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Abstract. By means of photoelasticity, we success in visualizing in real time the propagation of acoustic waves in a granular
packing of cylinders. As previously mentioned by Nesterenko [1] for the case of spherical grains, the nonlinearity of the
contact law between grains induces a dependence of the wave velocity both on its amplitude and on the confinement force.
Our experimental procedure allows an access to the local state of stress of individual grains as a function of time with a good
accuracy. Our results concerning the wave velocity as a function of the amplitude, and of the confinement force, are compared
to theoretical predictions and to the spherical beads case.
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INTRODUCTION

Elastic wave propagation in granular media is of con-
siderable interest for its fundamental understanding and
for applications in Engineering as in Geophysics. These
waves exemplify media where nonlinearities play an im-
portant role and have consequences such as formation of
solitons [1], or nonlinear static force-velocity relation-
ship [2],[3]. Granular materials can also give insights in
wave propagation in disordered media [4]-[7]. Applica-
tions are numerous in the field of shock attenuators, ex-
plosion, seismic wave propagation [8], acoustics [9]-[11]
and nondestructive control. We limit here our study to 1D
grain packings.

The propagation along a 1D chain has been exten-
sively studied for more than two decades both from the
theoretical and the experimental points of view [1], [12]-
[16]. Time-dependent photoelastic measurements have
been previously performed in grain pilings in order to
study load transfer as a function of the grain contact
angle [17], grain shape [18] and the effect of distance
and pulse duration on wave speed [19]. Other experi-
mental studies using transducer measurements focussed
on the link between contact law and propagation proper-
ties, mainly in the case of spherical beads with Hertzian
contact. Those experiments probed linear and nonlinear
acoustic wave and solitonic-like phenomenology [13],
[16]. 1D propagation studies is a prerequisite step in or-
der to understand more complex propagation features in
higher dimensions.

The propagation of elastic waves in 2D and 3D granu-
lar media have also been largely studied. Liu and Nagel
[4] interpreted the complex acoustic signal they mea-
sured as the occurrence of speckles and emphasize the

high sensitivity on the geometrical arrangement. Follow-
ing works have enlightened multiple diffusion processes
exhibited by these systems [5], [7].

Instead of using an emitter / receiver technique, we
aim at accessing directly both spatial and temporal quan-
titative information in 2D. The 1D case is a first step to-
ward that goal and a topic in itself.

Here we present a study concerning the propagation
of a compressive wave along a 1D chain of cylinders.
The high photoelastic constant of the material allows
an accurate determination of the stress state within each
individual grain as a function of the time, with a frame
rate up to 100000 fps. We look at the dependence of
the wave speed on the imposed static compressive force
and we compare the results to the spherical bead case.
We also study the effect of the pulse amplitude on the
velocity for a given static force.

In the following we describe first the experimental
setup used here (Sec. 1 ). Then we present the exper-
imental dependence between the static confining force,
the pulse amplitude and the wave velocity (Sec. 2 ). In the
last section, we compare these results to those obtained
with spherical beads and to the expected theoretical be-
havior (Sec. 3 ).

EXPERIMENTAL SETUP AND METHOD

Setup

We use a photoelastic technique to obtain quantitative
information on the stress state of individual grains in 1D
packings. This technique consists in positioning stress-
induced birefringent material between two circular po-
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FIGURE 1. Experimental setup

larizers. Isochromatic fringes witness the state of stress
in each point of photoelastic grains. We also use an inter-
ferential filter centered around 650 nm (width: 50 nm).
Grains are illuminated by means of three halogen pro-
jectors. The light is then collected by a high speed digital
camera (Phantom V7.3). Successive image files are an-
alyzed by an image analysis program written in Matlab
language.

Grains are cylindrical, with diameter: d = 2R = 13mm
and length : L = 9.6mm. They are machined to this shape
from a plate of PSM-1 material. Their Young’s modu-
lus is E = 2.4Gpa and their Poisson ratio ν = 0.37. The
setup consists in a linear chain of 37 grains maintained
in contact by a static force F0 and constrained vertically
(Fig. 1). A function generator driving a power ampli-
fier allows to create a fast pulse on the moving part of a
tweeter impinging the first grain of the chain. The whole
chain is constrained by a piezo ceramic connected to a
static force sensor which measures the static force F0).
These two probes aim at providing standard information
concerning the static and dynamic stress values, in paral-
lel to our direct optical measurements.

The photoelastic method

The light intensity going out from a photoelastic ma-
terial located between two identical circular polarizers
reads as:

I = I0 cos2
[

2π
f

(σ1−σ2)
]

(1)

Where I0 is the maximal intensity, σ1 and σ2 are the local
principal stresses, f is the photoelastic constant of the
sample. This relation holds everywhere in the material.

In order to access quantitatively to the spatio-temporal
variation of pressure associated with the propagation of
the acoustic pulse through the row of grains, we perform
a time-resolved measurement of the magnitude of light
intensity transmitted through the central region of each
grains. Prior to these measurements, we carried out a
calibration of the light intensity, transmitted through the
central region of one grain, as a function of an applied
uniaxial force. The intensity-force relationship can be
expressed as:

FIGURE 2. Example of four successive photoelastic images
separated by 140 µ s. F0 = 4.5N, Fm = 10N, pulse duration:
100 µs

I = I0 cos2
[

π
2

F
Γ

]
(2)

where F is the compressive force and Γ is the force
increment corresponding to the passing of the first black
fringe. We find Γ = 20N. We can therefore easily access
to the force F by computing F = Γ

(
n+ arccos( I

I0
)
)

. n

is the fringe half-order, that is n = 1/2 for the first ex-
tinction and n = 1 for the first bright fringe (n = 0 corre-
sponds to zero force). To take into account residual illu-
mination and reduced contrast, we measure the intensity
at zero force: Imax = I0 and at the first extinction: I = Imin.
The relation for F becomes:

F = Γ
[

n+ arccos
(

I− Imin

Imax− Imin

)]
(3)

In Fig. 2, three successive images of a pulse propagating
among some of the grains of a chain is shown.

RESULTS

We study the propagation of a compressive pulse through
a chain of cylinders. Considering the mechanics of the
contact between two cylinders, the relationship between
the force (F) and the deformation δ can be written: F =
g(δ ). For spherical beads described by Hertz law, g is a
simple function of the displacement: g(δ ) ∼ αδ 3/2. In
the case of perfect cylinders, the theoretical law is more
complex, and is given approximately, for the displace-
ment, by: δ = 2F

LE∗
(

ln( 4RLE∗
F )−1

)
, with E∗ = πE/(1−

ν2) [20]. Assuming that deformations occur in the con-
tact region, the system can be seen as a spring-mass
chain. We note un the displacement of the grain n com-
pared to its equilibrium position. The dynamics of this
system is then described by the set of equations:

Mün = g(δ0−un +un−1)+g(δ0−un+1 +un) (4)

δ0 is the equilibrium displacement and is linked to the
static force by: F0 = g(δ0).

In the limit |un− un−1| ¿ δ0, the system (Eq. 4) can
be linearized and each contact is represented by a spring



FIGURE 3. Top: dynamical force vs time for grains: 8, 13,
18, 23. F0 = 29N, Fm = 2N. Bottom: distance vs time for the
wave mid-height. The straight line is a linear fit giving V.

of stiffness k. The wave equation is linear but leads to a
wave velocity that depends nonlinearly on F0.

When the dynamical displacement is of the same order
or greater than δ0 (or alternatively when the dynamical
amplitude Fm is not small compared to the static force
F0), the equation is nonlinear and the wave velocity
depends on the amplitude of the wave.

Linear waves

We send a 100 µs square pulse to the tweeter. The am-
plitude of the pulse is measured on the first grain and is
noted Fm. The spatial extension of the wave corresponds
to a few grains.

We first vary the static force on the chain: F0 and keep
the amplitude small compared to it. In all the experi-
ments, Fm < F0/6, and for most of them Fm < F0/10. We
can thus consider that the small deformations hypothesis
holds, the wave equation is linear.

We measure the compression force on each grain as a
function of time at a frame rate of 89000 fps.

In Fig. 3 (Top) we represent different curves of F(t)
for grain number 8,13,18,23 as functions of time. By
interpolating the time for which the wave attains its mid-
height, we deduce the time-distance dependence shown

FIGURE 4. Wave speed vs. static force F0. The straight lines
are power fit with exponent 0.24 and 0.11

in Fig. 3, Bottom. A linear fit of the time-distance curve
gives the wave speed V (only 15 grains, in the central
part of the chain, are considered for the fit). In Fig. 4 we
plot the wave speed V as function of F0. We clearly see
two regimes. 1) For F0 < 20N the wave speed increases
rapidly with the static force. We can measure locally an
exponent close to 0.24. This is the clear signature of
a strong non linear relation at low amplitude between
force and displacement. 2) For F0 > 20N, the wave
speed increases in average a lot more weakly with F0, as
expected in this force range for perfect, long cylinders. A
power fit gives and exponent close to 0.11 for the force-
velocity curve.

Nonlinear waves

We perform similar experiments but with F0 constant,
the maximal amplitude of the pulse is varied, with Fm ≥
F0. In Fig. 5, we plot the wave speed as previously
measured as function of Fm. We clearly see that at a given
static force, the wave speed increases with the maximal
force Fm. Results are very reproducible due to the higher
amplitude of the signal for large pulse amplitude.

DISCUSSION

Our measurements of the wave velocity as function of
the static force F0 show for low forces (F0 < Fc = 20N)
a behavior similar to previous studies on the propagation
of an impulse in spherical beads chains: V ∝ Fβ

0 . Nev-
ertheless the exponent deduced from our experiments is
higher (β ' 1/4) than that measured for beads enduring
a Hertzian contact β = 1/6. At higher forces (F0 > Fc),
one recovers the behavior expected for cylinders, that is



FIGURE 5. Wave speed vs. Peak amplitude Fm for F0 =
4.5N.

a very weak increase of the velocity with the confining
force due to a very light nonlinearity of the contact law,
the exponent (0.11) is smaller than in the spherical beads
case. Both regimes, below and above Fc, show very dif-
ferent velocity dependences versus F0, which makes this
system very different from the spherical bead case. We
explain the unexpected behavior at low forces by the sur-
face roughness of the grain, hence the microscopic na-
ture of the contact. As mentioned by Goddard [3], con-
ical asperities may dominate the contact stiffness below
a threshold force, leading to an exponent β = 1/4 for
the velocity, close to our observations. Above the critical
force, the contribution from the regular body deforma-
tion to the stiffness dominates, and the nonlinearity be-
come lower than that for spheres, as well expected for
cylinders. A broader range for F0 and a quantitative char-
acterization of the roughness will be achieved in a future
study to a better understanding of the force-velocity re-
lation.

CONCLUSION

We have studied the elastic wave propagation in a linear
chain of cylinders using digital high speed photoelastic-
ity. We found that for dynamic amplitude Fm lower than
the static force F0, the force-velocity relation presents
two very different regimes. Below 20N the speed in-
creases more rapidly with F0 than for previous experi-
ments on spheres in 1D that give an exponent 1/6. Above
20N, the speed increases a lot more slowly with F0. We
explain this behavior by the importance of roughness at
small forces, and at higher forces then the dominant ef-
fect of the cylinder-cylinder contact law which is close
to be linear. In the large amplitude limit, by increasing
Fm we observe a substantial increase in the velocity. A
precise study of the roughness of the cylinders surface
will be carried out in order to verify quantitatively its
central role in the particular force-velocity relationship.

The main consequence is that whatever the shape (cylin-
der, sphere...) of grains, the microstructure of the solid
in contact seems to control the nonlinear behavior of the
media at small forces.
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