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Abstract. The problems studied in this article originate from theGraph

Motif problem introduced by Lacroix et al. [17] in the context of biolog-
ical networks. The problem is to decide if a vertex-colored graph has a
connected subgraph whose colors equal a given multiset of colors M . Us-
ing an algebraic framework recently introduced by Koutis et al. [15,16],
we obtain new FPT algorithms for Graph Motif and variants, with
improved running times. We also obtain results on the counting versions
of this problem, showing that the counting problem is FPT if M is a set,
but becomes #W[1]-hard if M is a multiset with two colors.

1 Introduction

An emerging field in the modern biology is the study of the biological networks,
which represent the interactions between biological elements [1]. A network is
modeled by a vertex-colored graph, where nodes represent the biological com-
pounds, edges represent their interactions, and colors represent functionalities of
the graph nodes. Networks are often analyzed by studying their network motifs,
which are defined as small recurring subnetworks. Motifs generally correspond
to a set of elements realizing a same function, and which may have been evo-
lutionarily preserved. Therefore, the discovery and the querying of motifs is a
crucial problem [20], since it can help to decompose the network into functional
modules, to identify conserved elements, and to transfer biological knowledge
across species.

The initial definition of network motifs involves conservation of the topology
and of the node labels; hence, looking for topological motifs is roughly equivalent
to subgraph isomorphism, and thus is a computationally difficult problem. How-
ever, in some situations, the topology is not known or is irrelevant, which leads
to searching for functional motifs instead of topological ones. In this setting, we
still ask for the conservation of the node labels, but we replace topology conser-
vation by the weaker requirement that the subnetwork should form a connected
subgraph of the target graph. This approach was advocated by [17] and led to
the definition of the Graph Motif problem [10]: given a vertex-colored graph
G = (V,E) and a multiset of colors M , find a set V ′ ⊆ V such that the induced
subgraph G[V ′] is connected, and the multiset of colors of the vertices of V ′ is
equal to M . In the literature, a distinction is made between the colorful case



(when M is a set), and the multiset case (when M is an arbitrary multiset).
Although this problem has been introduced for biological motivations, [3] points
out that it may also be used in social or technical networks.

Not surprisingly, Graph Motif is NP-hard, even if G is a bipartite graph
with maximum degree 4 and M is built over two colors only [10]. The problem
is still NP-hard if G is a tree, but in this case it can be solved in O(n2c+2) time,
where c is the number of distinct colors in M , while being W[1]-hard for the
parameter c [10]. The difficulty of this problem is counterbalanced by its fixed-
parameter tractability when the parameter is k, the size of the solution [17,10,3].
The currently fastest FPT algorithms for the problem run in O∗(2k) time for the
colorful case, O∗(4.32k) time for the multiset case, and use exponential space
(the O∗ notation suppresses poly(n, k) factors).

Our contribution is twofold. First, we consider in Section 3 the decision ver-
sions of theGraph Motif problem, as well as some variants: we obtain improved
FPT algorithms for these problems, by using the algebraic framework of mul-

tilinear detection for arithmetic circuits [15,16], presented in the next section.
Second, we investigate in Section 4 the counting versions of the Graph Motif

problem: instead of deciding if a motif appears in the graph, we now want to
count the occurrences of this motif. This allows to assess if a motif is over- or
under- represented in the network, by comparing the actual count of the motif
to its expected count under a null hypothesis [19]. We show that the counting
problem is FPT in the colorful case, but becomes #W[1]-hard for the multiset
case with two colors. We refer the reader to [12,11] for definitions related to
parameterized counting classes.

2 Definitions

This section contains definitions related to arithmetic circuits, and to theMulti-

linear Detection (MLD) problem. It concludes by stating Theorem 1, which
will be used throughout the paper.

2.1 Arithmetic circuits

In the following, a capital letter X will denote a set of variables, and a lower-
case letter x will denote a single variable. If X is a set of variables and A is a
commutative ring, we denote by A[X ] the ring of multivariate polynomials with
coefficients in A and involving variables of X . Given a monomial m = x1...xk
in A[X ], where the xis are variables, its degree is k, and m is multilinear iff its
variables are distinct.

An arithmetic circuit over X is a pair C = (C, r), where C is a labeled dag
such that (i) the children of each node are totally ordered, (ii) the nodes are
labeled either by op ∈ {+,×} or by an element of X , (iii) no internal node is
labeled by an element of X , and where r is a distinguished node of C called
the root. For a given node u we denote by NC(u) the set of children (i.e. out-
neighbors) of u in C. We recall that a node u is called a leaf of C iff NC(u) = ∅,
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an internal node otherwise. We denote by T (C) the size of C (defined as the
number of arcs), and we denote by S(C) the number of nodes of C of indegree
≥ 2.

Given a commutative ring A, evaluating C over A under a mapping φ : X → A

consists in

1. computing, for each node u of C, a value val(u) ∈ A as follows:

val(u) =
∑

u′∈NC(u)

val(u′) if u is labeled by +

val(u) =
∏

u′∈NC(u)

val(u′) if u is labeled by ×

val(u) = φ(x) if u is a leaf labeled by x ∈ X

where the operations are carried out in A. By convention, empty sums eval-
uate to 0A, and empty products evaluate to 1A.

2. returning the value val(r) as the result of the evaluation.

Observe that if operations in A require O(t) time and O(s) space, then the
above evaluation can be computed in O(t.T (C)) time and O(s.S(C)) space. The
symbolic evaluation of C is the polynomial PC ∈ Z[X ] obtained by evaluating C
over Z[X ] under the identity mapping φ : X → Z[X ].

2.2 Multilinear Detection

Informally, the Multilinear Detection problem asks, for a given arithmetic
circuit C and an integer k, if the polynomial PC has a multilinear monomial
of degree k. However, this definition does not give a certificate checkable in
polynomial-time, so for technical reasons we define the problem differently.

A monomial-subtree of C is a pair T = (C′, φ), where C′ = (C′, r′) is an
arithmetic circuit over X whose underlying dag C′ is a directed tree, and where
φ : VC′ → VC is such that (i) φ(r′) = r, (ii) if u ∈ VC′ is labeled by x ∈ X ,
then so is φ(u), (iii) if u ∈ VC′ is labeled by + then so is φ(u), and NC′(u)
consists of a single element v ∈ NC(φ(u)), (iv) if u ∈ VC′ is labeled by ×, then
so is φ(u), and φ maps bijectively NC′(u) into NC(φ(u)) by preserving the or-
dering on siblings. The variables of T are the leaves of C′ labeled by variables
in X . We say that T is distinctly-labeled iff its variables are distinct. Intuitively,
the (distinctly-labeled) monomial-subtrees of C with k variables correspond to
the (multilinear) monomials of PC having degree k. Therefore, we formulate the
Multilinear Detection problem as follows:

Name: Multilinear Detection (MLD)
Input: An arithmetic circuit C over a set of variables X , an integer k
Solution: A distinctly-labeled monomial-subtree of C with k variables.
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SolvingMLD amounts to decide if PC has a multilinear monomial of degree k
(observe that there are no possible cancellations), and solving #MLD amounts
to compute the sum of the coefficients of multilinear monomials of PC having
degree k. The restriction of MLD when |X | = k is called Exact Multilinear

Detection (XMLD). In this article, we will rely on the following far-reaching
result from [21,16] to obtain new algorithms for Graph Motif:

Theorem 1 ([21,16]). MLD can be solved by a randomized algorithm which

uses Õ(2kT (C)) time and Õ(S(C)) space.

Here, we use the Õ notation to suppress polylogarithmic factors, i.e. factors
of the form O((log n)c) where n is the instance size and c is a constant. By a
”randomized algorithm” with running time O(t), we mean an algorithm which (i)
always answers no on negative instances, (ii) answers yes with probability ≥ 1

2
on positive instances, (iii) always runs in time O(t) regardless of the random
choices made in an execution. We point out that the algorithm of Theorem 1
proceeds by multiple evaluations of the circuit over Z. Therefore, it still applies
if the circuit is given as an evaluation oracle over the integers.

3 Finding vertex-colored subtrees

In this section, we consider several variants of the Graph Motif problem,
and we obtain improved FPT algorithms for these problems by reduction to
MLD. Notably, we obtainO∗(2k) time algorithms for problems involving colorful
motifs, and O∗(4k) time algorithms for multiset motifs.

3.1 The colorful case

In the colorful formulation of the problem, the graph is vertex-colored, and we
seek a subtree with k vertices having distinct colors. This leads to the following
formal definition:

Name: Colorful Graph Motif (CGM)
Input: A graph G = (V,E), k ∈ N, a set C, a function χ : V → C
Solution: A subtree T = (VT , ET ) of G s.t. (i) |VT | = k and (ii) for each
u, v ∈ VT distinct, χ(u) 6= χ(v).

The restriction of Colorful Graph Motif when |C| = k is called Exact

Colorful Graph Motif (XCGM). Note that this restriction requires that the
vertices of T are bijectively labeled by the colors of C. In [7], theXCGM problem
was shown to be solvable in O∗(2k) time and space, while it is not difficult to
see that the general CGM problem can be solved in O∗((2e)k) time and O∗(2k)
space by color-coding. By using a reduction to Multilinear Detection, we
improve upon these complexities. In the following, we let n and m denote the
number of vertices and the number of edges of G, respectively.
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Proposition 1. CGM is solvable by a randomized algorithm in Õ(2kk2m) time

and Õ(kn) space.

Proof. Let I be an instance of CGM. We construct the following circuit CI : its
set of variables is {xc : c ∈ C}, and we introduce intermediary nodes Pi,u for
1 ≤ i ≤ k, u ∈ V , as well as a root node P . Informally, the multilinear monomials
of Pi,u will correspond to colorful subtrees of G having i vertices, including u.
The definitions are as follows:

Pi,u =

i−1∑

i′=1

∑

v∈NG(u)

Pi′,uPi−i′,v if i > 1, P1,u = xχ(u)

and P =
∑

u∈V Pk,u. The resulting instance of MLD is I ′ = (CI , k). By applying
Theorem 1, and by observing that T (CI) = O(k2m) and S(CI) = O(kn), we
solve I ′ in Õ(2kk2m) time and Õ(kn) space. The correctness of the construction
follows by showing by induction on 1 ≤ i ≤ k that: xc1 ...xcd is a multilinear
monomial of Pi,u iff (i) d = i and (ii) there exists T = (VT , ET ) colorful subtree
of G such that u ∈ VT and χ(VT ) = {c1, ..., cd}. ⊓⊔

3.2 The multiset case

We now consider several variants of the CGM problem. The first two variants
allow formultiset motifs : instead of seeking a subtree with distinct colors, we now
allow some colors to be repeated but impose a maximum number of occurrences
for each color. This problem can be seen as a generalization of the original
Graph Motif problem.

Given a multiset M over a set A, and given an element x ∈ A, we denote
by nM (x) the number of occurrences of x in M . Given two multisets M,M ′,
we denote their inclusion by M ⊆ M ′. We denote by |M | the size of M , where
elements are counted with their multiplicities. Given two sets A,B, a function
f : A→ B and a multiset X over A, we let f(X) denote the multiset containing
the elements f(x) for x ∈ X , counted with multiplicities; precisely, given y ∈ B
we have nf(X)(y) =

∑
x∈A:f(x)=y nX(x).

We now define the two following variants of Colorful Graph Motif,
which allow for multiset motifs:

Name: Multiset Graph Motif (MGM)
Input: A graph G = (V,E), an integer k, a set C, a function χ : V → C, a
multiset M over C.
Solution: A subtree T = (VT , ET ) of G s.t. (i) |VT | = k and (ii) χ(VT ) ⊆M .

Name: Multiset Graph Motif With Gaps (MGMG)
Input: A graph G = (V,E), integers k, r, a set C, a function χ : V → C, a
multiset M over C.
Solution: A subtree T = (VT , ET ) of G s.t. (i) |VT | ≤ r and (ii) there exists
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S ⊆ VT of size k such that χ(S) ⊆M .

The restriction of Multiset Graph Motif when |M | = k is called Exact

Multiset Graph Motif (XMGM). Note that in this case we require that
T contains every occurrence of M , i.e. χ(VT ) = M . In this way, the XMGM

problem coincides with the Graph Motif problem defined in [10,3], while the
MGM problem is the parameterized version of the Max Motif problem consid-
ered in [9]. The notion of gaps is introduced in [17], and encompasses the notion
of insertions and deletions of [7].

Previous algorithms for these problems relied on color-coding [2]; these algo-
rithms usually have an exponential space complexity, and a high time complexity.
For the Graph Motif problem, [10] gives a randomized algorithm with an im-
plicit O(87kkm) running time, while [3] describes a first randomized algorithm
running in O(8.16km), and shows a second algorithm with O(4.32kk2m) running
time, using two different speed-up techniques ([4] and [13]). For the Max Mo-

tif problem, [9] present a randomized algorithm with an implicit O((32e2)kkm)
running time. Here again, we can apply Theorem 1 to improve the time and
space complexities:

Proposition 2. 1. MGM is solvable by a randomized algorithm in Õ(4kk2m)
time and Õ(kn) space.

2. MGMG is solvable by a randomized algorithm in Õ(4kr2m) time and Õ(rn)
space.

Proof. Point 1. We modify the circuit of Proposition 1 as follows. For each color
c ∈ C with nM (c) = m, we introduce variables yc,1, ..., yc,m, and we introduce a
node Qc = yc,1+...+yc,m. For each vertex u ∈ V , we introduce a variable xu, and
we define P1,u = xuQχ(u). The intuition is that the variables xu will ensure that
we choose different vertices to construct the tree, and that the variables yc,i will
ensure that a given color cannot occur more than required. The resulting instance
ofMLD is I ′ = (CI , 2k), and since T (CI) = O(k2m) and S(CI) = O(kn), we solve
it in the claimed bounds by Theorem 1. A similar induction as in Proposition
1 shows that: for every 1 ≤ i ≤ k, a multilinear monomial of Pi,u has the form
xv1yc1,j1 ...xviyci,ji , and it is present iff there is a subtree (VT , ET ) of G such that
u ∈ VT , VT = {v1, ..., vi} and χ(VT ) = {{c1, ..., ci}} ⊆M .

Point 2. We modify the construction of Point 1 by now setting P1,u = 1 +
xuQχ(u) for each u ∈ V , and P =

∑
u∈V

∑r

i=1 Pi,u. Informally, adding the
constant 1 to each P1,u permits to ignore some vertices of the subtree, allowing
to only select a set S of k vertices such that χ(S) ⊆ M . The correctness of
the construction is shown by a similar induction as above. The catch here is
that when considering two trees T1, T2 obtained from Pi′,u, Pi−i′,v, their selected
vertices will be distinct, but they may have ”ignored” vertices in common; we
can then find a subset of E(T1)∪E(T2)∪{uv} which forms a tree containing all
selected vertices from T1, T2. ⊓⊔
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3.3 Edge-weighted versions

We consider an edge-weighted variant of the problem, where the subtree is now
required to have a given total weight, in addition to respecting the color con-
straints. This variant has been studied in [6] under the name Edge-Weighted

Graph Motif. In our case, we define two problems, depending on whether we
consider colorful or multiset motifs.

Name: Weighted Colorful Graph Motif (WCGM)
Input: A complete graph G = (V,E), a function χ : V → C, a weight function
w : E → N, integers k, r
Solution: A subtree T = (VT , ET ) of G such that (i) |VT | = k, (ii) χ is injective
on VT , (iii)

∑
e∈ET

w(e) ≤ r.

Name: Weighted Multiset Graph Motif (WMGM)
Input: A complete graph G = (V,E), a function χ : V → C, a weight function
w : E → N, integers k, r, a multiset M
Solution: A subtree T = (VT , ET ) of G such that (i) |VT | = k, (ii) χ(VT ) ⊆M ,
(iii)

∑
e∈ET

w(e) ≤ r.

We observe that the WMGM problem contains as particular case the Min-

CC problem introduced in [8], which seeks a subgraph respecting the multiset
motif, and having at most r connected components. Indeed, we can easily reduce
Min-CC to WMGM: given the graph G, we construct a complete graph G′ with
the same vertex set, and we assign a weight 0 to edges of G, and a weight 1 to
non-edges of G.

Proposition 3. 1. WCGM is solvable by a randomized algorithm in Õ(2kk2r2m)
time and Õ(krn) space.

2. WMGM is solvable by a randomized algorithm in Õ(4kk2r2m) time and

Õ(krn) space.

Proof. We only prove 1, since 2 relies on the same modification as in Proposition
2. The construction of the arithmetic circuit is similar to the construction in
Proposition 1. The set of variables is {xc : c ∈ C}, and we introduce nodes
Pi,j,u, for 1 ≤ i ≤ k and 0 ≤ j ≤ r, whose multilinear monomials will correspond
to colorful subtrees having i vertices including u, and with total weight ≤ j. The
definitions are as follows:

Pi,j,u =

i−1∑

i′=1

∑

v∈V

j−w(uv)∑

j′=0

Pi′,j′,uPi−i′,j−j′−w(uv),v if i > 1, P1,j,u = xχ(u)

and P =
∑

u∈V Pk,r,u. The resulting instance of MLD is I ′ = (CI , k), and since
T (CI) = O(k2r2m) and S(CI) = O(krn), we solve it in the claimed bounds
by Theorem 1. The correctness of the construction follows by showing that:
given 1 ≤ i ≤ k, 0 ≤ j ≤ r, u ∈ V , xc1 ...xcd is a multilinear monomial of
Pi,j,u iff (i) d = i and (ii) there exists T = (VT , ET ) colorful subtree of G with
u ∈ VT , χ(VT ) = {c1, ..., cd} and

∑
e∈ET

w(e) ≤ j. ⊓⊔
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4 Counting vertex-colored subtrees

In this section, we consider the counting versions of the problems XCGM and
XMGM introduced in Section 3. For the former, we show that its counting
version #XCGM is FPT; for the latter, we prove that its counting version
#XMGM is #W[1]-hard.

4.1 FPT algorithms for the colorful case

We show that #XCGM is fixed-parameter tractable (Proposition 5). We rely
on a general result for #XMLD (Proposition 4), which uses inclusion-exclusion
as in [14].

Say that a circuit C is k-bounded iff PC has only monomials of degree ≤ k.
Observe that given a circuit C, we can efficiently transform it in a k-bounded
circuit C′ such that (i) C and C′ have the same monomials of degree k, (ii) |C′| ≤
(k+1)2|C|. The following result shows that we can efficiently count solutions for
k-bounded circuits with k variables (and thus for general circuits, with an extra
O(k2) factor in the complexity).

Proposition 4. #XMLD for k-bounded circuits is solvable in O(2kT (C)) time

and O(S(C)) space.

Proof. Let C be the input circuit on a set X of k variables. For a monomial
m let V ar(m) denote its set of variables. Given S ⊆ X , let NS , resp. N

′
S , be

the number of monomials m of PC such that V ar(m) = S, resp. V ar(m) ⊆ S.
Observe that for every S ⊆ X , we have N ′

S =
∑

T⊆S NT . Therefore, by Möbius

inversion it holds that for every S ⊆ X , NS =
∑

T⊆S(−1)|S\T |N ′
T .

Since C is k-bounded, NX is the number of multilinear monomials of PC

having degree k. Now, each value N ′
S can be computed by evaluating C under

the mapping φ : X → Z defined by φ(v) = 1 if v ∈ S, φ(v) = 0 if v /∈ S. By
the Möbius inversion formula, we can thus compute the desired value NX in
O(2kT (C)) time and O(S(C)) space. ⊓⊔

It is worth mentioning that Proposition 4 generalizes several counting al-
gorithms based on inclusion-exclusion, such as the well-known algorithm for
#Hamiltonian Path of [14], as well as results of [18]. Indeed, the problems
considered in these articles can be reduced to counting multilinear monomials of
degree n for circuits with n variables (where n is usually the number of vertices
of the graph), which leads to algorithms running in O∗(2n) time and polynomial
space.

Let us now turn to applying Proposition 4 to the #XCGM problem. Recall
that we defined in Proposition 1 a circuit CI for the general CGM problem; we
will have to modify it slightly for the purpose of counting solutions.

Proposition 5. #XCGM is solvable in O(2kk3m) time and O(k2n) space.
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Proof. Let I be an instance of XCGM. A rooted solution for I is a pair (u, T )
where T is a solution of XCGM on I and u is a vertex of T (which must
be seen as the root of the tree). The solutions of XCGM on I are also called
unrooted solutions. LetNr(I) andNu(I) be the number of rooted, resp. unrooted,
solutions for I. We will show how to compute Nr(I) in the claimed time and

space bounds; since Nu(I) =
Nr(I)

k
, the result will follow.

To computeNr, observe first that we cannot apply Proposition 4 to the circuit
CI of Proposition 1. Indeed, the circuit CI counts the ordered subtrees, and not
the unordered ones. Therefore, we need to modify the circuit in the following
way: at each vertex v of VT , we examine its children by increasing color. This
leads us to define the following circuit C′

I : suppose w.l.o.g. that C = {1, ..., k},
introduce nodes Pi,j,u for each 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1, u ∈ V , variables xi for
each 1 ≤ i ≤ k, and define:

P1,j,u = xχ(u), Pi,j,u = 0 if i ≥ 2, j = k + 1

Pi,j,u = Pi,j+1,u +
i−1∑

i′=1

∑

v∈NG(u):χ(v)=j

Pi′,j+1,uPi−i′,1,v if i ≥ 2, 1 ≤ j ≤ k

Let us also introduce a root node P =
∑

u∈V Pk,1,u. Given 1 ≤ i, j ≤ k and
u ∈ V , let Si,j,u denote the set of pairs (u, T ) where (i) T is a properly colored
subtree of I containing u and having i vertices, (ii) the neighbors of u in T
have colors ≥ j. It can be shown by induction on i that: there is a bijection
between Si,j,u and the multilinear monomials of Pi,j,u. Therefore, the number
of multilinear monomials of P is equal to Nr; since T (C′

I) = O(k3m), S(C′
I) =

O(k2n) and since C′
I is k-bounded, it follows by Proposition 4 that Nr can be

computed in O(2kk3m) time and O(k2n) space. ⊓⊔

4.2 Hardness of the multiset case

In this subsection, we show that #XMGM is #W[1]-hard. For convenience, we
first restate the problem in terms of vertex-distinct embedded subtrees.

Let G = (V,E) and H = (V ′, E′) be two multigraphs. An homomorphism

of G into H is a pair φ = (φV , φE) where φV : V → V ′ and φE : E → E′,
such that if e ∈ E has endpoints x, y then φE(e) has endpoints φV (x), φV (y).
An embedded subtree of G is a pair T = (T, φV , φE) where T = (VT , ET ) is
a tree, and (φV , φE) is an homomorphism from T into G. We say that T is a
vertex-distinct embedded subtree of G (a ”vdst” of G) if φV is injective. We say
T is an edge-distinct embedded subtree of G (an ”edst” of G) iff φE is injective.
We restate XMGM as follows:

Name: Exact Multiset Graph Motif (XMGM)
Input: A graph G = (V,E), an integer k, a set C, a function χ : V → C, a
multiset M over C s.t. |M | = k.
Solution: A vdst (T, φV , φE) of G s.t. χ ◦ φV (VT ) =M .
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We first show the hardness of two intermediate problems (Lemma 1). Before
defining these problems, we need the following notions. Consider a multigraph
G = (V,E). Consider a partition P of V into V1, ..., Vk, and a tuple t ∈ [r]k.
A (P , t)-mapping from a set A is an injection ψ : A → V × [r] such that for
every x ∈ A, if ψ(x) = (v, i) with v ∈ Vj , then 1 ≤ i ≤ tj . From ψ, we
define its reduction as the function ψr : A → V defined by ψr(x) = v whenever
ψ(x) = (v, i). We also define a tuple T (ψ) = (n1, ..., nk) ∈ [r]k such that for each
i ∈ [k], ni = maxv∈Vi

|{x ∈ A : ψr(x) = v}|.
Given two tuples t, t′ ∈ [r]k, denote t ≤ t′ iff ti ≤ t′i for each i ∈ [k]. Note

that for a (P , t)-mapping ψ, we always have T (ψ) ≤ t since ψ is injective. We
say that a (P , t)-labeled edst for G is a tuple (T, ψV , ψE) where (i) T = (VT , ET )
is a tree, (ii) ψV is a (P , t)-mapping from VT , (iii) (T, ψ

r
V , ψE) is an edst of G.

Our intermediate problems are defined as follows:

Name: Multicolored Embedded Subtree-1 (MEST− 1)
Input: Integers k, r, a k-partite multigraph G with partition P , a tuple t ∈ [r]k

Solution: A (P , t)-labeled edst (T, ψV , ψE) for G s.t. |VT | = r and T (ψV ) = t.

The MEST− 2 problem is defined similarly, except that we do not require
that T (ψV ) = t (and thus we only have T (ψV ) ≤ t). While we will only need
#MEST − 2 in our reduction for #XMGM, we first show the hardness of
#MEST− 1, then reduce it to #MEST− 2.

Lemma 1. #MEST−1 and #MEST−2 are #W[1]-hard for parameter (k, r).

The proof is omitted due to space constraints.

Proposition 6. #XMGM is #W[1]-hard for parameter k.

Proof. We reduce from #MEST − 2, and conclude using Lemma 1. Let I =
(k, r,G, t) be an instance of #MEST − 2, where G = (V,E) is a multigraph,
and let SI be its set of solutions. From G, we construct a graph H as follows:
(i) we subdivide each edge e ∈ E, creating a new vertex a[e], (ii) we substitute
each vertex v ∈ Vi by an independent set formed by ti vertices b[v, 1], ..., b[v, ti].
We let A be the set of vertices a[e] and B the set of vertices b[v, i], we therefore
have a bipartite graph H = (A ∪B,F ). We let I ′ = (H, 2r − 1, C, χ,M), where
C = {1, 2}, χ maps A to 1 and B to 2, and M consists of r− 1 occurrences of 1
and r occurrences of 2.

Then I ′ is our resulting instance of #XMGM, and we let SI′ be its set of
solutions. Notice that by definition of χ andM , SI′ is the set of vdst (T, φV , φE)
of H containing r − 1 vertices mapped to A and r vertices mapped to B. We
now show that we have a parsimonious reduction, by describing a bijection Φ :
SI → SI′ . Consider T = (T, ψV , ψE) in SI ; we define Φ(T ) = (T ′, φV , φE) as
follows:

– For each edge e = uv ∈ E(T ), we have fe := ψE(e) ∈ E(G): we then
subdivide e, creating a new vertex xe. Let T

′ be the resulting tree;
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– For each vertex xe, we define φV (xe) = a[fe]. For each other vertex u of T ′,
we have u ∈ V (T ), let (v, i) = ψV (u); we then set φV (u) = b[v, i] (this is
possible since if v ∈ Vj then 1 ≤ i ≤ tj , by definition of ψV ).

From φV , we then define φE in a natural way. Then T ′ = Φ(T ) is indeed in SI′ :
(i) T ′ is a vertex distinct subtree of H (by definition of φV and since T was edge-
distinct, the values φV (xe) are distinct; by injectivity of ψV , the other values
φV (u) are distinct); (ii) it has r−1 vertices mapped to A and r vertices mapped
to B. To prove that Φ is a bijection, we describe the inverse correspondence
Ψ : SI′ → SI . Consider T ′ = (T ′, φV , φE) in SI′ ; we define Ψ(T ′) = (T, ψV , ψE)
as follows. Let A′, B′ be the vertices of T ′ mapped to A,B respectively. Let i be
the number of nodes of A′ which are leaves: since the nodes of A′ have degree 1
or 2 in T ′ depending on whether they are leaves or internal nodes, we then have
|E(T ′)| ≤ i + 2(r − 1 − i) = 2r − i − 2; since |E(T ′)| = 2r − 2, we must have
i = 0. It follows that all leaves of T ′ belong to B′; from T ′, by contracting each
vertex of A′ in T ′ we obtain a tree T with r vertices. We then define ψV , ψE

as follows: (i) given u ∈ B′, if φV (u) = b[v, j], then ψV (u) = (v, j); (ii) given
e = uv ∈ E(T ), there corresponds two edges ux, vx ∈ E(T ′) with x ∈ A′, and we
thus have φV (x) = a[f ], from which we define ψE(e) = f . It is easily seen that
the resulting T = Ψ(T ′) is in SI , and that the operations Φ and Ψ are inverse
of each other. ⊓⊔

5 Conclusion

In this paper, we have obtained improved FPT algorithms for several variants of
the Graph Motif problem. Reducing to the Multilinear Detection prob-
lem yielded a significant reduction of the base of the exponent in the time com-
plexity, as well as a polynomial space complexity. We have also considered the
counting versions of these problems, for the first time in the literature.

We would like to mention two open questions of theoretical interest. First,
we would like to know whether the O∗(4k) running times obtained for multiset
motifs can be further reduced. Second, while we have shown that #XMGM

was #W[1]-hard for a motif with two colors, we leave open its complexity for
one color. Note that this problem amounts to count the k-vertex subtrees of an
(uncolored) graph.

From a practical point of view, it would be interesting to evaluate the per-
formance of the algorithms described in this article. In particular, how do they
compare to implementations based on color-coding or ILPs [7,5]? In this respect,
two important questions are whether the algorithm of Theorem 1 can be effi-
ciently derandomized, and whether it can be adapted to efficiently recover a
solution without backtracking.
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6 Appendix

6.1 End of proof of Proposition 1

Given a set S ⊆ C, define the multilinear monomial πS :=
∏

c∈S xc. Given
u ∈ V (T ) and S ⊆ C, an (u, S)-solution is a subtree T = (VT , ET ) of G, such
that u ∈ VT , T is distinctly colored by χ, and χ(VT ) = S. We show by induction
on 1 ≤ i ≤ k that: πS is a multilinear monomial of Pi,u iff (i) |S| = i and (ii)
there exists an (u, S)-solution. This is clear when i = 1; now, suppose that i ≥ 2,
and assume that the property holds for every 1 ≤ j < i.

Suppose that |S| = i and that T = (VT , ET ) is an (u, S)-solution, let us
show that πS is a multilinear monomial of Pi,u. Let v be a neighbor of u in T ,
then removing the edge uv from T produces two trees T1, T2 with T1 containing
u and T2 containing v. These two trees are distinctly colored, let S1, S2 be
their respective color sets, and let i1, i2 be their respective sizes. Since T1 is an
(u, S1)-solution, πS1

is a multilinear monomial of Pi1,u by induction hypothesis.
Since T2 is a (v, S2)-solution, πS2

is a multilinear monomial of Pi2,v by induction
hypothesis. It follows that πS = πS1

πS2
is a multilinear monomial of Pi1,uPi2,v,

and thus of Pi,u.

Conversely, suppose that πS is a multilinear monomial of Pi,u. By definition
of Pi,u, there exists 1 ≤ i′ ≤ i − 1 and v ∈ NG(u) such that πS is a multi-
linear monomial of Pi′,uPi−i′,v. We can then partition S into S1, S2, with πS1

multilinear monomial of Pi′,u and πS2
multilinear monomial of Pi−i′,v. Induction

hypothesis therefore implies that (i) |S1| = i′ and |S2| = i−i′, (ii) there exists an
(u, S1)-solution T1 = (V1, E1) and a (v, S2)-solution T2 = (V2, E2). Since S1, S2

are disjoint, it follows that |S| = i, which proves (i); besides, V1, V2 are disjoint,
and thus T = (V1 ∪ V2, E1 ∪E2 ∪ {uv}) is an (u, S)-solution, which proves (ii).

6.2 Proof of Lemma 1

We first reduce #Multicolored Clique to #MEST− 1. Our source problem
#Multicolored Clique is the counting version of Multicolored Clique,
which is easily seen to be #W[1]-hard. Let I = (G, k) be an instance of the
problem, where G = (V,E) has a partition P into classes V1, ..., Vk. Our target
instance is I ′ = (k, r,H, t) with r = k2 − k + 1 and t = (k, k − 1, ..., k − 1). The
graph H is obtained by splitting every edge e in two parallel edges; then H is
a k-partite multigraph with partition P . Let SI , SI′ be the solution sets of I
and I ′ respectively. Let Kk be the multigraph with k vertices 1, ..., k, and with
two parallel edges between distinct vertices; its partition is Pk consisting of the
sets {1}, ..., {k}. Let Uk denote the set of (Pk, t)-labeled edsts (T , ψV , ψE) for
Kk such that T (ψV ) = t. Observe that Uk 6= ∅: since every vertex of Kk has
degree 2(k − 1), it follows that Kk has an Eulerian path starting at 1, which
visits k times the vertex 1, and each other vertex k − 1 times. We claim that
|SI′ | = |Uk||SI |, which will prove the correctness of the reduction. To this aim,
we will describe a bijection Φ : SI′ × Uk → SI .
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Consider a pair P = (C, T ) ∈ SI′ × Uk with T = (T, ψV , ψE) and C =
{v1, ..., vk} multicolored clique of G (with vi ∈ Vi). Let φ = (φV , φE) be the
homomorphism of Kk into H which maps i to vi, and the parallel edges ac-
cordingly. We then define T ′ = Φ(P ) by T ′ = (T, ψ′

V , ψ
′
E), where (i) ψ′

V is
defined so that if ψV (u) = (v, i) and if φV (v) = w then ψ′

V (u) = (w, i), (ii)
ψ′
E = ψE ◦ φE . We verify that T ′ ∈ SI : indeed, it is a (P , t)-labeled edst of G

and T (ψ′
V ) = t (since we have composed with injective functions φV , φE). To

prove that Φ is a bijection, we define the inverse function Ψ : SI → SI′ × Uk

as follows. Consider T ′ = (T, ψ′
V , ψ

′
E) (P , t)-labeled edst of G, with T (ψ′

V ) = t.
This equality yields vertices v1 ∈ V1, ..., vk ∈ Vk such that |(ψr

V )
−1(vi)| = ti.

Let C = {v1, ..., vk}, then C is a multicolored clique of G: indeed, H [C] has
at most k2 − k edges, and since ψ′

E is injective it must have exactly k2 − k
edges, implying that G[C] is a complete graph. We can then define (ψV , ψE)
from (ψ′

V , ψ
′
E) by ”projecting” vi on i, and the parallel edges accordingly (for

instance, if ψ′
V (u) = (vi, j) then ψV (u) = (i, j)). We finally define P = Ψ(T ′)

by P = (C, T ) where T = (T, ψV , ψE). It is easy to see that P ∈ SI′ × Uk, and
that Φ and Ψ are inverse of each other.

We now give a Turing-reduction of #MEST−1 to #MEST−2. Given a tuple
t ∈ [r]k, we define the instance It = (k, r,G, t), and we let St,S ′

t be its solution
sets for #MEST−1,#MEST−2 respectively. Let Nt = |St| and N

′
t = |S ′

t|. We
have for every t ∈ [r]k: N ′

t =
∑

t′≤tNt′ , which yields by Möbius inversion that

for every t ∈ [r]k: Nt =
∑

t′≤t µ(t, t
′)N ′

t′
3. Therefore, we can compute a value

Nt using O(2k) oracle calls for #MEST− 2, thereby solving #MEST− 1. ⊓⊔

3 where µ(t, t′) is 0 if there exists i ∈ [k] s.t. ti − t′i > 1, and is otherwise equal to
(−1)r where r is the number of i ∈ [k] s.t. ti − t′i = 1.
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