

The paper is organized as follows. In Section 2, we introduce the functional spaces arising in the
theory of the Navier–Stokes equations and recall some well-known facts. Section 3 is devoted to studying
the linearized problem. In Section 4, we establish the main result of the paper on local exponential
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stabilization of the full Navier–Stokes system. The Appendix gathers some auxiliary results used in the
main text.

Notation. We write N and R for the sets of non-negative integers and real numbers, respectively, and
we define N0 = N \ {0} and R+ = (0, +∞). The partial time derivative ∂tu of a function u(t, x) will be
denoted by ut.

For Banach spaces X , Y and an interval I ⊆ R, we denote

W (I, X, Y ) := {f ∈ L2(I, X) | ft ∈ L2(I, Y )},
where the derivative ft =

df
dt is taken in the sense of vectorial distributions. This space is endowed with

the natural norm

|f |W (I,X, Y ) :=
(

|f |2L2(I,X) + |ft|2L2(I, Y )

)1/2
.

Note that if X = Y , then we obtain the Sobolev space W 1,2(I,X).

For a given space Z of functions f = f(t) defined on an interval of R and a constant λ > 0, we define

Eλ(Z) := {f ∈ Z | e(λ/2)tf ∈ Z}.
This space is endowed with the norm

|f |Eλ(Z) :=
(

|f |2Z + |e(λ/2)tf |2Z
)1/2

.

Given a Banach space X , we denote by X ′ its dual and by 〈·, ·〉X′,X the duality between X ′ and X .

C [a1,...,ak] denotes a function of non-negative variables aj that increases in each of its arguments.

Ci, i = 1, 2, . . . , stand for unessential positive constants.

2. Preliminaries

2.1. Functional spaces and reduction to an evolution equation. In what follows, we will confine
ourselves to the 3D case, although all the results remain valid for the 2D Navier–Stokes equations.

Let Ω ⊂ R
3 be a connected bounded domain located locally on one side of its smooth boundary

Γ = ∂Ω. It is natural to study the incompressible Navier–Stokes system as an evolutionary equation in
the subspace H of divergence free vector fields tangent to the boundary:

H := {u ∈ L2(TΩ) | ∇ · u = 0 in Ω, u · n = 0 on Γ}.
Here L2(TΩ) = (L2(Ω))3 is the space of square integrable vector fields in Ω, ∇ · u := ∂1u1 + ∂2u2 + ∂3u3

is the divergence of the vector field u and n is the normal vector to the boundary Γ. We will also need
the spaces of vector fields on Ω:

V := {u ∈ H1(TΩ) | ∇ · u = 0 in Ω, u = 0 on Γ}, U := H2(TΩ) ∩ V.

Note that U coincides with the natural domain D(L) of the Stokes operator L = −νΠ∆, where Π is the
orthogonal projection in L2(TΩ) onto H . The spaces H , V and U are endowed with the scalar products

(u, v)H := (u, v)L2(TΩ), (u, v)V := 〈Lu, v〉V ′,V , (u, v)D(L) := (Lu, Lv)L2(TΩ),

respectively, and we denote by | · |H , | · |V and | · |D(L) the corresponding norms. Finally, we introduce the

space W := W 1,∞(R+, W
1,∞(TΩ)), where W 1,∞(TΩ) is the Sobolev space of vector fields in Ω whose

components and their first derivatives are essentially bounded.

It is well known that problem (1), (2) is equivalent to the following evolutionary equation in H :

(6) ut + Lu+Bu = Π(h+ ζ),

where Bu : V → V ′ is defined by Bu := B(u, u) with

〈B(u, v), w〉V ′,V =

3
∑

i,j=1

∫

Ω

ui∂iujwjdx.

In the following, we will deal also with linear equations obtained from (6) after replacing B by one of
the operators B(û) and B

∗(û), where û ∈ W is a fixed function, B(û)v = B(v, û) + B(û, v), and B
∗(û)

stands for the formal adjoint of B(û) with respect to the scalar product on H . Namely, let us consider
the problem

rt + Lr + B̂r = f, t ∈ I0 = (0, 1),(7)

r(0) = r0,(8)

where B̂ = B(û) or B∗(û).
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Lemma 2.1. For any u0 ∈ H and f ∈ L2(I0, V
′), problem (7), (8) has a unique solution r ∈

W (I0, V, V
′), which satisfies the inequality

(9) |r|2C(Ī0, H) +

∫

I0

|r|2V dt+

∫

I0

|rt|2V ′ dt ≤ C [|û|
L∞(Ī0, W1,∞(TΩ))]

|r0|2H + |f |2L2(I0,V ′).

Moreover, if f ∈ L2(I0, H), then we have the inclusions
√
tv ∈ C(Ī0, V ),

√
tv ∈ L2(I0, U) and the

estimate

(10) |
√
tr|2C(Ī0, V ) +

∫

I0

(
√
t|r|U )2 dt ≤ C [|û|

L∞(Ī0,W1,∞(TΩ))]
(|r0|2H + |f |2L2(I0,H)).

Finally, if r0 ∈ V and f ∈ L2(I0, H), then r ∈ W (I0, U,H) and

(11) |r|2C(Ī0, V ) +

∫

I0

|r|2D(L) dt+

∫

I0

|rt|2H dt ≤ C [|û|
L∞(Ī0,W1,∞(TΩ))]

(|r0|2V + |f |2L2(I0,H)).

The proof of this lemma is based on a well known argument, and we will not present it here.

2.2. Setting of the problem. Let us fix a function h ∈ L2(R+, H) and suppose that û ∈ L2(R+, V )∩W
solves the Navier–Stokes system

ût + Lû+Bû = h, t > 0.

Given a function u0 ∈ H and a sub-domain ω ⊆ Ω, our goal is to find a finite-dimensional subspace
E ⊂ L2(Tω) = (L2(ω))3 and a control ζ ∈ L2

loc(R+, E) such that the solution of the problem

(12) ut + Lu+Bu = h+Πζ, u(0) = u0

is defined for all t > 0 and converges exponentially to û, i.e.,

|u(t)− û(t)|H ≤ κ1e
−κ2t for t ≥ 0,

where κ1 and κ2 are non-negative constants; in this case, we say that u converges κ2-exponentially to û.

Let us write L2(TΩ) as a direct sum L2(TΩ) = H⊕H⊥, whereH⊥ denotes the orthogonal complement
of H in L2(TΩ). For each positive integer N , we now define N -dimensional spaces EN ⊂ L2(TΩ) and
FN ⊂ H as follows. Let {φi | i ∈ N0} be an orthonormal basis in L2(TΩ) formed by the eigenfunctions
of the Dirichlet Laplacian and let 0 < β1 ≤ β2 ≤ . . . be the corresponding eigenvalues. Furthermore, let
{ei | i ∈ N0} be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let
0 < α1 ≤ α2 ≤ . . . be the corresponding eigenvalues. For each N ∈ N0, we introduce the N -dimensional
subspaces

EN := span{φi | i ≤ N} ⊂ L2(TΩ), FN := span{ei | i ≤ N} ⊂ H

and denote by PN : L2(TΩ) → EN and ΠN : L2(TΩ) → FN the corresponding orthogonal projections.
We will show that the required control space can be chosen in the form EM = χEM , where χ ∈ C∞

0 (Ω)
is a given function not identically equal to zero, and the integer M is sufficiently large. In particular,
χEM ⊂ C∞

0 (Tω) for any sub-domain ω ⊆ Ω containing supp(χ).

Let us note that, seeking a solution of (12) in the form u = û+ v, we obtain the following equivalent
problem for v:

(13) vt + Lv +Bv + B(û)v = Πζ, v(0) = v0,

where v0 = u0 − u(0). It is clear that it suffices to consider the problem of exponential stabilization to
zero for solutions of (13). Thus, in what follows, we will study problem (13).

3. Main result for linearized system

In this section, we study the linearized problem. The result established here will be used later for the
full nonlinear system.

Let us fix a function û ∈ L2
loc(R+, V )∩W . In what follows, it will be convenient to write the control ζ

entering (13) in the form ζ = χPMη, where η takes its values in L2(TΩ) and χ ∈ C1
0 (Ω) is a nonzero

function not identically equal to zero. Thus, we study the problem

vt + Lv + B(û)v = Π(χPMη),(14)

v(0) = v0,(15)

where v0 ∈ H . We refer the reader to [15, 19] for precise definitions of the concept of a solution for (14)
(and all other Navier–Stokes type PDE’s).
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3.1. Existence of a stabilizing control.

Theorem 3.1. For each v0 ∈ H and λ > 0, there is an integer M = C [λ,|û|W ] ≥ 1 and a control

ηû,λ(v0) ∈ L2(R+, EM ) such that the solution v of system (14), (15) satisfies the inequality

(16) |v(t)|2H ≤ κ|v0|2He−λt, t ≥ 0,

where κ = C [λ,|û|W ] > 0 is a constant not depending on v0. Moreover, the mapping v0 7→ e(λ̃/2)tηû,λ(v0)

is linear and continuous from H to L2(R+, EM ) for all 0 ≤ λ̃ < λ. Finally, if v0 ∈ V , then

(17) |v(t)|2V ≤ κ̄|v0|2V e−λt, t ≥ 0,

where κ̄ = C [λ,|û|W ] > 0 does not depend on v0.

To prove this theorem, we will need two auxiliary lemmas. For each τ ≥ 0, consider equation (14) on
the time interval Iτ = (τ, τ + 1) and supplement it with the initial condition

(18) v(τ) = w0.

Let us denote by Sû,τ (w0, η) the operator that takes the pair (w0, η) to the solution of (14), (18). It
is well known that the operator Sû,τ is continuous from H to C(Īτ , H) ∩ L2(Iτ , V ) and from V to
C(Īτ , V ) ∩ L2(Iτ , U). We will write Sû,τ (w0, η)(t) for the value of the solution at time t.

Lemma 3.2. For each N ∈ N there is an integer M = C [λ,|û|W ] ≥ 1 such that, for every w0 ∈ H and

an appropriate control η ∈ L2(Iτ , EM ) we have

ΠNSû,τ (w0, η)(τ + 1) = 0.

Moreover, there is a constant Cχ depending only on |û|W (but not on N and τ) such that

(19) |η|2L2(Iτ , EM) ≤ Cχ|w0|2H .

Proof. Let us fix ǫ > 0 and consider the following minimization problem.

Problem 3.3. Given M,N ∈ N and w0 ∈ H, find the minimum of the quadratic functional

Jǫ(v, η) := |η|2L2(Iτ , L2(TΩ)) +
1

ǫ
|ΠNSû,M,τ (w0, η)(τ + 1)|2H

on the set of functions (v, η) ∈ W (Iτ , V, V
′)× L2(Iτ , L

2(TΩ)) that satisfy (14) and (18).

Theorem 5.2 implies immediately that problem 3.3 has a unique minimizer (v̄ǫ, η̄ǫ), which linearly
depends on w0 ∈ H . We now derive some estimates for the norm of the optimal control η̄ǫ.

To this end, the general theory of linear-quadratic optimal control problems is applicable. We use
here a version of the Karush–Kuhn–Tucker theorem (see theorem 5.1). Let us define the affine mapping

F : W (Īτ , V, V
′)× L2(Iτ , L

2(TΩ)) → H × L2(Iτ , V
′),

(

v, η) 7→ (v(0)− w0, vt + Lv + B(û)v −Π(χPMη)
)

and note that its derivative is surjective. Hence, by the Karush–Kuhn–Tucker theorem, there is a
Lagrange multiplier (µǫ, qǫ) ∈ H × L2(Iτ , V ) such that 1

J ′
ǫ(v̄

ǫ, η̄ǫ)− (µǫ, qǫ) ◦ F ′(v̄ǫ, η̄ǫ) = 0.

It follows that, for all (z, ξ) ∈ W (Īτ , V, V
′)× L2(Iτ , L

2(TΩ)), we have

2

ǫ
(ΠN v̄ǫ(τ + 1), z(τ + 1))H + (z(τ), µǫ)H +

∫

Iτ

〈zt + Lz + B(û)z, qǫ〉V ′,V dt = 0,(20)

2

∫

Iτ

(η̄ǫ, ξ)L2(TΩ) dt+

∫

Iτ

〈−Π(χPM ξ), qǫ〉V ′,V dt = 0.(21)

Relation (20) implies that qǫ is the solution of the problem

qǫt − Lqǫ − B
∗(û)qǫ = 0, t ∈ Iτ ,(22)

qǫ(τ + 1) = −2ǫ−1ΠN v̄ǫ(τ + 1).(23)

Furthermore, it follows from (21) that

(24) 2η̄ǫ = PM (χqǫ).

1The space H × L2(Iτ , V ) is regarded as the dual of H × L2(Iτ , V ′), and the sign ◦ stands for the composition of two
linear operators.
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Combining (14), (22), and (24), we derive

d

dt
(qǫ, v̄ǫ)H = (qǫt , v̄

ǫ)H + (qǫ, v̄ǫt )H

= (Lqǫ + B
∗(û)qǫ, v̄ǫ)H + (qǫ, −Lv̄ǫ − B(û)v̄ǫ +Π(χPM η̄ǫ))H

= (qǫ, Π(χPM η̄ǫ))H =
1

2
|PM (χqǫ)|2L2(TΩ).

Integrating in time over the interval Iτ , we obtain
∫

Iτ

|PM (χqǫ)|2L2(TΩ) dt = 2
(

(qǫ(τ + 1), v̄ǫ(τ + 1))H − (qǫ(τ), v̄ǫ(τ))H
)

.

Recalling now (23), we see that 2(qǫ(τ + 1), v̄ǫ(τ + 1))H = −ǫ|qǫ(τ + 1)|2H and therefore

(25)

∫

Iτ

|PM (χqǫ)|2L2(TΩ) dt+ ǫ|qǫ(τ + 1)|2H = −2(qǫ(τ), v̄ǫ(τ))H .

We now use the truncated observability inequality (76) to estimate the right-hand side of (25). For every
α > 0, we have

∫

Iτ

|PM (χqǫ)|2L2(TΩ) dt+ ǫ|qǫ(τ + 1)|2H ≤ α|qǫ(τ)|2H + α−1|v̄ǫ(τ)|2H

≤ αDχ

∫

Iτ

|PMχqǫ|2L2(TΩ) dt+ α−1|v̄ǫ(τ)|2H .

Setting α = (2Dχ)
−1, we obtain

(26)

∫

Iτ

|PM (χqǫ)|2L2(TΩ) dt+ 2ǫ|qǫ(τ + 1)|2H ≤ 4Dχ|w0|2H .

In particular, the family of functions {PM (χqǫ) | ǫ > 0} is bounded in L2(Iτ , L
2(TΩ)), and the family

of solutions {v̄ǫ | ǫ > 0} for problem (14), (18) is bounded in L2(Iτ , V ). It follows that the family
{v̄ǫt | ǫ > 0} is bounded in L2(Iτ , V

′). Thus, we can find a sequence ǫn → 0+ such that

ηǫn =
1

2
PM (χqǫn) ⇀ η0 in L2(Iτ , EM ),

v̄ǫn ⇀ v0 in L2(Iτ , V ),

v̄ǫnt ⇀ v0t in L2(Iτ , V
′),

where η0 ∈ L2(Iτ , EM ) and v0 ∈ W (Iτ , V, V
′) are some functions. A standard limiting argument shows

that v0 is a solution of problem (14), (18) with η = η0. Furthermore, it follows from (26) and (23) that

|ΠN v̄ǫ(τ + 1)|2H =
ǫ2

4
|qǫ(τ + 1)|2H ≤ ǫDχ

2
|w0|2H → 0 as ǫ → 0.

This convergence implies that ΠNv0(τ + 1) = 0. It remains to establish inequality (19).
To this end, note that, in view of (26), we have

|η0|2L2(Iτ , EM ) ≤ 4Dχ|w0|2H .

Combining this with the property of continuity of the resolving operator for (14), (18) (see lemma 2.1),
we arrive at the required estimate. The proof of the lemma is complete. �

In view of lemma 3.2, it makes sense to consider the following minimization problem.

Problem 3.4. Given integers M,N ≥ 1 and a function w0 ∈ H, find the minimum of the quadratic

functional

J(η) := |η|2L2(Iτ , L2(TΩ))

on the set of functions (v, η) ∈ W (Iτ , V, V
′) × L2(Iτ , EM ) satisfying equations (14), (18) and the

condition ΠNv(τ + 1) = 0.

Lemma 3.5. For any N ∈ N there is an integer M = C [λ,|û|W ] ≥ 1 such that for any w0 ∈ H

problem 3.4 has a unique minimizer (v̄û,τ , η̄û,τ ) ∈ W (Iτ , V, V
′) × L2(Iτ , EM ). Moreover, the mapping

w0 7→ (v̄û,τ , η̄û,τ ) is linear and continuous in the corresponding spaces, and there is a constant Cχ

depending only on |û|W (but not on N and τ) such that

(27) |η̄û,τ |2L(H,L2(Iτ , EM )) ≤ Cχ.
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Proof. Let us fix N ∈ N and choose an integer M as in lemma 3.2. We set

WN (Iτ , V, V
′) := {v ∈ W (Iτ , V, V

′) | ΠNv(τ + 1) = 0}
and define X as the space of functions (v, η) ∈ WN (Iτ , V, V

′) × L2(Iτ , EM ) that satisfy equation (14).
In view of lemma 3.2 and the linearity of (14), X is a nontrivial Banach space, and the operator
A : X → H taking (v, η) to v(0) is surjective. Thus, by theorem 5.2, problem 3.4 has a unique minimizer
(v̄û,τ , η̄û,τ ), which linearly depends on w0. Inequality (27) follows immediately from (19), because the
norm of η̄û,τ (w0) in the space L2(Iτ , EM ) is necessarily smaller than the norm of the control function η

constructed in lemma 3.2. �

Proof of theorem 3.1. The main idea of the proof was outlined in the introduction: we use the operator
η̄û,τ constructed in lemma 3.5 withN ≫ 1 to define an exponentially stabilizing control ηû,λ consecutively
on the intervals In = (n, n + 1), n ≥ 0. Namely, let us fix an initial function v0 ∈ H and an integer
N = N(λ) ≥ 1, and set 2

ηû,λ(t) = η̄û,0(v0)(t) for t ∈ I0.

Assuming that ηû,λ is constructed on the interval (0, n) and denoting by v(t) the corresponding solution
on [0, n], we define

ηû,λ(t) = η̄û,n(v(n))(t) for t ∈ In.

By construction, ηû,λ is an EM -valued function square integrable on every bounded interval. Moreover,
the linearity of η̄û,τ implies that ηû,λ linearly depends on v0. We claim that, if N ∈ N is sufficiently
large, then the solution v of system (14), (15) with η = ηû,λ goes λ-exponentially to 0 as t → +∞.

Indeed, it follows from (10) that

|v(1)|2V = |Sû,0(v0, η̄
û,0(v0))(1)|2V ≤ C [|û|W ]

(

|v0|2H + 3|χ|2L∞(Ω)|η̄û,0(v0)|2L2(I0, EM )

)

.

Since ΠNv(1) = 0, we obtain

αN |v(1)|2H ≤ |v(1)|2V ≤ C [|û|W ]

(

|v0|2 + 3|χ|2L∞(Ω)|η̄û,0(v0)|2L2(I0, EM )

)

.

Using the continuity of the operator η̄û,0 (see lemma 3.5) and setting C′
χ := Cχ|χ|2L∞(Ω), we derive

|v(1)|2H ≤ α−1
N |v(1)|2V ≤ α−1

N (C [|û|W ] + 3C′
χ)|v0|2.

Taking N so large that αN ≥ eλ(C [|û|W ] + 3C′
χ), we obtain

|v(1)|2H ≤ e−λ|v0|2H .

We may repeat the above argument on every the interval In and conclude that, applying the control
η̄û,1(v(n)) with αN ≥ eλ(C [|û|W ] + 3C′

χ), we have

|v(n+ 1)|2H ≤ e−λ|v(n)|2H .

By induction, we see that the solution v of problem (14), (15) with η = ηû,λ satisfies the inequality

(28) |v(n)|2H ≤ e−λn|v0|2H .

On the other hand, in view of (10), we have

|v|2C(Īn, H) ≤ C [|û|W ]|v(n)|2H + |χ|2L∞ |η̄û,n(v(n))|2L2(In, EM ) ≤ (C [|û|W ] + C′
χ)|v(n)|2H .

Combining this with (9), we see that

|v(t)|2H ≤
(

C [|û|W ] + C′
χ

)

e−λ[t]|v0|2H ≤ eλ(C [|û|W ] + C′
χ)e

−λt|v0|2H .

where [t] is the largest integer not exceeding t. Thus, v satisfies inequality (16).

We now prove the continuity of the map v0 7→ e(λ̃/2)tηû,λ in the corresponding spaces. It follows
from (27) and (28) that, for any λ̃ < λ, we have

|e(λ̃/2)tηû,λ|2L2(R+, EM ) =
∑

n∈N

|e(λ̃/2)tη̄û,n(v(n))|2L2(In, EM ) ≤ C′
χ

∑

n∈N

eλ̃(n+1)|v(n)|2H

≤ C′
χe

λ̃
∑

n∈N

e(λ̃−λ)n|v0|2H ≤ Cχ,λ|v0|2H .(29)

It remains to prove inequality (17). In view of (10), we have

|
√
t− nv|2C(Īn, V ) ≤ C [|û|W ]

(

|v(n)|2H + 3|χ|2L∞(Ω)|η̄û,n(v(n))|2L2(In, EM)

)

≤
(

C [|û|W ] + 3C′
χ

)

|v(n)|2H .

2Recall that the operator η̄û,τ depends on N .
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Combining this with (28), we see that

|v(n+ 1)|2V ≤ C1|v(n)|2H ≤ C1e
−λn|v0|2H .

In view of (11), for n ≥ 1 we derive

|v|2C(Īn, V ) ≤ C [|û|W ]|v(n)|2V + 3|χ|2L∞(Ω)|η̄û,n(v(n))|2L2(In, EM) ≤ C2e
−λ(n−1)|v0|2H ,

whence it follows that
|v(t)|2V ≤ C3e

−λt|v0|2H for t ≥ 1.

Using again inequality (11), we conclude that (17) holds. The proof of the theorem is complete. �

3.2. Feedback control. In this section, we show that exponentially stabilizing control constructed in
theorem 3.1 can be chosen in a feedback form. Namely, let us fix a nonzero function χ ∈ C1

0 (Ω) and
denote by EM the vector space spanned by the functions χφj , j = 1, . . . ,M . We will prove the following
theorem.

Theorem 3.6. For any û ∈ W and λ > 0 there is an integer M = C [λ,|û|W ] ∈ N, a family of continuous

operators Kλ
û (t) : H → EM , and a constant κ = C [λ,|û|W ] such that the following properties hold.

(i) The function t 7→ Kλ
û (t) is continuous in the weak operator topology, and its operator norm is

bounded by κ.

(ii) For any s ≥ 0 and v0 ∈ H, the solution of the problem

vt + Lv + B(û)v = ΠKλ
û (t)v,(30)

v(s) = v0(31)

exists on the time interval (s,+∞) and satisfies the inequality

(32) eλ(t−s)|v(t)|2H +

∫ t

s

eλ(τ−s)
(

|v(τ)|2V + |vt(τ)|2V ′

)

dτ ≤ κ|v0|2H , t ≥ s,

Moreover, if v0 ∈ V , then

(33) eλ(t−s)|v(t)|2V +

∫ t

s

eλ(τ−s)
(

|v(τ)|2D(L) + |vt(τ)|2H
)

dτ ≤ κ|v0|2V , t ≥ s.

To prove this theorem, we will need two auxiliary lemmas. Recall that, given a constant λ > 0 and a
space Z of functions f(t) on an interval I ⊆ R, the space Eλ(Z) was defined in the Introduction. Let us
consider the following problem.

Problem 3.7. Given s ≥ 0, λ > 0, M ∈ N and w0 ∈ H, find the minimum of the functional

Mλ
s (v, η) :=

∫

(s,+∞)

eλt(|v|2V + |η|2L2(TΩ)) dt

on the set of functions (v, η) ∈ Eλ(W ([s, +∞), V, V ′)) × Eλ(L2([s, +∞), L2(TΩ))) that satisfy equa-

tion (14) and the initial condition

(34) v(s) = w0.

The following lemma establishes the existence of an optimal solution and gives a formula for the
optimal cost.

Lemma 3.8. For any û ∈ W and λ > 0 there is an integer M = C [λ,|û|W ] ≥ 1 such that problem 3.7

has a unique minimizer (v∗s , η
∗
s ). Moreover, there is a continuous operator Q

s,λ
û : H → H such that

Mλ
s (v

∗
s , η

∗
s ) =

(

Q
s,λ
û w0, w0

)

,(35)

|Qs,λ
û |L(H) ≤ Ceλs,(36)

where C = C [λ,|û|W ] > 0 is a constant. Finally, Q
s,λ
û continuously depends on s in the weak operator

topology.

Proof. Let X be the space of functions (v, η) ∈ Eλ(W ([s, +∞), V, V ′)) × Eλ(L2([s, +∞), L2(TΩ)))
that satisfy (14), (34) and endow it with the norm Mλ

s (v, η)
1/2. It is straightforward to see that X

is a Hilbert space. Moreover, using theorem 3.1 with a constant λ̂ > λ and the initial point moved
to s, we can construct an integer M = C [λ̂,|û|W ] ≥ 1 such that, for any w0 ∈ H and an appropriate

control η ∈ Eλ̂(L2([s,∞), EM )), we have

|v(t)|2H ≤ κe−λ̂(t−s)|w0|2H , |η(t)|2EM
≤ C1e

−λ̂(t−s)|w0|2H ,
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where v stands for the solution of (14), (34). Combining this with lemma 2.1, we conclude that

Mλ
s (v, η) =

∫

(s,+∞)

eλt(|v|2V + |η|2L2(TΩ)) dt ≤ C [λ̂,(λ̂−λ)−1,|û|W ]e
λs|w0|2H .(37)

It follows that X is nonempty, and the mapping A : X → H taking (v, η) to v(0) is surjective. Thus,
by theorem 5.2, Problem 3.7 has a unique minimizer (v∗s , η

∗
s ) = (v∗s (w0), η

∗
s (w0)), which linearly depends

on w0.

We now prove (35) and (36). It follows from (37) that the mapping

(a, b) 7→
∫

(s,+∞)

eλt((v∗s (a), v
∗
s (b))V + (η∗s (a), η

∗
s (b))L2(TΩ)) dt

is a continuous bilinear form on H which is bounded by C2e
λs on the unit ball. Therefore, the optimal

cost can be written as (35), where Qs,λ
û is a bounded self-adjoint operator in H whose norm satisfies (36).

It remains to establish the continuity of Qs,λ
û in the weak operator topology. It is easy to see that the

optimal cost Mλ
s (v

∗
s , η

∗
s ) continuously depends on s. It follows that

(Qs,λ
û w,w) → (Qs0,λ

û w,w) as s → s0,

where w ∈ H is an arbitrary function. This convergence immediately implies the required assertion. �

We now consider another minimization problem closely related to problem 3.7 with s = 0.

Problem 3.9. Given λ > 0 and v0 ∈ H, find the minimum of the functional

Nλ
s (v, η) :=

∫

(0, s)

eλt(|v|2V + |η|2L2(TΩ)) dt+ (Qs,λ
û v(s), v(s))

on the set of functions (v, η) ∈ W ([0, s], V, V ′)×L2((0, s), L2(TΩ)) that satisfy (14), (15), where M is

the integer constructed in lemma 3.8.

Theorem 5.2 implies that problem 3.9 has a unique minimizer (v•s , η
•
s ), which is a linear function

of v0 ∈ H . The following lemma is the dynamic programming principle for Problem 3.7 with s = 0.

Lemma 3.10. Under the hypotheses of lemma 3.8, the restriction of (v∗0 , η
∗
0) to the interval (0, s) coin-

cides with (v•s , η
•
s ) and the restriction of (v∗0 , η

∗
0) to the interval (s,+∞) coincides with (v∗s , η

∗
s )(v0(s)).

Proof. We will confine ourselves to the proof of the first assertion, because the second one is obvious.
Let us define the function

(z∗0 , θ
∗
0)(t) :=

{

(v•s , η
•
s )(v0)(t) for t ∈ (0, s),

(v∗s , η
∗
s )(v

•
s (s))(t) for t ∈ (s, +∞).

Then we have

Mλ
0 (z

∗
0 , θ

∗
0) = Nλ

s (v
•
s , η

•
s ).

On the other hand, the definition of (v•s , η
•
s ) implies that

Nλ
s (v

•
s , η

•
s ) ≤ Nλ

s

(

(v∗0 , η
∗
0)|(0,s)

)

≤ Mλ
0 (v

∗
0 , η

∗
0),

whence it follows that

Mλ
0 (z

∗
0 , θ

∗
0) ≤ Mλ

0 (v
∗
0 , η

∗
0).

The uniqueness of minimizer for problem 3.7 with s = 0 implies that (z∗0 , θ
∗
0) = (v∗0 , η

∗
0), and the required

assertion follows. �

Proof of theorem 3.6. Step 1. It is straightforward to see that 3.9 satisfies the hypotheses of the Karush–
Kuhn–Tucker theorem 5.1, in which

X = W ([0, s], V, V ′)× L2((0, s), L2(TΩ)), Y = H × L2((0, s), V ),

J = Nλ
s , and F : X → Y is the affine operator taking (v, η) to

(

v(0)−w0, vt +Lv+B(û)v−Π(χPMη)
)

.

Hence, there is a Lagrange multiplier (µs, qs) ∈ H × L2((0, s), V ) such that

(Nλ
s )

′(v•s , η
•
s )− (µs, qs) ◦ F ′(v•s , η

•
s ) = 0.
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It follows that, for all z ∈ W ([0, s], V, V ′) and ξ ∈ L2((0, s), L2(TΩ)), we have

2

∫ s

0

eλt(v•s , z)V dt+ 2(Qs,λ
û v•s (s), z(s))H + (z(0), µs)H +

∫ s

0

〈zt + Lz + B(û)z, qs〉V ′,V dt = 0,(38)

2

∫ s

0

eλt(η•s , ξ)L2(TΩ) dt+

∫ s

0

〈−Π(χPMξ), qs〉V ′,V dt = 0.(39)

In particular, from (38) we may conclude that

(40) (qs)t − Lqs − B
∗(û)qs = eλtLv•s (t).

Since qs, v
•
s ∈ L2((0, s), V ), we see that ∂tqs ∈ L2((0, s), V ′), and therefore qs ∈ W ([0, s], V, V ′), whence

it follows that qs ∈ C([0, s], H). Using again (38), we derive

(41) qs(s) = −2Qs,λ
û v•s (s).

On the other hand, relation (39) implies that

(42) η•s =
1

2
e−λtPM (χqs).

In particular, η•s (t) is a continuous function of t with range in EM . Combining (42) and (41), we derive

η•s (s) = −e−λsPMχQ
s,λ
û v•s (s).

Recalling lemma 3.10 and using the fact that s is arbitrary, we conclude that η0 is a continuous function
of time with range in EM and that

η∗0(t) = −e−λtPM

(

χQ
t,λ
û v∗0(t)

)

for all t ≥ 0.

Thus, the optimal trajectory v∗0 for problem 3.7 with s = 0 solves the system

vt + Lv +B(û, v) +B(v, û) = Π(Kλ
ûv), t ∈ R+,(43)

v(0) = v0,(44)

where we set

Kλ
û (t) := −e−λtχPMχQ

t,λ
û .

It is clear that Kλ
û (t) is a linear continuous operator from H to EM . Moreover, it continuously depends

on t in the weak operator topology, because so does the family Q
t,λ
û . Finally, it follows from (36) that

the norm of Kλ
û (t) is bounded by a constant depending only on λ and |û|W . We have thus constructed

a feedback control Kλ
û (t) such that Mλ

0 (v, η) ≤ C|v0|2, where v denotes the solution of (30), (31)

with s = 0. Moreover, the explicit formula for Kλ
û and the definition of Qt,λ

û imply that if v is the

solution of problem (30), (31), then Mλ
s (v, η) ≤ C|v0|2, where η(t) = Kλ

û (t)v(t).

Step 2. We now prove inequalities (32) and (33) for solutions of problem (30), (31). Let us fix v0 ∈ H

and denote by v the solution of (30), (31). It is straightforward to see that the function z(t) = e(λ/2)tv(t)
satisfies the equation

(45) zt + Lz + B(û)z =
λ

2
z +Kλ

û (t)z.

Taking the scalar product of (45) with 2z and using the uniform boundedness of the family Kλ
û (t), we

derive

(46)
d

dt
|z(t)|2H + 2|z(t)|2V = λ|z(t)|2H + 2(Kλ

û (t)z, z)− 2(B(û)z(t), z(t))H ≤ C [λ,|û|W ]|z(t)|2H
Integrating this inequality over the interval (s, t) with t > s, recalling the definition of z and using
lemmas 3.8 and 3.10, we obtain

eλt|v(t)|2H + 2

∫

(s, t)

eλτ |v(τ)|2V dτ ≤ eλs|v0|2H + C1

∫

(s, t)

eλτ |v(τ)|2H dτ

≤ eλs|v0|2H + C1

∫

(s,+∞)

eλτ |v(τ)|2H dτ

≤ eλs|v0|2H + C2(Q
s,λ
û v0, v0) ≤ C3e

λs|v0|2H .(47)

Furthermore, it follows from (43) that

eλt|vt(t)|2V ′ ≤ C4e
λt|v(t)|2V .
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Combining this with (47), we arrive at

eλt|v(t)|2H + 2

∫

(s, t)

eλτ
(

|v(τ)|2V + |vt(τ)|2V ′

)

dτ ≤ C5e
λs|v0|2H .

This is equivalent to (32).

We now assume that v0 ∈ V . Taking the scalar product of (45) with 2Lz, and using the Schwarz
inequality and the uniform boundedness of the family Kλ

û (t), we derive

d

dt
|z(t)|2V + 2|z(t)|2D(L) = λ(z, Lz)H + 2(Kλ

û(t)z, Lz)− 2(B(û)z(t), Lz(t))H

≤ |Lz|2H + C(λ, |û|W)|z(t)|2V .
Integrating this inequality over the interval (s, t) and using (32), we obtain

(48) eλt|v(t)|2V +

∫

(s, t)

eλτ |v(τ)|2D(L) dτ ≤ C6

∫

(s,t)

eλτ |v(τ)|2V dτ ≤ C7e
λs|v0|2H .

Furthermore, relation (43) implies that

eλt|vt(t)|2H ≤ C7e
λt|v(t)|2D(L).

Combining this with (48), we arrive at (33). �

4. Stabilization of the nonlinear problem

4.1. Main result. Let us consider the nonlinear problem

vt + Lv +Bv + B(û)v = Kλ
û (t)v, t ∈ R+;(49)

v(0) = v0,(50)

where the operator Kλ
û (t) is constructed in theorem 3.6. Given a constant λ > 0, we denote by Zλ the

space of functions z ∈ C(R+, V ) ∩ L2
loc(R+, U) such that

|z|Zλ := sup
t≥0

(

eλt|z(t)|2V +

∫

(t, t+1)

eλτ |z(τ)|2D(L) dτ

)1/2

< ∞.

The following theorem is the main result of this paper.

Theorem 4.1. Let û ∈ W be an arbitrary function, let λ > 0, and let M = C [|û|W ,λ] be the integer

constructed in theorem 3.6. Then are positive constants ϑ and ǫ depending only on |û|W and λ such that

for |v0|V ≤ ǫ the solution v of system (49), (50) is well defined for all t ≥ 0 and satisfies the inequality

(51) |v(t)|2V ≤ ϑe−λt|v0|2V for t ≥ 0.

Proof. We will use the contraction mapping principle. We fix a constant ϑ > 0 and a function v0 ∈ V

and introduce the following subset of Zλ:

Zλ
ϑ := {z ∈ Zλ | z(0) = v0, |z|2Zλ ≤ ϑ|v0|2V }.

We define a mapping Ξ : Zλ
ϑ → C(R+, V ) ∩ L2

loc(R+, U) that takes a function a ∈ Zλ to the solution of
the problem

bt + Lb+ B(û)b = Kλ
ûb−Ba, t ∈ R+,(52)

b(0) = v0.(53)

Suppose we have shown the following proposition.

Proposition 4.2. Under the hypotheses of theorem 4.1, there exists ϑ > 0 such that for any γ ∈ (0, 1)
and an appropriate constant ǫ = ǫγ > 0 the mapping Ξ takes the set Zλ

ϑ into itself and satisfies the

inequality

(54) |Ξ(a1)− Ξ(a2)|Zλ ≤ γ|a1 − a2|Zλ for all a1, a2 ∈ Zλ
ϑ ,

provided that |v0|V ≤ ǫ.

Thus, if |v0|V is sufficiently small, then the contraction mapping principle implies that there is a
unique fixed point v ∈ Zλ

ϑ for Ξ. It follows from the definition of Ξ and Zλ
ϑ that v is a solution of

problem (49), (50) and satisfies the required inequality (51). Furthermore, standard methods show that
problem (49), (50) has at most one solution in the space C(R+, V ) ∩ L2

loc(R+, U). Hence, to complete
the proof of the theorem, it suffices to establish the above proposition. �
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4.2. Proof of proposition 4.2. Step 1. We first derive an estimate for solutions of the equation

(55) zt + Lz + B(û)z = Kλ
ûz + f(t),

where f ∈ L2
loc(R+, H). Namely, we will show that

(56) sup
t≥0

(

eλt|z(t)|2V +

∫

(t,t+1)

eλs|z(s)|2D(L)ds

)

≤ C1

(

|z(0)|2V + sup
t≥0

∫

(t,t+1)

e2λs|f(s)|2Hds

)

,

where C1 = C [|û|W ,λ] is a constant. Indeed, let U(s, t) be the operator that takes v0 ∈ H to v(t), where v
stands for the solution of (30), (31). By the Duhamel formula, we can write z as

(57) z(t) = U(0, t)z(0) +

∫

(0, t)

U(s, t)f(s) ds.

Combining this with (32), we derive

|z(t)|2H = 2|U(0, t)z(0)|2H + 2

(
∫

(0, t)

|U(s, t)f(s)|H ds

)2

= 2κe−λt|z(0)|2H + 2κe−λt

(
∫

(0, t)

e(λ/2)s|f(s)|H ds

)2

.(58)

Now note that, for any nonnegative function c(t) and any λ > 0, we have

sup
t≥0

∫

(0, t)

e(λ/2)sc(s) ds ≤
∫

(0,+∞)

e(λ/2)sc(s) ds =

∞
∑

k=1

∫

(k−1, k)

e(λ/2)sc(s) ds

≤
∞
∑

k=1

e(λ/2)k
(
∫

(k−1, k)

|c(s)|2 ds
)1/2

≤
∞
∑

k=1

e−(λ/2)(k−2)

(
∫

(k−1, k)

e2λs|c(s)|2 ds
)1/2

≤ C2

(

sup
t≥0

∫

(t, t+1)

e2λs|c(s)|2 ds
)1/2

.

Substituting this inequality with c(t) = |f(t)|H into (58), we derive

(59) sup
t≥0

(

eλt|z(t)|2H
)

≤ 2κ

(

|z(0)|2H + C2
2 sup

t≥0

∫

(t, t+1)

e2λs|f(s)|2H ds

)

On the other hand, it is easy to see that the analogue of lemma 2.1 is true for equation (55). In particular,
for any s ≥ 0 we have the estimates

(t− s)|U(s, t)z0|2V ≤ C3

(

|z0|2H +

∫

(s,t)

|f(τ)|2Hdτ

)

,(60)

|U(s, t)z0|2V +

∫

(s,s+1)

|U(s, τ)z0|2D(L)dτ ≤ C3

(

|z0|2V +

∫

(s,t)

|f(τ)|2Hdτ

)

,(61)

where s ≤ t ≤ s + 1, and C3 > 0 does not depend on s. Combining (59) with inequality (60) in which
z0 = U(0, s)z(0) and t = s+ 1, we obtain

|z(s+ 1)|2V ≤ C3

(

|U(0, s)z(0)|2H +

∫

(s,s+1)

|f(τ)|2Hdτ

)

≤ C4e
−λs

(

|z(0)|2H + sup
t≥0

∫

(t,t+1)

e2λτ |f(τ)|2Hdτ

)

.

Using now (61), for s ≥ 1 we derive

(62) |z(s)|2V +

∫

(s,s+1)

|z(τ)|2D(L)dτ ≤ C5e
−λs

(

|z(0)|2H + sup
t≥0

∫

(t,t+1)

e2λτ |f(τ)|2Hdτ

)

.

On the other hand, it follows from (61) that

(63) sup
0≤s≤1

|z(s)|2V +

∫

(0,1)

|z(τ)|2D(L)dτ ≤ C3

(

|z0|2V +

∫

(0,1)

|f(τ)|2Hdτ

)

.

The required inequality (56) follows immediately from (62) and (63).



STABILIZATION OF NAVIER–STOKES EQUATIONS 13

Step 2. We now prove that Ξ maps the set Zλ
ϑ into itself. Inequality (56) with f(t) = −Ba(t) implies

that

(64) |Ξ(a)|2Zλ ≤ C1

(

|v0|2V + sup
t≥0

∫

(t,t+1)

e2λs|Ba(s)|2Hds

)

.

Now note that |Ba|H ≤ C6|a|V |a|D(L), whence it follows that

sup
t≥0

∫

(t,t+1)

e2λs|Ba(s)|2Hds ≤ C2
6 sup

t≥0

∫

(t,t+1)

(

eλs|a|2V
) (

eλs|a|2D(L)

)

ds ≤ C2
6 |a|4Zλ .

Substituting this into (64), we see that if a ∈ Zλ
ϑ , then

(65) |Ξ(a)|Zλ ≤ C7

(

|v0|V + |a|2Zλ

)

≤ C7

(

1 + ϑ|v0|V
)

|v0|V .
Setting ϑ = 2C7 and choosing ǫ > 0 so small that C7(1 + ϑǫ) ≤ ϑ, we see that if |v0|V ≤ ǫ, then Ξ maps
the set Zλ

ϑ into itself.

Step 3. It remains to prove that Ξ satisfies inequality (54). Let us take two functions a1, a2 ∈ Zλ
ϑ and

set a = a1 − a2 and z = Ξ(a1)− Ξ(a2). Then the function z satisfies the initial condition z(0) = 0 and
equation (55) with f = Ba2 −Ba1. Therefore, by inequality (56), we have

(66) |Ξ(a1)− Ξ(a2)|2Zλ ≤ sup
t≥0

∫

(t,t+1)

e2λs|Ba1 −Ba2|2Hds.

Using a standard estimate for B(u, v) and the interpolation inequality |u|2L∞ ≤ C|u|V |u|D(L), we derive

|Ba1 −Ba2|2H = |B(a1, a)−B(a, a2)|2H
≤ C8

(

|a1|L∞ |a|V + |a|L∞ |a2|V
)2

≤ C9

(

|a1|V |a1|D(L)|a|2V + |a|V |a|D(L)|a2|V
)

.

It follows that

(67)

∫

(t,t+1)

e2λs|Ba1 −Ba2|2Hds ≤ C10

(

|a1|2Zλ + |a2|2Zλ

)

|a|2Zλ .

Substituting (67) into (66) and recalling the definition of Zλ
ϑ , we obtain

|Ξ(a1)− Ξ(a2)|2Zλ ≤ 2ϑC10|v0|2V |a1 − a2|2Zλ .

Choosing ǫ > 0 so small that 2ϑC10ǫ
2 ≤ γ2, we see that if |v0|V ≤ ǫ, then (54) holds. This completes

the proof of the proposition.

5. Appendix

5.1. Karush–Kuhn–Tucker theorem. Let X and Y be Banach spaces and let J : X → R and
F : X → Y be two continuously differentiable functions. Consider the following minimization problem
with constraints:

(68) J(x) → min, F (x) = 0.

We will say that x̄ ∈ X is a local minimum for (68) if F (x̄) = 0 and there is a neighborhood U ∋ x̄ such
that J(x̄) ≤ J(x) for any x ∈ U such that F (x) = 0. A proof of the following theorem can be found
in [14].

Theorem 5.1. Let x̄ ∈ X be a local minimum for (68) and let the derivative F ′(x̄) : X → Y be a

surjective operator. There there is y∗ ∈ Y∗ such that

(69) J ′(x̄) + y∗ ◦ F ′(x̄) = 0.

5.2. Quadratic functionals with linear constraint. Let X and Y be normed vector spaces, let
J(x, y) be a bounded symmetric bilinear form on X that is weakly continuous with respect to each of its
arguments, and let A : X → Y be a continuous surjective linear operator. Given a vector y ∈ Y, consider
the minimization problem

(70) J(x) → min, Ax = y,

where J(x) = J(x, x). We will say that x̄ ∈ X is a global minimum for (70) if Ax̄ = y and J(x̄) ≤ J(x)
for x ∈ X such that Ax = y. The following result is rather standard in the optimal control theory.
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Theorem 5.2. Suppose that J(x) is nonnegative and vanishes only for x = 0, and the set {x ∈ X :
J(x) ≤ c} is weakly compact for any c > 0. Then problem (70) has a unique global minimum x̄ ∈ X ,

and the function L : Y → X taking y to x̄ is linear.

Proof. Existence. Let m ≥ 0 be the infimum of J on A−1(y) and let {xn} ⊂ A−1(y) be a sequence such
that J(xn) → m. Since the set {x ∈ X : J(x) ≤ m + 1} is weakly compact, we can assume that {xn}
converges weakly to a vector x̄ ∈ X . Now note that

0 ≤ J(xn − x̄) = J(xn)− 2J(xn, x̄) + J(x̄).

Combining this with the weak continuity of J , we see that

J(x̄) ≤ lim inf
n→∞

J(xn) = m.

Thus, x̄ is a global minimum for (70).

Uniqueness. Since the only point of X at which J vanishes is x = 0, a standard argument proves
that J is strictly convex, that is,

J
(

x1+x2

2

)

≤ 1
2

(

J(x1) + J(x2)
)

for all x1, x2 ∈ X ,

and the equality holds if and only if x1 = x2. This immediately implies that the global minimum is
unique.

Linearity. Let y ∈ Y and z ∈ A−1(0). For all λ > 0, we have A(Ly ± λz) = y, and the definition of L
implies that J(Ly) ≤ J(Ly ± λz). It follows that 0 ≤ λJ(z) ± 2J(Ly, z) for all λ > 0. Letting λ go to
0, we see that

(71) J(Ly, z) = 0 for all y ∈ Y, z ∈ A−1(0).

For a, b ∈ Y and α, β ∈ R, let us set

k := αLa+ βLb− L(αa+ βb).

Then Ak = 0, and by (71), we have J(k) = J(k, k) = αJ(La, k) + βJ(Lb, k)− J(L(αa+ βb), k) = 0. It
follows that k = 0, and therefore L is linear. �

5.3. Truncated observability inequality. We first recall a well-known observability inequality for
the linearized Navier–Stokes system. Let us fix a function û ∈ Wτ ∩ L2(Iτ , V ) with Iτ = (τ, τ + 1) and
Wτ := W 1,∞(Iτ , W

1,∞(TΩ)), and consider the problem

qt − Lq − B
∗(û)q = 0, t ∈ Iτ ,(72)

q(τ + 1) = q1,(73)

where q1 ∈ H . By Theorem 2.2 in [13] (see also [7]), for any open subset ω ⊂ Ω there is a constant Cω

such that

(74) |q(τ)|2H ≤ Cω

∫

Iτ

|q|2L2(Tω) dt,

Since suppχ ∩Ω 6= ∅, the domain ωχ := {x ∈ Ω | |χ(x)| > ρ} is nonempty for a sufficiently small ρ > 0.
It follows from (74) that

|q(τ)|2H ≤ Cωχ

∫

Iτ

|q|2L2(Tωχ)
dt ≤ Cωχ

ρ−2

∫

Iτ

|χq|2L2(TΩ) dt.

Thus, setting D′
χ := Cωχ

ρ−2, for any solution of system (72), (73), we have the observability inequality

(75) |q(τ)|2H ≤ D′
χ

∫

Iτ

|χq|2L2(TΩ) dt.

The following proposition shows that if q1 belongs to a finite-dimensional subspace of H , then the
function χq on the right-hand side of (75) can be replaced by PM (χq) with a sufficiently large M .

Proposition 5.3. For any integer N ≥ 1 there is M = C [N,|û|Wτ ]
∈ N such that any solution q for

system (72), (73) with q1 ∈ FN = ΠNH satisfies the inequality

(76) |q(τ)|2H ≤ Dχ

∫

Iτ

|PM (χq)|2L2(TΩ) dt

for a suitable constant Dχ depending only on χ.

To prove the proposition, we need the following lemma.
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Lemma 5.4. For any solution q of system (72), (73) with q1 ∈ FN , we have

(77)

∫

Iτ

|χq|2H1(TΩ) dt ≤ C

∫

Iτ

|χq|2L2(TΩ) dt,

where the constant C = C [N,|û|Wτ ]
does not depend on the shape of the trajectory û.

Proof. We argue by contradiction. Suppose there is a sequence (qn1 , û
n) ∈ FN × (L2(Iτ , V ) ∩Wτ ), with

(|ûn|Wτ
) bounded, such that the solution qn of the problem

qnt − Lqn − B
∗(ûn)qn = 0, t ∈ Iτ ,(78)

qn(τ + 1) = qn1(79)

satisfies the inequality

(80)

∫

Iτ

|χqn|2H1(TΩ) dt > n

∫

Iτ

|χqn|2L2(TΩ) dt.

Since the equations are linear, there is no loss of generality in assuming that |qn1 | = 1. The boundedness
of (|ûn|Wτ

) implies that both (ûn) and (ûn
t ) are bounded in L∞(Iτ , W

1,∞(TΩ)). After a change of time
variable s ∈ I0, t = τ + 1 − s we may apply lemma 2.1 and see that (|qn|2L2(Iτ ,D(L))) and (|qnt |2L2(Iτ , H))

are bounded.
What has been said implies that there is a subsequence of (qn1 , q

n, ûn) (for which we preserve the same
notation), a unit vector q∞1 ∈ FN , and functions q∞ ∈ W (Iτ ,D(L), H) and û∞ ∈ Wτ such that

qn1 → q∞1 in FN ,

qn → q∞ in L2(Iτ , V ),

∂tq
n ⇀ ∂tq

∞ in L2(Iτ , H),

ûn → û∞ in L2(Iτ , H),

∂
j
t ∂

α
x û

n ⇀∗ ∂
j
t ∂

α
x û

∞ in L∞(Iτ , L
∞(Ω)),

where j = 0, 1 and |α| ≤ 1. Combining this with the boundedness of the sequences (ûn) and (qn) in the
corresponding spaces, we can easily pass to the limit in (78), (79) and derive the equations

q∞t − Lq∞ − B
∗(û∞)q∞ = 0, t ∈ Iτ ,(81)

q∞(τ + 1) = q∞1 .(82)

Furthermore, since the operator of multiplication by χ is continuous in L2(Iτ , H
1(TΩ)), we also have

(83) χqn → χq∞ in L2(Iτ , H
1(TΩ)).

Therefore, passing to the limit in inequality (80) as n → ∞, we conclude that

(84)

∫

Iτ

|χq∞|2L2(TΩ) dt = 0.

Applying now the observability inequality (75) to equation (81) considered on the interval (τ + r, τ + 1)
with 0 ≤ r < 1, we conclude that q∞(t) = 0 for τ ≤ t < τ + 1. Since q∞ ∈ C(Īτ , V ), we obtain
q∞1 = q∞(τ + 1) = 0. This contradicts the fact that q∞1 ∈ FN is a unit vector. The contradiction
obtained proves that (77) holds. �

Proof of proposition 5.3. We use lemma 5.4 to derive
∫

Iτ

|χq|2L2(TΩ) dt ≤
∫

Iτ

|PM (χq)|2L2(TΩ) dt+

∫

Iτ

|(1− PM )χq|2L2(TΩ) dt

≤
∫

Iτ

|PM (χq)|2L2(TΩ) dt+ β−1
M

∫

Iτ

|(1− PM )(χq)|2H1(TΩ) dt

≤
∫

Iτ

|PM (χq)|2L2(TΩ) dt+ β−1
M

∫

Iτ

|χq|2H1(TΩ) dt

≤
∫

Iτ

|PM (χq)|2L2(TΩ) dt+ β−1
M C [N,|û|Wτ ]

∫

Iτ

|χq|2L2(TΩ) dt.

Choosing the integer M so large that β−1
M C [N,|û|Wτ ]

≤ 1
2 , we obtain

∫

Iτ

|χq|2L2(TΩ) dt ≤ 2

∫

Iτ

|PM (χq)|2L2(TΩ) dt.
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Combining this with (75), we arrive the required inequality (76). �
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16. J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control

Optimisation 45 (2006), no. 3, 790–728.
17. , Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math.

Pures Appl. (9) 87 (2007), no. 6, 627–669.
18. J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with

finite-dimensional controllers, Preprint (2009).
19. R. Temam, Navier-Stokes equations: Theory and numerical analysis, AMS Chelsea Publishing, 2001.

V. Barbu, Department of Mathematics, University “Al. I. Cuza”, 6600 Iasi, Romania; e-mail: vb41@uaic.ro

S. S. Rodrigues, University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, F-95000

Cergy-Pontoise; e-mail: Sergio.Rodrigues@u-cergy.fr

A. Shirikyan, University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, F-95000 Cergy-

Pontoise; e-mail: Armen.Shirikyan@u-cergy.fr


