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Abstract A Stochastic Differential Equation appearing in the statistical theory of turbulence is extended
in random environment by assuming that its two parameters are switched by an unobserved continuous-
time Markov chain whose states represent the states of the environment. A Dirichlet process is placed as
a prior on the space of the sample paths of this chain, leadingto a hierarchical Dirichlet model whose
estimation is done both on simulated data and on real data of wind speed measured at the entrance of a
mangrove ecosystem.
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environment· Stochastic differential equation

1 Introduction

Models in which parameters move between a fixed number of regimes with switching controlled by an
unobserved stochastic process, have been heavily used in many disciplines including Finance (Hamil-
ton and Susmel, 1994), Meteorology (Zucchini and Guttorp 1991), Computational biology (Durbin et
al., 1998), Networks or Speech recognition (Rabiner 1989) to name but a few, notably because they
take into account random regime changes in the environment.We will consider here a model described
by a stochastic differential equation (SDE) with Markov regime-switching (MRS), i.e., with parameters
controlled by a finite state continuous-time Markov chain (CTMC) as done, for example, inGhosh and
Deshpande (2008). In such a setting, parameters estimation problem is a real challenge, mainly due to
the fact that the paths of the CTMC are unobserved. A standardapproach consists in using the celebrated
EM algorithm (seeDempster et al. 1977) as proposed for example inHamilton (1990).
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In the present paper, our estimation approach is Bayesian, the aim being to find a pair (parameters,
CTMC path) with likelihood as large as possible. Standard priors are placed on the parameters space but,
as the CTMC paths are unobserved, a large number of paths are drawn from a Dirichlet process placed
as a prior on the path space of the CTMC. The complete model then appears as a Hierarchical Dirichlet
Model (HDM) (seeIshwaran and Zarepour 2000 ; Ishwaran and Lancelot 2002, 2003) whose estimation
procedure requires some rather nontrivial computations ofposterior distributions due to the temporal level
induced by the specific SDE and the CTMC. Using the well-knownstick-breaking approximation, each
set of iterations selects the pair with largest likelihood and then the Dirichlet process is updated in order
to look for other paths which can eventually improve the likelihood.

The considered SDE, called here cascade SDE, is the one introduced by F. Schmitt (Schmitt 2001) in
the statistical theory of turbulence. This model depends ontwo parameters, one representing the energy
dissipation and the other being a scaling parameter. As willbe shown for the data set considered in this
paper, these parameters change considerably with time. We model these changes by assuming that the
system operates in a finite number of regimes, each characterized by different values of the parameters.
The evolution of these regimes is modeled by a CTMC, thus extending the cascades SDE to a MRS
setting.

Our paper is structured as follows. In Section 2 we present the cascade SDE with MRS and the
complete HDM. Section 3 is devoted to the posterior computations. The algorithm used for estimation
is described in Section 4. Section 5 contains numerical results. The proposed algorithm is first tested on
a simulated data set. Then it is applied to a real data set of wind speed measured at the entrance of a
Mangrove ecosystem. Thus the CTMC transitions correspond to micro-meteorological regime changes.
We conclude in the last Section. The proofs of the results aregiven in the Appendix.

2 Cascade SDE with Markov regime-switching and Dirichlet prior

2.1 Cascade SDE with Markov regime-switching

F. Schmitt and D. Marsan (seeSchmitt and Marsan 1998, Schmitt 2001) introduced astochastic dissipa-
tion processε, with a continuum of scale levels, which satisfies a stochastic differential equation (SDE),
called thecascade SDE, which depends on anintermittencyparameterµ and ascaleparameterλ . This
SDE is a continuous version of the Yaglom multiplicative cascade model (Kolmogorov 1962, Yaglom
1966). The processγλ (t) = log(ελ (t)), called the singularity process satisfies the SDE,

γλ (t) = −µ
2

lnλ + µ1/2
∫ t

t+1−λ
(t +1−u)−1/2dB(u). (1)

whereB(.) is a standard Brownian motion.
We propose an extension of this cascade SDE to a model in random environment by defining a dis-

sipation process subject toregimechanges. In order to take into account random regime changesin the
environment, we assume that the parametersµ andλ are themselves stochastic processes driven by a
continuous time Markov chain. This idea is well-known in mathematical finance when modelling regime
switching markets with stochastic volatility (see e.g.DI-MASI et al. 1994; Ghosh and Deshpande 2008).

We consider the following cascade stochastic differentialequation

γ(t) = −
µX(t)

2
log(λX(t))+ µ1/2

X(t)

∫ t

t+1−λX(t)

(t +1−u)−1/2dB(u), (2)

whereB(.) is a standard Brownian motion,X = (X(t))t≥0 is a continuous time Markov chain taking
values in a finite setS= {1,2, . . . ,M} that represents differentregimesof the environment. If, at a given
time, t X(t) = i (i ∈ S), then the environment is in regimei so thatµX(t) = µi andλX(t) = λi . Observe
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that the distribution ofγ appears as a mixture of distributions of cascade SDE. The chain X(t) spends
an exponential amount of time with parameterβi in statei ∈ S, and then jumps to statej ∈ S, j 6= i
with probability pi j . The transition rate matrixQ = (qi j )i, j∈S is such that off-diagonal entriesqi j are
nonnegative real values, and the diagonal elementqii is constrained to beqii = −∑ j 6=i qi j , so that the row
sums ofQ are zero. We haveqii = −βi for all i ∈ S, andqi j = βi × pi j for j 6= i.

We complete the above model by placing a Dirichlet process (DP) as a prior on the path space of the
Markov chainX. This leads us to the following Bayesian modeling framework:







(X|P,α) ∼ P
(P|α) ∼ D(αH)
(α) ∼ Gamma(η1,η2)

(3)

whereH is the distribution of a specific Markov chain determined by the transition rate matrixQ and an
initial distributionπ0. In practice, process (2) is sampled at timest1, . . . , tn, providing a finite random vec-
tor γ = (γ1, . . . ,γn) of observations, whereγi is the value recorded at timeti . We prove that the conditional
distribution of the vectorγ is Gaussian so that we arrive at the following hierarchical model that we want
estimate from the observed data:







(γ|X,µ,λ ,P) ∼ Nn(m(X),Σ)

µ1, ...,µM
iid∼ Γ1

λ1, ...,λM
iid∼ Γ2

(X|P,α) ∼ P
(P|α) ∼ D(αH)
(α) ∼ Gamma(η1,η2)

(4)

The next section recalls some notions that are important forthe estimation procedure.

2.2 Stick-breaking representation of Dirichlet process

A constructive approach to the Dirichlet process is the so called stick-breaking scheme. LetH be a

probability distribution on some measurable spaceV and letN ≥ 2 be an integer. LetVk
i.i.d∼ Beta(ak,bk),

k = 1. . .N−1, with shape parametersak,bk > 0, and letVN = 1. Let p1 . . . pN, be defined by

p1 = V1, pk = (1−V1)(1−V2)...(1−Vk−1)Vk, k≥ 2. (5)

Note that∑N
k=1 pk = 1.

Let Zk
i.i.d.∼ H, k = 1, . . . ,N, be independent of(pk)k=1,...,N. The random measurePN defined by

PN =
N

∑
k=1

pkδZk(.) (6)

is said to be astick-breakingconstruction. The Ferguson Dirichlet processD(αH) (Ferguson 1973) is the
best known example of an infinite stick-breaking prior. Thisis made explicit by the following proposition
due toSethuraman (1994).

Proposition 1

PN(.) =
N

∑
k=1

pkδZk(.)
a.s.−→ D(αH).

This proposition yields an efficient approximation of a Dirichlet process that is very useful in Bayesian
nonparametrics statistics. The following Lemma will be crucial in our estimation procedure.
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Lemma 1 Let X : Ω → {1, . . . ,N} be a r.v. with conditional distribution Pr(X ∈ .|P) = ∑N
k=1 pkδk(.),

where P is defined by the stick-breaking construction (5). Then the conditional distribution of P given X
is also defined by (5), where VN = 1 and the Vk, k = 1, . . . ,N−1 are independent Beta(a∗k,b

∗
k) r.v.’s with

a∗k = ak + I{X=k} (7)

b∗k = bk +
N

∑
j=k+1

I{X= j}. (8)

3 Posterior computations

The estimation procedure of the various parameters of the model is based on the Gibbs sampling scheme.
Implementation of this scheme requires the computation of the following conditional distributions:

(γ|X,µ ,λ , p), (µ |γ,λ ,X), (λ |γ,µ ,X), (X|p,α), (α|P), (p|α) and (H|X)

For simplicity,γ(ti) andX(ti) will be denoted below byγi andX(i), respectively.

3.1 Conditional forγ

Proposition 2
(γ|X,µ ,λ , p) ∼ Nn(m,Σ),

with m=

(

−1
2

µX(1) log(λX(1)), . . . ,−
1
2

µX(n) log(λX(n))

)

and Σ = (σst)s,t=1,...,n,

where σst = (µX(s)µX(t))
1/2COV(

∫ s

s+1−λX(s)

(s+1−u)−1/2dB(u),
∫ t

t+1−λX(t)

(t +1−u)−1/2dB(u)).

The coefficientsσst can be given explicitly using a computation of F. G. Schmitt (seeSchmitt 2003,
pages 89-90).

Proposition 3 Let s and t be integers, let w= min(s, t), a= max(s+1−λX(s), t +1−λX(t) andτ = |s−t|.
Then

σst = 2(µX(s).µX(t))
1/2 log

(√
w+1−a+

√
w+1−a+ τ

1+
√

1+ τ

)

.

If j is a state reached by the Markov chain, lett1 j , . . . , tn j j be the times at whichj is reached and let

γ j = (γt1 j , . . . ,γtnj j ). (9)

Corollary 1

(γ j |µ ,λ ,X) ∼ Nn j (−
µ j

2
log(λ j)(1,1, . . . ,1

︸ ︷︷ ︸

n j times

),Σ j),

whereΣ j = (σ j(s, t)), is a nj ×n j matrix with

σ j(s, t) = 2µ j log

(√
w+1−a+

√
w+1−a+ τ

1+
√

1+ τ

)

.
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In the following sections, the probability densities ofNn andNn j will be denoted byfn and fn j respec-
tively, that is

fn(γ,µ ,λ ) =
exp
(
−1

2(γ −m)Σ−1(γ −m)T
)

(2π)n/2 (det(µΣ))1/2
. (10)

fn j (γ j ,µ j ,λ j) =
exp
(
−1

2(γ j −mj)(µ jΣ j)
−1(γ j −mj)

T
)

(2π)n j/2 (det(µ jΣ j))1/2
.

wheremj = − µ j
2 log(λ j)(1,1, . . . ,1

︸ ︷︷ ︸

n j times

)

3.2 Conditional for X.

Proposition 4 Let N be a positive integer.

(

X|p =
N

∑
i=1

piδXi ,γ,µ ,λ

)

∝
N

∑
i=1

p∗i δXi

where p∗i = pi fn(γ,µ ,λ ), where fn is as defined in (10).

3.3 Conditional for p

Proposition 5

(p1|X) ∼V∗
1 , (pk|X) ∼V∗

k

k−1

∏
i=1

(1−V∗
k ) k = 2,3, . . . ,N, (11)

where V∗k ∼ Beta
(
a∗k,b

∗
k

)
f or k = 1, . . . ,N−1, with a∗k, b∗k given by Lemma 1 and V∗N = 1.

Remark 1 The fact stated in this proposition is that the current valueof parameter ak increases by1
each time the path k is chosen. What this does is that as we repeat the process of generating from the
conditional within each iteration, the Beta distributionswill gradually concentrate on paths that best
explain the data.

3.4 Conditional forα

Proposition 6

(α|p) ∼ Gamma

(

N+η1−1,η2−
N−1

∑
i=1

log(1−V∗
i )

)

,

where the V∗i are the same as those obtained in the conditional for p.
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3.5 Conditional forµ

Let j ∈ Sbe a state ofX andπ1 be the prior forµ j .

Proposition 7 If for all t ∈ {1, . . . ,n}, X(t) 6= j, then(µ j |γ,λ j ,X,α) ∼ π1, otherwise

(µ j |γ,λ j ,X,α) ∼ Γ1 ∝ Nn j (mj ,µ jΣ j)∗π1,

where mj = − µ j
2 log(λ j)(1,1, . . . ,1

︸ ︷︷ ︸

n j times

).

3.6 Conditional forλ

Let j ∈Sbe a state ofX and letπ2 be the prior forλ j . As in the case ofµ , if for all t ∈ {1, . . . ,n}, X(t) 6= j,
then

(λ j |γ,µ j ,X,α) ∼ π2

otherwise, for each of the other values ofj ∈ S,

(λ j |γ,µ j ,X,α) ∼ Γ2 ∝ (γ|λ j ,µ j ,X,α)∗π2. (12)

3.7 Conditional forH

Recall that the distributionH is determined by the transition rate matrixQ and the initial distributionπ0.
The conditional distribution ofH is given by the following proposition which is nothing but the standard
Maximun Likelihood Estimation for a CTMC. Refer toYin, G. G. andZhan Q. (1997)or Noris J. R.
(1997)for more details.

Proposition 8 Let X = (X(1), . . . ,X(n)) be the values of the CTMC X at times1, . . . ,n. Let i and j be
two distinct states in S, and P= (pi j ) the transition probability matrix of X.

π0(i) =
1
n

n

∑
k=1

δi(X(k)), pi j =
1
n

n

∑
k=1

δi j (X(k),X(k+1)) and Qi j = βi pi j ,

whereδi j (X(k),X(k+1)) = 1 if X(k) = i and X(k+1) = j, and0 otherwise.βi is the reciprocal of the
average durations spent in state i.

4 Estimation procedure

4.1 Algorithm

We now describe the estimation procedure. Observe that steps (i), (iv), (v), (viii) and (ix) are new as com-
pared to the procedures inIshwaran-Zarepour (2000)andIshwaran-James (2002).

i. Choose a large integerN and generateN pathsX1, . . . ,XN, of the continuous time Markov
chain with distributionH.

ii. Draw α from Gamma(η1,η2) and drawp1, . . . , pN according to (5) withak = 1 andbk = α.
iii. Draw λ = (λ1, . . . ,λM) andµ = (µ1, . . . ,µM) from their priorsπ1,π2 respectively.
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iv. Draw one of the pathsX1, . . . ,XN, with probabilityp1, . . . , pN, respectively.

Iterate over the following steps(v) through(ix):
v. - Computeσi j = COV(γi ,γ j) from Proposition 3

- Definep∗j ∝ p j fn(γ,µ ,Σ), using Proposition 2
- Excecute (iv) withp j replaced byp∗j .

vi. - Definea∗k andb∗k using (7) and (8) whereX is the index of the chosen path.
- Computep1 = V∗

1 , andpk = (1−V∗
1 ) . . .(1−V∗

k−1)V
∗
k , k = 2,3, . . . ,N

whereV∗
k ∼ Beta(a∗k,b

∗
k), andV∗

N = 1.
vii. Draw α from (α|p) ∼ Gamma

(
N+η1−1,η2−∑N−1

i=1 log(1−V∗
i )
)
.

viii. Given γ,λ and a chosen pathX, for each statej ∈ S,
- If X(t) 6= j for all t ∈ {1, . . . ,n}, then drawµ j from the priorπ1.
- otherwise, deternime the timest1 j , . . . , tn j , j at which the Markov chain takes the valuej and
computeσ j(s, t) from corollary 1.
- drawµ j from the conditional distribution ofµ j given by Proposition 7.

ix. - If X(t) 6= j for all t ∈ {1, . . . ,n}, then drawλ j from the priorπ2.
- otherwise, determine the timest1 j , . . . , tn j , j at which the Markov chain takes the valuej and
computeσ j(s, t) from corollary 1.
- drawλ j from the conditional distribution ofλ j given by (12)

Remark 2 Since n will be very large for the application that we have in mind (n≈ 72,000), the algorithm
will be computationally infeasible since we have to invert the matrixΣ . Hence breaking the dataset
into smaller pieces will help. However we keep the size largeenough to estimate the largest significant
correlation. We use the posterior obtained for one subset asthe prior for the subsequent data set.

Remark 3 Another way to simulateλ is to generate a path of the Brownian motion B. For all times
t1 j , . . . , tn j j for which X takes value j, solve equation (2) inλ j numerically, using a discretization of
[t j +1−λ j , t j ]. This gives valuesλ1 j , . . . ,λn j , j . Use the values obtained this way for a large number of
Brownian paths to compute the conditional forλ j and draw value ofλ j from this conditional.

The algorithm below summarizes the estimation procedure. In practice it will be implemented using
the Gibbs sampling technique.

1. Initialization
- Let γ be the vector of observations
- Choose the hyper-parametersη1 , η2 andN
- Generateα from Gamma(η1,η2)
- GenerateN paths of the Markov chain
- Draw p = (p1, . . . , pN) from stick-breaking(α, N)
- Choose one of theN paths according top
- Generateµ andλ from their priors

2. Iterations
- Computefn(γ,µ ,λ ) and updatepk, k being the index of the chosen path.
- Choose one of theN paths according top
- For each state j, drawµ j , drawλ j

- Draw α
- Draw a newp
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4.2 Truncation error bound

Let γ(t) be defined as in (2) and letγ = (γ1, . . . ,γn) be an sample from the processγ(t). Let mN(γ)
andm∞(γ) denote the marginal density ofγ subject toPN andD(αH) respectively. Using a result in
Ishwaran (2002)it can be shown that

∫

n
|mN(γ)−m∞(γ)|dγ ≤ 4exp(−(N−1)/α). (13)

This result provides an error bound for the truncated Dirichlet process and shows that the sample sizen
has no effect on the bound. The adequacy of the truncation then depends onN andα. Of course the value
of α changes during the different iterations of our Gibbs sampler. However, since the bound decreases
exponentially fast, even for a fairy large value,α = 3 for example, a truncation withN = 30 leads to an
error bound of 25×10−5. For the computations in the next section we have chosen a value ofN = 50.

5 Numerical results

5.1 Simulated data

The present subsection aims at testing the reliability of the model. We perform numerical simulations of
the stochastic processγ(t). We consider a model with five regimes. The associated Markovchain then
has five states and is defined by the following transition probability matrix









0 0.2 0.7 0 0.1
0.5 0 0.1 0.26 0.14

P = 0.6 0.18 0 0.17 0.05
0.55 0.13 0.1 0 0.22
0.08 0.43 0.16 0.33 0









and the initial distributionπo = [0.20 0.20 0.20 0.20 0.20]. We also suppose that the parameters of
the average durations of time spent in the states of the CTMC are given in table 1.

Table 1 Parameters of the exponential distributions of the durationspent in the states of the CTMC

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5
βi 0.05 0.1 0.02 0.2 0.041

So the transition rate matrix of the chain is









−0.05 0.01 0.035 0 0.005
0.05 −0.1 0.01 0.026 0.014

QO = 0.012 0.0036 −0.02 0.0034 0.001
0.11 0.026 0.02 −0.2 0.044

0.00328 0.01763 0.00656 0.01353 −0.041









We choose the prior ofµ andλ to be independent truncated Gaussian distributions, and simulate the
parametersµ = (µ1, ...,µ5) andλ = (λ1, ...,λ5), corresponding to the five regimes. We also simulate a
path of lengthn = 600 of the Markov chain. Usingµ , λ and the Markov chain, we simulate a sample
pathγ of the stochastic processγ(t) (see Fig. 1). Taking the dataγ as input, we estimate the parameters
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Fig. 1 A sample path of the stochastic processγ(t)

of the model through the algorithm presented in Section 4. For the purpose, we performed 500 Gibbs
sampling runs each with 1,000 iterations. At the end of each run Gibbs sampling, we choose the path
with maximum likelihood and the corresponding values of theparametersµ andλ . This path is used to
update the matricesQ andP for the next run of the Gibbs sampling. The summary statistics for µ and
λ are given in table 2 and table 3 respectively. The estimated values are the averages of the estimates
obtained in the 500 runs.

Table 2 Summary statistics ofµ.

Regime1 Regime 2 Regime 3 Regime 4 Regime 5
Actual Values 0.19 0.33 0.36 0.41 0.45
Estimated Values 0.22 0.31 0.38 0.42 0.46
95% credible interval [0.189, 0.25] [0.285, 0.335] [0.35, 0.40] [0.405, 0.43] [0.44, 0.48]

Table 3 Summary statistics ofλ

Regime1 Regime 2 Regime 3 Regime 4 Regime 5
Actual Values 1067 997 1234 1743 1408
Estimated Values 1070 996 1234 1742 1410
95% credible interval [1064, 1075] [992, 1000] [1228, 1240][1734, 1749] [1403, 1416]

Table 4 Regime characteristics of the processγ(t)

Regime1 Regime 2 Regime 3 Regime 4 Regime 5
µ 0.22 0.31 0.38 0.43 0.46
λ 1070 996 1234 1742 1410

5.2 Wind speed data

This section is aimed at testing the model on real data. We consider a dataset collected at the entrance of
the mangrove ecosystem in Guadeloupe island (D. BERNARD and C. D’ALEXIS 2006). Wind velocity
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was recorded at a frequency of 20Hz by its 3D componentsvx,vy andvz. As we are interested in the
longitudinal velocity, only the componentsvx andvy are considered. Our observation time interval is one
hour, providing a 2D series of lengthn = 72,000. Letu = 1√

(vx)2+(vy)2
(v̄x, v̄y) be the mean longitudinal

velocity vector andw = 1√
(vx)2+(v)2

y
(−v̄y, v̄x). Let (S1,S2) be the new coordinates of(vx,vy) in the basis

(u,w) and letS=
√

S2
1 +S2

2 be the wind modulus. Computing the energy dissipation series ε(t) = (S(t +

1)−S(t))2/(1/20), the aim is to fit our model (3) to the seriesγ(t) = log(S(t)). Estimates ofµ andλ on
sliding windows of 60 seconds length, show that these parameters remain stable for random durations of
time and then jump to another value. Regimes can be observed in Fig.2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

µ

0 1000 2000 3000 4000 5000
1230

1235

1240

1245

1250

1255

1260

1265

1270

λ

Fig. 2 Regime changes forµ (left) andλ (right).

Considering the histogram of the values ofµ (resp. ofλ ) over the above sliding windows (see Fig.
3), a truncated Gaussian (resp. aGamma) distribution is taken as inital prior forµ (resp. forλ ). We

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
0

100

200

300

400

500

600

µ
1230 1235 1240 1245 1250 1255 1260 1265 1270
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400
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800

1000

1200

1400

1600
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2000

λ

Fig. 3 Histograms ofµ (left) andλ (right)

first ran our algorithm with many values ofM and statistical comparasion tests lead us to takeM = 4
states for the Markov chain. We present here the results of our algorithm for 500 Gibbs sampling runs
of 25,000 iterations each, including 3,000 burn-in iterations. At each run of the Gibbs sampling, we
evaluated the log-likelihood (LLH) of the selected path at each of the 25,000 iterations and choose the
path with maximum likelihood. So, after 500 runs, 500 paths are retained. Among these 500 paths, we
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consider that the one with the highest likelihood (that is the best of the best in terms of likelihood) is the
one that best fits the data. It has the characteristics presented in table 5 and table 6.

Table 5 Characteritics of the path with highest likelihood

Regime 1 Regime 2 Regime 3 Regime 4

µ 0.3885 0.2703 0.1314 0.2914
λ 1281 1448 1367 1240
% of occupation 17.2% 14% 8.5% 60.3%

Table 6 Sequence of regimes in the highest likelihood path

Regimes 4 1 3 4 2 1
Duration 287 38 51 75 84 65

6 Conclusion

We have proposed a new model for dissipation: cascade SDE with Markov regime switching to represent
randomness in the environment, and Dirichlet prior on the path space of the continuous time Markov
chain to make the model more flexible. It can be seen that this model is a complex mixture hierarchical
model. The numerical results obtained lead us to believe that such mixture model better fit to many real
world data sets than usual SDE models. The proposed Bayesianalgorithmic method, whose key idea is
the simulation of paths, can be extended to many other situations as soon as posterior distributions can be
computed or simulated and priors used cautiously. A topic for further research may consist in replacing
the continuous time Markov chain by a diffusion process. This requires a deeper study of the behaviour
of the parameters.
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APPENDIX: PROOFS

Proof (Lemma 1)
Note thatPr(X = j|p) = p j = (1−V1) · · ·(1−Vj−1)Vj . Thus, if A1, ...,An are measurable subsets of [0,1], and ifπ is the joint
distribution of theVi ’s, we have,

Pr(V1 ∈ A1, ...VN ∈ AN,X = j) =
∫ N

∏
k=1

I{Vk∈Ak}Pr(X = j|V1, ..,VN)π(dV1, ...,dVN)

=
∫ N

∏
k=1

I{Vk∈Ak}(1−V1) · · ·(1−Vj−1)Vj π(dV1, ...,VN)

=
∫

I{xk∈Ak,k=1,...,N}(1−x1) · · ·(1−x j−1)x j

N

∏
k=1

xak−1
k (1−xk)

bk−1(dx1, ...,dxN)

=
∫

I{xk∈Ak,k=1,...,N}x
a j
j (1−x j )

b j−1
j−1

∏
k=1

xak−1
k (1−xk)

bk
N

∏
k= j+1

xak−1
k (1−xk)

bk−1(dx1, ...,dxN).

This implies that

Vj |X = j ∼ Beta(a j +1,b j )

Vk|X = j ∼ Beta(ak,bk +1) f or 0 < k < j

Vk|X = j ∼ Beta(ak,bk) f or k > j

as sumarized in the Lemma.

Proof (Proposition 2)

According to definition (2), each componentγi of γ is a Gaussian r.v. with mean

mi(X) = E(γi) = −1
2

µX(i) log(λX(i))

since

E

(
∫ i

i+1−λX(i)

(i +1−u)−1/2dB(u)

)

= 0.

Therefore

E(γ) = m(X) =

(

−1
2

µX(1) log(λX(1)), . . . ,−
1
2

µX(n) log(λX(n))

)

.

Now letZ = ∑J
j=1 α j γ j be a linear combination of components ofγ.

Z =
J

∑
j=1

α j

(

−
µX(t j )

2
log(λX( j))+(µX( j))

1/2
∫ t j

t j +1−λX( j)

(t j +1−u)−1/2dB(u)

)

which can be written in the form

Z = AJ +
J

∑
j=1

α j (µX( j))
1/2
∫

(t j +1−u)−1/2I[t j +1−λX( j), t j ]dB(u)

that is
Z = AJ +

∫

(t j +1−u)−1/2BJI[t j +1−λX( j), t j ]dB(u),

showing thatZ is a Gaussian r.v. It follows thatγ is a Gaussian random vector. Moreover

σst = Cov(γs(X),γt(X)) = E [(γs(X)−ms(X))(γt(X)−mt(X))]

= E

(

(µX(s))
1/2
∫ s

s+1−λX(s)

(s+1−u)−1/2dB(u)×µ1/2
X(t)

∫ t

t+1−λX(t)

(t +1−v)−1/2dB(v)

)

= (µX(s))µX(t))
1/2E

(
∫ s

s+1−λX(s)

(s+1−u)−1/2dB(u)×
∫ t

t+1−λX(t)

(t +1−v)−1/2dB(v)

)

.
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Proof (Proposition 3)
The covariance matrix coefficientsσst = COV(γs,γt) involve two Gaussian stochastic integrals:

σst = (µX(s)µX(t))
1/2E

(
∫ s

s+1−λX(s)

(s+1−u)−1/2dB(u)×
∫ t

t+1−λX(t)

(t +1−u)−1/2dB(u)

)

.

Recall that Gaussian stochastic integrals are zero mean Gaussian r.v.s that have the property

E

(∫

A1

F(x)dB(x)×
∫

A2

G(x)dB(x)

)

=
∫

A1∩A2

F(x)G(x)dx.

So, if

I =
∫ a

b
F(x)dB(x)

then

σ2
I =

∫ a

b
F2(x)dx.

Suppose thats< t, thenw = s andt = s+ τ. Let

K = E

(
∫ s

s+1−λX(s)

(s+1−u)−1/2dB(u)×
∫ t

t+1−λX(t)

(t +1−u)−1/2dB(u)

)

.

It follows that

K =
∫ s

a
(s+1−u)−1/2(t +1−u)−1/2du.

As in Schmitt (Schmitt 2003) we see that

K =
∫ s

a
du√

(s+1−u)(t+1−u)

=
∫ s

a
du√

(s+1−u)(s+1−u+τ)

=
∫ 1+s−a

1
dx√

x(x+τ)

= 2log
(√

s+1−a+
√

s+1−a+τ
1+

√
1+τ

)

where we have made the variable changex = s+1−u and used the identity

∫
dx

√

x(x+ τ)
= 2log

(√
x+

√
x+ τ

)
.

Therefore

σst = 2(µX(s)µX(t))
1/2 log

(√
w+1−a+

√
w+1−a+ τ

1+
√

1+ τ

)

.

Proof (Proposition 4)
We know that the conditional density ofX is

(X = x|p = y,γ = g,µ = m,λ = l) =
(X, p,γ,µ,λ )(x,y,g,m, l)

∫
(X, p,γ,µ,λ )(x,y,g,m, l)dP(x)

.

But,
(X, p,γ,µ,λ )(x,y,g,m, l) = (γ = g|X = x, p = y,µ = m,λ = l)(X = x, p = y,µ = m,λ = l)

= (γ = g|X = x, p = y,µ = m,λ = l)(X = x|p = y,µ = m,λ = l)
×(p = y,µ = m,λ = l)

= fn(g,m, l)(X = x|p = y,µ = m,λ = l)(p = y,µ = m,λ = l).
Since

(X = x|p,µ,λ ) =
N

∑
i=1

piδXi ({x}) ,
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and since the distribution of(p,µ,λ ) does not depends onX, we have

(X, p,γ,µ,λ )(x,y,g,m, l) = fn(g,m, l)
N

∑
i=1

piδXi ({x}) .

Using that
f (x)δXi ({x}) = f (Xi)δXi ({x}), for any functionf , we get

(X, p,γ,µ,λ )(x, p,g,m, l) = ∑N
i=1 fn(g,m, l)piδXi ({x})

= ∑N
i=1 p∗i δXi ({x})

so,

(X|p,γ,µ,λ ) ∝
N

∑
i=1

p∗i δXi .

Proof (Proposition 5)
By proposition (4),(X|p) ∝ ∑N

i=1 p∗i δXi . The result then follows from Lemma 1.

Proof (Proposition 6)
By Connor and Mosimann (CONNOR and MOSSIMANN 1969), the probability density ofp defined by equation (5) is

{
N−1

∏
k=1

Γ (ak,bk)

Γ (ak)Γ (bk)

}

pa1−1
1 . . . p

aN−1−1
N−1 p

bN−1−1
N × (1−P1)

b1−(a2+b2) . . .(1−P
bN−2−(aN−1+bN−1)
N−2 ),

wherePk = p1 + . . .+ pk. Whenak = 1 andbk = α, usingΓ (1+α) = αΓ (α), we get that the conditional density ofp givenα is

f (p|α) ∝ αN−1pα−1
N = αN−1e(α−1) log(pN).

As f (α|p) ∝ f (p|α) f (α) and the prior forα is Gamma(η1,η2), we get

f (α|p) ∝ αN−1+η1e−(η2−log(pN))α

So,(α|p) ∼ Gamma(N+η1−1,η2− log(pN)), that is

(α|p) ∼ Gamma

(

N+η1−1,η2−
N−1

∑
i=1

log(1−V∗
i )

)

.

Proof (Proposition 7)
Let t1 j , . . . , tn j j be the times at which the Markov chain takes valuej.
We know from corollary 1 that,

(γt1 j , . . . ,γtnj j )|µ ,λ ∼ Nn j (−
µ j

2
log( j )(1,1, . . . ,1),µ j Σ j ).

Moreover
(γ,µ j ,λ j ,X,α) = (γ|µ j ,λ j ,X,α)⊗ (µ j ,λ j ,X,α) = (γ|µ j ,λ j ,X,α)⊗ (µ j ⊗λ j ⊗X⊗α)

sinceX,µ j ,λ j andα are independent. It follows that

(µ j |γ,λ j ,X,α) =
(γ|µ j ,λ j ,X,α)⊗µ j ⊗λ j ⊗X⊗α

∫
(γ,µ j ,λ j ,X,α)dP(µ j )

.

As λ j , X andα do not depend onµ j we have

(µ j |γ,λ j ,X,α) ∝ (γ|µ j ,λ j ,X,α)⊗µ j

That is
(µ j |γ,λ j ,X,α) ∼ Γ1 ∝ Nn j (mj ,µ j Σ j )∗π1.
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