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Abstract. The problems studied in this article originate in the Graph

Motif problem introduced by [14] in the context of biological networks.
The problem is to decide if a vertex-colored graph has a connected sub-
graph whose colors equals a given multiset of colors M . Using an alge-
braic framework recently introduced in [12,13], we obtain new FPT al-
gorithms for Graph Motif and variants, with improved running times.
We also obtain results on the counting versions of this problem, showing
that the counting problem is FPT if M is a set, but becomes #W[1]-hard
if M is a multiset with two colors.

1 Introduction

An emerging field in the modern biology is the study of the biological networks,
which represent the interactions between biological elements [1]. A network is
modeled by a vertex-colored graph, where nodes represent the biological com-
pounds, edges represent their interactions, and colors represent functionalities of
the graph nodes. Networks are often analyzed by studying their network motifs,
which are defined as small recurring subnetworks. Motifs generally correspond
to a set of elements realizing a same function, and which may have been evo-
lutionarily preserved. Therefore, the discovery and the querying of motifs is a
crucial problem [17], since it can help to decompose the network into functional
modules, to identify conserved elements, and to transfer biological knowledge
across species.

The initial definition of network motifs involves conservation of the topology
and of the node labels; hence, looking for topological motifs is roughly equivalent
to subgraph isomorphism, and thus is a computationally difficult problem. How-
ever, in some situations, the topology is not known or is irrelevant, which leads
to searching functional motifs instead of topological ones. In this setting, we still
ask for the conservation of the node labels, but we replace topology conserva-
tion by the weaker requirement that the subnetwork should form a connected
subgraph of the target graph. This approach was advocated by [14] and led to
the definition of the Graph Motif problem [7]: given a vertex-colored graph
G = (V,E) and a multiset of colors M , find a set V ′ ⊆ V such that the induced
subgraph G[V ′] is connected, and the multiset of colors of the vertices of V ′ is
equal to M . In the literature, a distinction is made between the colorful case
(when M is a set), and the multiset case (when M is arbitrary). Although this



problem has been introduced for biological motivations, [2] points out that it
may also be used in social or technical networks.

Not surprisingly, Graph Motif is NP-hard [14,7], even if the network is a
tree with maximum degree 3 and M is a set. The problem is also NP-hard if
G is a bipartite graph with maximum degree 4 and M is built over two colors
only. The difficulty of this problem is counterbalanced by its fixed-parameter
tractability when the parameter is k, the size of the solution [14,7,2]. The cur-
rently fastest FPT algorithms for the problem run in O∗(2k) time for the colorful
case, O∗(4.32k) time for the multiset case, and use exponential space (the O∗

notation suppresses poly(n, k) factors). However, when the number of distinct
colors is taken as parameter, the problem becomes W[1]-hard [7], ruling out the
possibility of an FPT algorithm for this parameter.

Our contribution is twofold. First, we consider in Section 3 the decision ver-
sions of the Graph Motif problem, as well as some variants: we obtain im-
proved FPT algorithms for these problems, by using the algebraic framework of
multilinear detection for arithmetic circuits [12,13], presented in the next sec-
tion. Second, we investigate in Section 4 the counting versions of the Graph

Motif problem: instead of deciding if a motif appears in the graph, we now
want to count the occurrences of this motif. This allows to assess if a motif is
over- or under- represented in the network, by comparing the actual count of
the motif to its expected count under a null hypothesis [16]. We show that the
counting problem is FPT in the colorful case, but becomes #W[1]-hard for the
multiset case with two colors. We refer the reader to [9,8] for definitions related
to parameterized counting classes.

2 Definitions

This section contains definitions related to arithmetic circuits, and to theMulti-

linear Detection (MLD) problem. It concludes by stating Theorem 1, which
will be used throughout the paper.

2.1 Arithmetic circuits

In the following, a capital letter X will denote a set of variables, and a lower-
case letter x will denote a single variable. If X is a set of variables and A is a
commutative ring, we denote by A[X ] the ring of multivariate polynomials with
coefficients in A and involving variables of X . Given a monomial m = x1...xk
in A[X ], where the xis are variables, its degree is k, and m is multilinear iff its
variables are distinct.

An arithmetic circuit over X is a pair C = (C, r), where C is a labeled dag
such that (i) the children of each node are totally ordered, (ii) the nodes are
labeled either by op ∈ {+,×} or by an element of X , (iii) no internal node is
labeled by an element of X , and where r is a distinguished node of C called the
root. We let VC be the set of nodes of C, and for a given node u we denote by

2



NC(u) the set of children (i.e. out-neighbors) of u in C. We recall that a node
u is called a leaf of C iff NC(u) = ∅, an internal node otherwise.

Given a commutative ring A and a mapping φ : X → A, evaluating C under
φ consists in

1. computing, for each node u of C, a value v(u) ∈ A as follows:

v(u) =
∑

u′∈NC(u)

v(u′) if u is labeled by +

v(u) =
∏

u′∈NC(u)

v(u′) if u is labeled by ×

v(u) = φ(x) if u is a leaf labeled by x ∈ X

where the operations are carried out in A. By convention, empty sums eval-
uate to 0A, and empty products evaluate to 1A.

2. returning the value v(r) as the result of the evaluation.

Observe that if operations in A require O(t) time and O(s) space, then the
above evaluation can be performed in O(t|C|) time and O(s|C|) space, where
|C| is the size of C (defined as the number of arcs). The symbolic evaluation of
C is the polynomial PC ∈ Z[X ] obtained by evaluating C under the function
φ : X → Z[X ] defined by φ(x) = x.

2.2 Multilinear Detection

Informally, the Multilinear Detection problem asks, for a given arithmetic
circuit C and an integer k, if the polynomial PC has a multilinear monomial
of degree k. However, this definition does not give a certificate checkable in
polynomial-time, so for technical reasons we define the problem differently.

A monomial-subtree of C is a pair T = (C′, φ), where C′ = (C′, r′) is an
arithmetic circuit over X whose underlying dag C′ is a directed tree, and where
φ : VC′ → VC is such that (i) φ(r′) = r, (ii) if u ∈ VC′ is labeled by x ∈ X ,
then so is φ(u), (iii) if u ∈ VC′ is labeled by + then so is φ(u), and NC′(u)
consists of a single element v ∈ NC(φ(u)), (iv) if u ∈ VC′ is labeled by ×, then
so is φ(u), and φ maps bijectively NC′(u) into NC(φ(u)) by preserving the or-
dering on siblings. The variables of T are the leaves of C′ labeled by variables
in X . We say that T is distinctly-labeled iff its variables are distinct. Intuitively,
the (distinctly-labeled) monomial-subtrees of C with k variables correspond to
the (multilinear) monomials of PC having degree k. Therefore, we formulate the
problem Multilinear Detection as follows:

Name: Multilinear Detection (MLD)
Input: an arithmetic circuit C over a set of variables X , an integer k
Solution: a distinctly-labeled monomial-subtree of C with k variables.
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Then solving MLD amounts to decide if PC has a multilinear monomial of
degree k (observe that there are no possible cancellations), and solving #MLD

amounts to compute the sum of the coefficients of multilinear monomials of
PC having degree k. The restriction of MLD when |X | = k is called Exact

Multilinear Detection (XMLD). In this article, we will rely on the following
far-reaching result from [18,13] to obtain new algorithms for Graph Motif:

Theorem 1. [18,13] MLD can be solved by a randomized algorithm using Õ(2k|C|)
time and Õ(|C|) space.

Here, we use the Õ notation to suppress polylogarithmic factors, i.e. factors
of the form O((log n)c) where n is the instance size and c is a constant. By a
”randomized algorithm” with running time O(t), we mean an algorithm which (i)
always answers no on negative instances, (ii) answers yes with probability ≥ 1

2
on positive instances, (iii) always runs in time O(t) regardless of the random
choices made in an execution.

3 Finding vertex-colored subtrees

In this section, we consider several variants of the Graph Motif problem,
and we obtain improved FPT algorithms for these problems by reduction to
MLD. Notably, we obtainO∗(2k) time algorithms for problems involving colorful
motifs, and O∗(4k) time algorithms for multiset motifs.

3.1 The colorful case

In the colorful formulation of the problem, the graph is vertex-colored, and we
seek a subtree with k vertices having distinct colors. This leads to the following
formal definition:

Name: Colorful Graph Motif (CGM)
Input: a graph G = (V,E), k ∈ N, a set C, a function χ : V → C
Solution: a subtree T = (VT , ET ) of G s.t. (i) |VT | = k and (ii) for each u, v ∈ VT
distinct, χ(u) 6= χ(v).

The restriction of Colorful Graph Motif when |C| = k is called Exact

Colorful Graph Motif (XCGM). Note that this restriction requires that the
vertices of T are bijectively labeled by the colors of C. In [4], theXCGM problem
was shown to be solvable in O∗(2k) time and space, while it is not difficult to
see that the general CGM problem can be solved in O∗((2e)k) time and O∗(2k)
space by color-coding. By using a reduction to Multilinear Detection, we
improve upon these complexities:

Proposition 1. CGM is solvable by a randomized algorithm in Õ(2kk2|G|)
time and Õ(k2|G|) space.
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Proof. Let I be an instance of CGM. We construct the following circuit CI : its
set of variables is {xc : c ∈ C}, and we introduce intermediary nodes Pi,u for
1 ≤ i ≤ k, u ∈ V , as well as a root node P . The definitions are as follows:

Pi,u =
i−1
∑

i′=1

∑

v∈NG(u)

Pi′,uPi−i′,v if i > 1, P1,u = xχ(u)

and P =
∑

u∈V Pk,u. The resulting instance of MLD is I ′ = (CI , k). By applying

Theorem 1, and by observing that |CI | = O(k2|G|), we solve I ′ in Õ(2kk2|G|)
time and Õ(k2|G|) space.

It remains to show the correctness of the reduction. Given a set S ⊆ C,
define the multilinear monomial πS :=

∏

c∈S xc. Given u ∈ V (T ) and S ⊆ C, an
(u, S)-solution is a subtree T = (VT , ET ) of G, such that u ∈ VT , T is distinctly
colored by χ, and χ(VT ) = S. We show by induction on 1 ≤ i ≤ k that: given
S ⊆ C, πS is a multilinear monomial of Pi,u iff (i) |S| = i and (ii) there exists an
(u, S)-solution. This is clear when i = 1; now, suppose that i ≥ 2, and assume
that the property holds for every 1 ≤ j < i.

Suppose that |S| = i and that T = (VT , ET ) is an (u, S)-solution, let us show
that πS is a multilinear monomial of Pi,u. Let v be a neighbor of u in T , then
removing the edge uv from T produces two trees T1, T2 with T1 containing u
and T2 containing v. These two trees are distinctly colored, let S1, S2 be their
respective color sets, and let i1, i2 be their respective sizes. Since T1 is an (u, S1)-
solution, πS1

is a multilinear monomial of Pi1,u by induction hypothesis. Since
T2 is an (v, S2)-solution, πS2

is a multilinear monomial of Pi2,v. It follows that
πS = πS1

πS2
is a multilinear monomial of Pi1,uPi2,v, and thus of Pi,u.

Conversely, suppose that πS is a multilinear monomial of Pi,u. By definition
of Pi,u, there exists 1 ≤ i′ ≤ i − 1 and v ∈ NG(u) such that πS is a multi-
linear monomial of Pi′,uPi−i′,v. We can then partition S into S1, S2, with πS1

multilinear monomial of Pi′,u and πS2
multilinear monomial of Pi−i′,v. Induction

hypothesis therefore implies that (i) |S1| = i′ and |S2| = i−i′, (ii) there exists an
(u, S1)-solution T1 = (V1, E1) and a (v, S2)-solution T2 = (V2, E2). Since S1, S2

are disjoint, it follows that |S| = i, which proves (i); besides, V1, V2 are disjoint,
and thus T = (V1∪V2, E1∪E2∪{uv}) is an (u, S)-solution, which proves (ii). ⊓⊔

3.2 The multiset case and variants

We now consider several variants of the CGM problem. The first two variants
allow formultiset motifs : instead of seeking a subtree with distinct colors, we now
allow some colors to be repeated but impose a maximum number of occurrences
for each color. This problem can be seen as a generalization of the original
Graph Motif problem.

Given a multiset M over a set A, and given an element x ∈ A, we denote
by nM (x) the number of occurrences of x in M . Given two multisets M,M ′,
we denote their inclusion by M ⊆ M ′. We denote by |M | the size of M , where
elements are counted with their multiplicities. Given two sets A,B, a function
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f : A→ B and a multiset X over A, we let f(X) denote the multiset containing
the elements f(x) for x ∈ X , counted with multiplicities; precisely, given y ∈ B
we have nf(X)(y) =

∑

x∈A:f(x)=y nX(x).
We now define the two following variants of Colorful Graph Motif,

which allow for multiset motifs:

Name: Multiset Graph Motif (MGM)
Input: a graph G = (V,E), an integer k, a set C, a function χ : V → C, a
multiset M over C.
Solution: a subtree T = (VT , ET ) of G s.t. (i) |VT | = k and (ii) χ(VT ) ⊆M .

Name: Multiset Graph Motif With Gaps (MGMG)
Input: a graph G = (V,E), integers k, r, a set C, a function χ : V → C, a
multiset M over C.
Solution: a subtree T = (VT , ET ) of G s.t. (i) |VT | ≤ r and (ii) there exists
S ⊆ VT of size k such that χ(S) ⊆M .

The restriction of Multiset Graph Motif when |M | = k is called Exact

Multiset Graph Motif (XMGM). Note that in this case we require that
T contains every occurrence of M , i.e. χ(VT ) = M . In this way, the XMGM

problem coincides with the Graph Motif problem defined in [7,2], while the
problem MGM is the parameterized version of the problem Max Motif con-
sidered in [6]. The notion of gaps is introduced in [14], and coincides with the
notion of insertions and deletions of [4].

Previous algorithms for these problems relied on color-coding; these algo-
rithms usually have an exponential space complexity, and a high time complex-
ity. For the Graph Motif problem, [7] gives a randomized algorithm with an
implicit O(87kkm) running time, while [2] describes a first randomized algo-
rithm running in O(8.16km), and show a second algorithm with running time
O(4.32kk2m), using two different speed-up techniques ([3] and [10]). For the
Max Motif problem, [6] present a randomized algorithm with an implicit
O((32e2)kkm) running time. Here again, we can apply Theorem 1 to improve
the time and space complexities:

Proposition 2. For the given multiset M , let cmax = maxc∈C nM (c) be the
maximum number of occurrences of a color in M .

1. MGM is solvable by a randomized algorithm in Õ(4kk2cmax|G|) time and
Õ(k2cmax|G|) space.

2. MGMG is solvable by a randomized algorithm in Õ(4kr2cmax|G|) time and
Õ(r2cmax|G|) space.

The proof is omitted due to space constraints. We point out that the proof
can be adapted to solve the List Colored Graph Motif from [2] in O∗(4k)
time and polynomial space. This improves upon an randomized algorithm of [2]
which runs in O(10.88km) time and exponential space.
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We now consider two other variants of the problem, where weights are as-
signed to the edges, and where we seek a subtree with minimum weight. We
obtain two problems, depending on whether we consider colorful or multiset mo-
tifs.

Name: Weighted Colorful Graph Motif (WCGM)
Input: a complete graph G = (V,E), a function χ : V → C, a weight function
w : E → N, integers k, r
Solution: a subtree T = (VT , ET ) of G such that (i) |VT | = k, (ii) χ is injective
on VT , (iii)

∑

e∈ET
w(e) = r.

Name: Weighted Multiset Graph Motif (WMGM)
Input: a complete graph G = (V,E), a function χ : V → C, a weight function
w : E → N, integers k, r, a multiset M
Solution: a subtree T = (VT , ET ) of G such that (i) |VT | = k, (ii) χ(VT ) ⊆M ,
(iii)

∑

e∈ET
w(e) = r.

We observe that the WMGM problem contains as particular case the Min-

CC problem introduced in [5], which seeks a subgraph respecting the multiset
motif, and having at most r connected components. Indeed, we can easily reduce
Min-CC to WMGM: given the graph G, we construct a complete graph G′ with
the same vertex set, and we assign a weight 0 to edges of G, and a weight 1 to
non-edges of G.

Proposition 3. 1. WCGM is solvable by a randomized algorithm in Õ(2kk2r2|G|)
time and Õ(k2r2|G|) space.

2. WMGM is solvable by a randomized algorithm in Õ(4kk2r2cmax|G|) time
and Õ(k2r2cmax|G|) space.

Proof. We only prove 1, since 2 relies on the same modification as in Proposition
2. The construction of the arithmetic circuit is similar to the construction in
Proposition 1. The difference is that, in addition of the number of nodes of the
subtree, we also need to memorize the maximum total weight. This leads to
introduce nodes Pi,j,u, for 1 ≤ i ≤ k and 0 ≤ j ≤ r. The definitions are as
follows:

Pi,j,u =
i−1
∑

i′=1

∑

v∈V

j−w(uv)
∑

j′=0

Pi′,j′,uPi−i′,j−j′−w(uv),v if i > 1, P1,j,u = xχ(u)

and P =
∑

u∈V Pk,r,u. The resulting instance of MLD is I ′ = (CI , k), and since

|CI | = O(k2r2|G|), we solve I ′ in Õ(2kk2r2|G|) time and Õ(k2r2|G|) space by
Theorem 1. The correctness of the reduction follows by showing by induction on
i that: given 1 ≤ i ≤ k, 1 ≤ j ≤ r, u ∈ V and S ⊆ C of size i, πS is a multilinear
monomial of Pi,j,u iff there exists an (u, S)-solution T with

∑

e∈ET
w(e) = j. ⊓⊔
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4 Counting vertex-colored subtrees

In this section, we consider the counting versions of the problems XCGM and
XMGM introduced in Section 3. For the former, we show that its counting
version #XCGM is FPT; for the latter, we prove that its counting version
#XMGM is #W[1]-hard.

4.1 FPT algorithms for the colorful case

We show that #XCGM is fixed-parameter tractable (Proposition 5). We rely
on a general result for #XMLD (Proposition 4), which uses inclusion-exclusion
as in [11].

Say that a circuit C is k-bounded iff PC contains no monomials of degree
> k. Observe that given a circuit C = (C, r), we can efficiently transform it in a
k-bounded circuit C′ such that (i) C and C′ have the same monomials of degree
k, (ii) |C′| ≤ (k + 1)2|C|. Indeed, we can first transform C so that all + and ×
nodes have out-degree 2, without increasing the size; then, for each node u of C,
we create k + 1 nodes u0, ..., uk, and:

– if u is a leaf with label v ∈ X , then u1 is a leaf with label v, and other ui’s
are 0 nodes (represented by leaves labeled by +);

– if u = v + w, then for every i, ui = vi + wi;
– if u = v × w, then for every i, ui =

∑i
j=0 vjwi−j .

Let C′ be the resulting circuit, whose root is rk. It is easily checked that C′ has the
same monomials of degree k as the original circuit C. Besides, |C′| ≤ (k + 1)2|C|
since for each node u of out-degree 2 in C, we have introduced k+ 1 nodes each
of out-degree ≤ k + 1 in C′.

The following result shows that we can efficiently count solutions for k-
bounded circuits with k variables (and thus for general circuits, with an ex-
tra O(k2) factor in the complexity). We precise that Koutis and Williams give
independently this result, with a different proof, in the full version of [13] (to
appear).

Proposition 4. #XMLD for k-bounded circuits is solvable in O(2kk2|C|) time
and O(k|C|) space.

Proof. Let C be the input circuit on a set X of k variables, let r be its root
node and let P = PC ∈ Z[X ] be the symbolic evaluation of C. Let Mk be the
multiset of monomials of P of degree k, and for a monomial m let φ(m) ⊆ X
be its set of variables. For every S ⊆ X , let NS = |{m ∈ Mk : φ(m) = S}|
and N ′

S = |{m ∈ Mk : φ(m) ⊆ S}|. Observe that for every S ⊆ X , we have
N ′

S =
∑

T⊆S NT ; therefore, by Moebius inversion it holds that for every S ⊆ X ,

NS =
∑

T⊆S(−1)|S\T |N ′
T .

We now show how to compute a value N ′
S for S ⊆ X . Consider the ring

homomorphism HS from Z[X ] to Z[x] defined by:
{

HS(v) = x if v ∈ S,

HS(v) = 1 if v /∈ S
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Since C is k-bounded, the coefficient of xk in HS(P ) is equal to N
′
S . Now, HS(P )

can be computed efficiently, by evaluating C under the valuation HS . During
this computation, each intermediary result is an element of Z[x] of maximum
degree k; therefore, each polynomial is stored in O(k) space, and operations on
these polynomials can be performed in O(k2) time. We deduce that N ′

S can be
computed in O(k2|C|) time and O(k|C|) space.

We conclude by noting that the number of multilinear monomials of degree k
in P is equal to NX . As we have shown that each value N ′

S can be computed in
O(k2|C|) time and O(k|C|) space, we can thus compute NX in O(2kk2|C|) time
and O(k|C|) space. ⊓⊔

We find interesting to point out that Proposition 4 generalizes several count-
ing algorithms based on inclusion-exclusion, such as the well-known algorithm for
#Hamiltonian Path of [11], as well as results of [15]. Indeed, several of these
problems can be reduced to counting multilinear monomials of degree n (where
n is usually the number of vertices of the graph), which leads to algorithms
running in O∗(2n) time and polynomial space for these problems. However, our
goal here is to obtain a O∗(2k) algorithm for the #XCGM problem.

Proposition 5. #XCGM is solvable in O(2kk4|G|) time and O(k3|G|) space.

Proof. Let I be an instance of XCGM. A rooted solution for I is a pair (u, T )
where T is a solution of XCGM on I and u is a vertex of T (which must
be seen as the root of the tree). The solutions of XCGM on I are also called
unrooted solutions. LetNr(I) andNu(I) be the number of rooted, resp. unrooted,
solutions for I. We will show how to compute Nr(I) in the claimed time and

space bounds; since Nu(I) =
Nr(I)

k
, the result will follow.

To compute Nr, observe first that we cannot apply Proposition 4 to the
circuit CI of Proposition 1. Indeed, the circuit CI counts the ordered subtrees,
and not the unordered ones. Therefore, we need to modify the circuit in the
following way: at each vertex v of VT , we examine its children in a fixed order,
for instance by increasing color. This leads us to define the following circuit C′

I :
suppose w.l.o.g. that C = {1, ..., k}, introduce nodes Pi,j,u for each 1 ≤ i ≤
k, 1 ≤ j ≤ k + 1, u ∈ V , variables xi for each 1 ≤ i ≤ k, and define:

P1,j,u = xχ(u), Pi,j,u = 0 if i ≥ 2, j = k + 1

Pi,j,u = Pi,j+1,u +

i−1
∑

i′=1

∑

v∈NG(u):χ(v)=j

Pi′,j+1,uPi−i′,1,v if i ≥ 2, 1 ≤ j ≤ k

Let us also introduce a root node P =
∑

u∈V Pk,1,u. Given 1 ≤ i, j ≤ k and
u ∈ V , let Si,j,u denote the set of pairs (u, T ) where (i) T is a properly colored
subtree of I containing u and having i vertices, (ii) the neighbors of u in T have
colors ≥ j. It can be shown by induction on i that: there is a bijection between
Si,j,u and the multilinear monomials of Pi,j,u of degree i. Therefore, the number
of multilinear monomials of C′

I is equal to Nr; since |C′
I | = O(k3|G|) and since C′

I

is k-bounded, it follows by Proposition 4 that Nr can be computed in O(2kk4|G|)
time and O(k3|G|) space. ⊓⊔
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4.2 Hardness of the Multiset case

In this subsection, we show that #XMGM is #W[1]-hard. For convenience, we
first restate the problem in terms of vertex-distinct embedded subtrees.

Let G = (V,E) and H = (V ′, E′) be two multigraphs. An homomorphism
of G into H is a pair φ = (φV , φE) where φV : V → V ′ and φE : E → E′,
such that if e ∈ E has endpoints x, y then φE(e) has endpoints φV (x), φV (y).
An embedded subtree of G is a pair T = (T, φV , φE) where T = (VT , ET ) is
a tree, and (φV , φE) is an homomorphism from T into G. We say that T is a
vertex-distinct embedded subtree of G (a ”vdst” of G) if φV is injective. We say
T is an edge-distinct embedded subtree of G (an ”edst” of G) iff φE is injective.
We restate XMGM as follows:

Name: Exact Multiset Graph Motif (XMGM)
Input: a graph G = (V,E), an integer k, a set C, a function χ : V → C, a
multiset M over C s.t. |M | = k.
Solution: a vdst (T, φV , φE) of G s.t. χ ◦ φV (VT ) =M .

We first show the hardness of two intermediate problems (Lemma 1). Before
defining these problems, we need the following notions. Consider a multigraph
G = (V,E). Consider a partition P of V into V1, ..., Vk, and a tuple t ∈ [r]k.
A (P , t)-mapping from a set A is an injection ψ : A → V × [r] such that for
every x ∈ A, if ψ(x) = (v, i) with v ∈ Vj , then 1 ≤ i ≤ tj . From ψ, we
define its reduction as the function ψr : A → V defined by ψr(x) = v whenever
ψ(x) = (v, i). We also define a tuple T (ψ) = (n1, ..., nk) ∈ [r]k such that for each
i ∈ [k], ni = maxv∈Vi

|{x ∈ A : ψr(x) = v}|.
Given two tuples t, t′ ∈ [r]k, denote t ≤ t′ iff ti ≤ t′i for each i ∈ [k]. Note

that for a (P , t)-mapping ψ, we always have T (ψ) ≤ t since ψ is injective. We
say that a (P , t)-labeled edst for G is a tuple (T, ψV , ψE) where (i) T = (VT , ET )
is a tree, (ii) ψV is a (P , t)-mapping from VT , (iii) (T, ψ

r
V , ψE) is an edst of G.

Our intermediate problems are defined as follows:

Name: Multicolored Embedded Subtree-1 (MEST− 1)
Input: integers k, r, a k-partite multigraph G with partition P , a tuple t ∈ [r]k

Solution: a (P , t)-labeled edst (T, ψV , ψE) for G s.t. |VT | = r and T (ψV ) = t.

The MEST− 2 problem is defined similarly, except that we do not require
that T (ψV ) = t (and thus we only have T (ψV ) ≤ t). While we will only need
#MEST − 2 in our reduction for #XMGM, we first show the hardness of
#MEST− 1, then reduce it to #MEST− 2.

Lemma 1. #MEST−1 and #MEST−2 are #W[1]-hard for parameter (k, r).

The proof is omitted due to space constraints.

Proposition 6. #XMGM is #W[1]-hard for parameter k.
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Proof. We reduce from #MEST − 2, and conclude using Lemma 1. Let I =
(k, r,G, t) be an instance of #MEST − 2, where G = (V,E) is a multigraph,
and let SI be its set of solutions. From G, we construct a graph H as follows:
(i) we subdivide each edge e ∈ E, creating a new vertex a[e], (ii) we substitute
each vertex v ∈ Vi by an independent set formed by ti vertices b[v, 1], ..., b[v, ti].
We let A be the set of vertices a[e] and B the set of vertices b[v, i], we therefore
have a bipartite graph H = (A ∪B,F ). We let I ′ = (H, 2r − 1, C, ψ,M), where
C = {1, 2}, ψ maps A to 1 and B to 2, and M consists of r− 1 occurrences of 1
and r occurrences of B.

Then I ′ is our resulting instance of #XMGM, and we let SI′ be its set of
solutions. Notice that by definition of ψ andM , SI′ is the set of vdst (T, φV , φE)
of H containing r − 1 vertices mapped to A and r vertices mapped to B. We
now show that we have a parsimonious reduction, by describing a bijection Φ :
SI → SI′ . Consider T = (T, ψV , ψE) in SI ; we define Φ(T ) = (T ′, φV , φE) as
follows:

– For each edge e = uv ∈ E(T ), we have fe := ψE(e) ∈ E(G): we then
subdivide e, creating a new vertex xe. Let T

′ be the resulting tree;
– For each vertex xe, we define φ′V (xe) = a[fe]. For each other vertex u of T ′,

we have u ∈ V (T ), let (v, i) = ψV (u); we then set φ′V (u) = b[v, i] (this is
possible since if v ∈ Vj then 1 ≤ i ≤ tj , by definition of ψV ).

From φV , we then define φE in a natural way. Then T ′ = Φ(T ) is indeed in SI′ :
(i) T ′ is a vertex distinct subtree of H (by definition of φV and since T was edge-
distinct, the values φV (xe) are distinct; by injectivity of ψV , the other values
φV (u) are distinct); (ii) it has r−1 vertices mapped to A and r vertices mapped
to B. To prove that Φ is a bijection, we describe the inverse correspondence
Ψ : SI′ → SI . Consider T ′ = (T ′, φV , φE) in SI′ ; we define Ψ(T ′) = (T, ψV , ψE)
as follows. Let A′, B′ be the vertices of T ′ mapped to A,B respectively. Let i be
the number of nodes of A′ which are leaves: since the nodes of A′ have degree 1
or 2 in T ′ depending on whether they are leaves or internal nodes, we then have
|E(T ′)| ≤ i + 2(r − 1 − i) = 2r − i − 2; since |E(T ′)| = 2r − 2, we must have
i = 0. It follows that all leaves of T ′ belong to B′; from T ′, by contracting each
vertex of A′ in T ′ we obtain a tree T with r vertices. We then define ψV , ψE

as follows: (i) given u ∈ B′, if φV (u) = b[v, j], then ψV (u) = (v, j); (ii) given
e = uv ∈ E(T ), there corresponds two edges ux, vx ∈ E(T ′) with x ∈ A′, and we
thus have φV (x) = a[f ], from which we define ψE(e) = f . It is easily seen that
the resulting T = Ψ(T ′) is in SI , and that the operations Φ and Ψ are inverse
of each other. ⊓⊔

5 Conclusion

In this paper, we have obtained improved FPT algorithms for several variants of
the Graph Motif problem. Reducing to the Multilinear Detection prob-
lem yielded a significant reduction of the base of the exponent in the time com-
plexity, as well as a polynomial space complexity. We have also considered the
counting versions of these problems, for the first time in the literature.
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Though further improvements seem difficult to achieve, we hope that the
O∗(4k) running time obtained for multiset motifs can be further reduced. Also,
while we have shown that #XMGM was #W[1]-hard for a motif with two colors,
we leave open its complexity for one color. Note that this problem amounts to
count the k-vertex subtrees of an (uncolored) graph.
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6 Appendix

6.1 Proof of Proposition 2

We observe that the circuit given in Proposition 1 for CGM can be adapted to
a more general problem, where vertices are labeled by several sets of colors, and
the goal is to choose one set per vertex such that the sets chosen for the subtree
are disjoint. This problem is defined below. Let C be a set of colors. Given a
family {F1, ...,Fn} where each Fi ⊆ 2C , and given an integer r, we say that the
family has an r-matching iff we can choose F1 ∈ F1, ..., Fn ∈ Fn such that the
Fi are pairwise disjoint and their union has size r. We consider the following
generalization of Colorful Graph Motif:

Name: List-Colored Embedded Subtree (LCST)
Input: a graph G = (V,E), integers r, s, a set Γ , for every u ∈ V a family Fu

of subsets of Γ
Solution: an embedded subtree (T, φV , φE) of G s.t. (i) |VT | ≤ r, (ii) the family
of sets {FφV (v) : v ∈ VT } has an s-matching.

Given an instance I of LCST, we let m denote the number of edges of G,
and we let n denote

∑

v∈V

∑

S∈Fv
|S|.

Proposition 7. LCST is solvable by a randomized algorithm in O(2sr2(n+m))
time and O(r2(n+m)) space.

Proof. We modify the circuit of Proposition 1 as follows: (i) for each u ∈ V ,
we define P1,u =

∑

S∈Fu
πS , where πS :=

∏

c∈S xc, (ii) we now define the root

node by P =
∑r

i=1

∑

u∈V Ps,u. We then decide if P has a multilinear monomial
of degree s using Theorem 1, and the complexity follows by observing that the
circuit has size O(r2(n + m)). The reduction is correct, since an induction on
i shows: Ci,u has a multilinear monomial of degree d iff there is an embedded
subtree (T, φ) of G containing u, such that |VT | = i, and such that the family of
sets {Fv : v ∈ VT } has a d-matching. ⊓⊔

Proof of Proposition 2. For Points 1 and 2, we reduce to the LCST problem.
Point 1. Consider an instance I = (G, k, C, χ,M) of MGM. We define a

corresponding instance I ′ of LCST as follows. The graph G is the same. The
set Γ contains (i) the elements of V , (ii) for every c ∈ C, of elements c1, ..., cm
with m = nM (c). Now, to each vertex u ∈ V such that χ(u) = c, we associate
a family Fu which consists of the sets {u, c1}, ..., {u, cm} with m = nM (c). We
finally set r = k and s = 2k, and we solve LCST on I ′ in O(4kk2cmax|G|) time
and O(k2cmax|G|) space by Proposition 7. The intuition is that adding u to each
set in Fu ensures that a solution for I ′ will be vertex-distinct, and that adding
the ci’s ensures that no more than nM (c) vertices can have the color c. Let us
prove formally that I has a solution iff I ′ has.
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Suppose that T = (VT , ET ) is a solution for I. We can view T as a vertex-
distinct embedded subtree of G, and we claim that it is a solution for I ′. Clearly,
|VT | ≤ k. Besides, for each c ∈ C, we can number its occurrences in VT by
c1, ..., ci with i ≤ nM (c). Then to each v ∈ VT with c = χ(v), we can associate
the set Sv = {v, cj} if cj is the numbering of this occurrence of c. It follows that
each Sv is in Fv, and that the sets Sv (v ∈ VT ) are disjoint, hence {Fv : v ∈ VT }
has a 2k-matching. Conversely, suppose that we have T = (T, φV , φE) solution
for I ′. For each v ∈ VT , let u = φ(v), and pick Sv ∈ Fu, such that the resulting
sets form an 2k-matching. Then each Sv has the form {u, ci} with c = χ(u).
Since these sets are disjoint, it follows that T has exactly k vertices and is
vertex-distinct; also, by definition of Γ , no color c ∈ C can occur more than
nM (c) times.

Point 2. We modify the reduction of Point 1 by adding the empty set to each
set Fu. The intuition is that this will allow some vertices of the subtree to be
ignored, allowing to only select a set S of k vertices such that χ(S) ⊆ M . The
formal proof goes as in Point 1. Note however that for the converse direction,
we cannot ensure that φ is injective for the vertices v with Sv = ∅, and so we
cannot guarantee that T is vertex-distinct. This is not a problem: given T , we
can construct T ′ vertex-distinct which has fewer vertices, and contains all the
vertices with Sv 6= ∅, implying that T ′ is also a solution for I ′. ⊓⊔

6.2 Proof of Lemma 1

We first reduce #Multicolored Clique to #MEST− 1. Our source problem
#Multicolored Clique is the counting version of Multicolored Clique,
which is easily seen to be #W[1]-hard. Let I = (G, k) be an instance of the
problem, where G = (V,E) has a partition P into classes V1, ..., Vk. Our target
instance is I ′ = (k, r,H, t) with r = k2 − k + 1 and t = (k, k − 1, ..., k − 1).
The graph H is obtained by splitting every edge e in two parallel edges; then
H is a k-partite multigraph with partition P . Let SI , SI′ be the solution sets
of I and I ′ respectively. Let Kk be the multigraph with k vertices 1, ..., k, and
with two parallel edges between distinct vertices; its partition is Pk consisting
of the sets {1}, ..., {k}. Let Uk denote the set of (Pk, t)-labeled edsts (T , ψV , ψE)
for Kk such that T (ψV ) = t. Observe that Uk 6= ∅: since every vertex of Kk

has degree 2(k− 1), it follows that Kk has an Eulerian path starting at 1, which
visits 1 k times and each other vertex k−1 times. We claim that |SI′ | = |Uk||SI |,
which will prove the correctness of the reduction. To this aim, we will describe
a bijection Φ : SI′ × Uk → SI .

Consider a pair P = (C, T ) ∈ SI′ × Uk with T = (T, ψV , ψE) and C =
{x1, ..., xk} multicolored clique of G (with xi ∈ Vi). Let φ = (φV , φE) be the
homomorphism of Kk into H which maps i to vi, and the parallel edges ac-
cordingly. We then define T ′ = Φ(P ) by T ′ = (T, ψ′

V , ψ
′
E), where (i) ψ′

V is
defined so that if ψV (u) = (v, i) and if φV (v) = w then ψ′

V (u) = (w, i), (ii)
ψ′
E = ψE ◦ φE . We verify that T ′ ∈ SI : indeed, it is a (P , t)-labeled edst of G

and T (ψ′
V ) = t (since we have composed with injective functions φV , φE). To

prove that Φ is a bijection, we define the inverse function Ψ : SI → SI′ × Uk
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as follows. Consider T ′ = (T, ψ′
V , ψ

′
E) (P , t)-labeled edst of G, with T (ψ′

V ) = t.
This equality yields vertices v1 ∈ V1, ..., vk ∈ Vk such that |(ψr

V )
−1(vi)| = ti.

Let C = {v1, ..., vk}, then C is a multicolored clique of G: indeed, H [C] has
at most k2 − k edges, and since ψ′

E is injective it must have exactly k2 − k
edges, implying that G[C] is a complete graph. We can then define (ψV , ψE)
from (ψ′

V , ψ
′
E) by ”projecting” vi on i, and the parallel edges accordingly (for

instance, if ψ′
V (u) = (vi, j) then ψV (u) = (i, j)). We finally define P = Ψ(T ′)

by P = (C, T ) where T = (T, ψV , ψE). It is easy to see that P ∈ SI′ × Uk, and
that Φ and Ψ are inverse of each other.

We now give a Turing-reduction of #MEST − 1 to #MEST − 2. Consider
an instance I of #MEST − 1 consisting of integers k, r, of a k-partite graph
G = (V,E) whose partition P consists of classes V1, ..., Vk, and of a tuple τ ∈ [r]k.
Given a tuple t ∈ [r]k, we define the instance It = (k, r,G, t), and we let St,S ′

t

be their solution sets for #MEST− 1,#MEST− 2 respectively. Let Nt = |St|
and N ′

t = |S ′
t|. Recall that our goal is to compute Nτ . We have for every t ∈ [r]k:

N ′
t =

∑

t′≤tNt′ , which yields by Moebius inversion that for every t ∈ [r]k:

Nt =
∑

t′≤t µ(t, t
′)N ′

t′
1. Since we can compute each value N ′

t (t ≤ τ) by one
oracle call for #MEST−2, it follows that we can compute the values Nt (t ≤ τ)
in O(2k|G|) time and using O(2k) oracle calls for #MEST− 2, thereby solving
#MEST− 1. ⊓⊔

1 where µ(t, t′) is 0 if there exists i ∈ [k] s.t. ti − t′i > 1, and is otherwise equal to
(−1)r where r is the number of i ∈ [k] s.t. ti − t′i = 1.
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