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Abstract A Stochastic Differential Equation appearing in the stit# theory of turbulence is extended
in random environment by assuming that its two parameterswitched by an unobserved continuous-
time Markov chain whose states represent the states of tfi@ement. A Dirichlet process is placed as
a prior on the space of the sample paths of this chain, leadiaghierarchical Dirichlet model whose
estimation is done both on simulated data and on real datanof speed measured at the entrance of a
mangrove ecosystem.

Keywords CascadesDirichlet process Dissipation- Mangrove- Markov regime switching Random
environment Stochastic differential equation

1 Introduction

Models in which parameters move between a fixed number ofmegiwith switching controlled by an
unobserved stochastic process, have been heavily usednin digciplines including FinanceHamil-

ton and Susmel, 1994Meteorology Zucchini and Guttorp 1991 Computational biologyurbin et
al., 1998, Networks or Speech recognitioRgbiner 1989 to name but a few, notably because they
take into account random regime changes in the environriémivill consider here a model described
by a stochastic differential equation (SDE) with Markovineg-switching (MRS), i.e., with parameters
controlled by a finite state continuous-time Markov chaiff fC) as done, for example, i@hosh and
Deshpande (2008)In such a setting, parameters estimation problem is a hedlenge, mainly due to
the fact that the paths of the CTMC are unobserved. A starafgrtbach consists in using the celebrated
EM algorithm (sedDempster et al. 197 7as proposed for example ihamilton (1990)
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In the present paper, our estimation approach is Bayediamitn being to find a pair (parameters,
CTMC path) with likelihood as large as possible. Standarmrprare placed on the parameters space but,
as the CTMC paths are unobserved, a large number of pathsaawe from a Dirichlet process placed
as a prior on the path space of the CTMC. The complete modelahpears as a Hierarchical Dirichlet
Model (HDM) (seelshwaran and Zarepour 2000 ; Ishwaran and Lancelot 2003) 2@fose estimation
procedure requires some rather nontrivial computatiopssterior distributions due to the temporal level
induced by the specific SDE and the CTMC. Using the well-knstick-breaking approximation, each
set of iterations selects the pair with largest likelihood ¢hen the Dirichlet process is updated in order
to look for other paths which can eventually improve theliit@od.

The considered SDE, called here cascade SDE, is the onduegd by F. Schmitt3chmitt 200} in
the statistical theory of turbulence. This model dependsvanparameters, one representing the energy
dissipation and the other being a scaling parameter. Asba@ithown for the data set considered in this
paper, these parameters change considerably with time. ddelnthese changes by assuming that the
system operates in a finite number of regimes, each chamextdry different values of the parameters.
The evolution of these regimes is modeled by a CTMC, thusnelktg the cascades SDE to a MRS
setting.

Our paper is structured as follows. In Section 2 we presemtciscade SDE with MRS and the
complete HDM. Section 3 is devoted to the posterior comjariat The algorithm used for estimation
is described in Section 4. Section 5 contains numericaltesthe proposed algorithm is first tested on
a simulated data set. Then it is applied to a real data setrd wpeed measured at the entrance of a
Mangrove ecosystem. Thus the CTMC transitions correspomdi¢ro-meteorological regime changes.
We conclude in the last Section. The proofs of the resultgiaesn in the Appendix.

2 Cascade SDE with Markov regime-switching and Dirichlet prior
2.1 Cascade SDE with Markov regime-switching

F. Schmitt and D. Marsan (s&hmitt and Marsan 1998, Schmitt 20@itroduced astochastic dissipa-
tion process, with a continuum of scale levels, which satisfies a stoahdsfterential equation (SDE),
called thecascade SDEwhich depends on aintermittencyparameteu and ascaleparametei\. This
SDE is a continuous version of the Yaglom multiplicativeaaae model Kolmogorov 1962, Yaglom
1966. The procesg, (t) = log(e, (t)), called the singularity process satisfies the SDE,

) =—=1nA +ul/2/t (t+1—u)~Y2dB(u). (1)
2 t+1-A
whereB(.) is a standard Brownian motion.

We propose an extension of this cascade SDE to a model inmardweironment by defining a dis-
sipation process subject tegimechanges. In order to take into account random regime chandghe
environment, we assume that the parameteend A are themselves stochastic processes driven by a
continuous time Markov chain. This idea is well-known in hehatical finance when modelling regime
switching markets with stochastic volatility (see edd=MASI et al. 1994; Ghosh and Deshpande 2008

We consider the following cascade stochastic differeetiplation

Hxt)

t
_ 1/2 _n—1/2
VO = =500+ [ (1 U odB) @

whereB(.) is a standard Brownian motioX = (X(t))t>o IS a continuous time Markov chain taking
values in a finite se= {1,2,...,M} that represents differentgimesof the environment. If, at a given
time,t X(t) =i (i € S), then the environment is in regimeso thatpiy ) = i andAy) = A. Observe



that the distribution ofy appears as a mixture of distributions of cascade SDE. Thia ¢t{@) spends
an exponential amount of time with paramefirin statei € S and then jumps to statee S j # i
with probability pi;. The transition rate matriQ) = ()i jes is such that off-diagonal entrieg; are
nonnegative real values, and the diagonal elerger constrained to bgi = — 3 j ¢, S0 that the row
sums ofQ are zero. We have; = —f; for all i € S andg;j = B x pjj for j #i.

We complete the above model by placing a Dirichlet proce$® @3 a prior on the path space of the
Markov chainX. This leads us to the following Bayesian modeling framework

X[pa)~P
{(PIG)NQ(GH) ®3)

(a) ~ Gammdny, n2)

whereH is the distribution of a specific Markov chain determined by transition rate matriQ and an
initial distribution 1. In practice, process (2) is sampled at times. ., t,, providing a finite random vec-
tory=(w,..., ) of observations, wherg is the value recorded at tintie We prove that the conditional
distribution of the vectoy is Gaussian so that we arrive at the following hierarchicatiet that we want
estimate from the observed data:

(le’ uv/\ 75) ~ %(m(X), Z)

B ~ T
/\1,..‘,/\M Ifg I_z (4)
(X|Pa)~P

(Pla) ~ 2(aH)
(a) ~ Gammana, nz)

The next section recalls some notions that are importarthoestimation procedure.

2.2 Stick-breaking representation of Dirichlet process

A constructive approach to the Dirichlet process is the dledastick-breaking scheme. Lét be a

probability distribution on some measurable sp#cand letN > 2 be an integer. Lety i Beta(ay, by),
k=1...N—1, with shape parameteag, b > 0, and lelVy = 1. Letp; ... pn, be defined by

pr=Vi, pPk=(1-V)(1-V2)..(1=Vi—1)Vk, k>2. (5)

Note thaty}_; px = 1.
ii.d.

Letz, ~ H,k=1,... N, be independent dipx)k=1....n. The random measuré’y defined by

N

Pn=" mdz(.) (6)

K=1
is said to be atick-breakingconstruction. The Ferguson Dirichlet procés&rH) (Ferguson 1973s the

best known example of an infinite stick-breaking prior. Tieimade explicit by the following proposition
due toSethuraman (1994)

Proposition 1

N
PN() =Y Pz () = 2(aH).
k=1

This proposition yields an efficient approximation of a Dinfiet process that is very useful in Bayesian
nonparametrics statistics. The following Lemma will beaialiin our estimation procedure.
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Lemmal Let X: Q — {1,...,N} be a r.v. with conditional distribution RX € .|P) = SN | pké(.),
where P is defined by the stick-breaking construction (5¢nfihe conditional distribution of P given X
is also defined by (5), wherg)\= 1 and the ¥, k= 1,...,N — 1 are independent Beta;, by) r.v’s with

& = ax+lix=k ()

N
by = b+ lix—it. (8)
j:%l {X=j}

3 Posterior computations

The estimation procedure of the various parameters of thiehi®based on the Gibbs sampling scheme.
Implementation of this scheme requires the computatioh@fallowing conditional distributions:

VX, A5p), (Y, A, X), (Aly 1, X), (X[p,a), (alP), (pla) and (H[X)

For simplicity, y(t) andX(t;) will be denoted below by andX(i), respectively.

3.1 Conditional fory

Proposition 2
(YIX, 1, A, p) ~ Ap(m, Z),

) 1 1
with m= <—2Hx(1) Iog()\x(l)),...,—éux(n) Iog()\x(m)) and X = (Ost)st=1,...n;

N 1—u)*1/2dB(u),/t (t+1—u) Y2dB(u)).

where gg = (ux<s)ux(t))l/2COV(/ 1A
—Ax(t)

SHL-Ay(g)

The coefficientssg can be given explicitly using a computation of F. G. SchnsggSchmitt 2003
pages 89-90).

Proposition 3 Lets andt be integers, letwmin(st), a=maxs+1—Ax),t+1— Ay andt = [s—t|.
Then

VW+l-a+vw+l-a+t
Tst = 2(ix(9-Hxt)) "/ 2log( W :

If j is a state reached by the Markov chaintigt.. ., tn;; be the times at which is reached and let

yj:(Mlja"'?Mnjj)' (9)

Corollary 1
Hj

(yl“-’la)\ax) N‘/%Wj(i 2

Iog()\j)(l, 1,...,1),2]),
N——

nj times

wherej = (0j(st)), is a nj x nj matrix with

oi(s.t) — 24, Iog(\/w+1—a+\/w+1—a+ r) .

1+v1+1
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In the following sections, the probability densities.df and./y, will be denoted byf, and fn; respec-
tively, that is

exp(—3(y—mzy-mT) .

fa(y, ,A) = 10
n(Y, 1, A) (270" (det(z) )12 (10)
fo (Vi) M, Aj) = exp(_%(yj _mj)(IJJZj)il(VJ' _mJ)T)
nj ) ) - R .
s (2" (det(py5))*/2
wherem; = —log(A})(1,1,...,1)
——
nj times
3.2 Conditional for X.
Proposition 4 Let N be a positive integer.
N N
Xlp=7> pidx,y:u,A | 0% pidy
( p=3 P ) 3 piox
where § = p;i fn(y, 4, A), where f is as defined in (10).
3.3 Conditional for p
Proposition 5
k—1
(PO ~VE, ()~ ] (A=W k=23, (11)
1=

where \ ~ Beta (af,bj) fork=1,...,N—1, with g, b} given by Lemma 1 anc{\= 1.
Remark 1 The fact stated in this proposition is that the current vabigparameter @ increases byl
each time the path k is chosen. What this does is that as watrépe process of generating from the

conditional within each iteration, the Beta distributiomsll gradually concentrate on paths that best
explain the data.

3.4 Conditional fora

Proposition 6
N—-1
(alp) ~ Gamma<N+n1—l, n- 3 Iog(l—\/ﬁ)) ,
i=

where the Y are the same as those obtained in the conditional for p.



3.5 Conditional foru

Let j € She a state oK andr be the prior fory;.
Proposition 7 Ifforallt € {1,...,n}, X(t) # |, then(ujly,Aj, X, a) ~ mm, otherwise
(“J|y7/\Jaxva) ~ 0 /an(mjvl-’ljzj) *T0,

where m = —%Iog()\j)(l, 1...,0).

nj times

3.6 Conditional forA

Let j € Sbe a state oK and letre be the prior ford;. As in the case oft, ifforall t € {1,...,n}, X(t) # |,
then

Ajly, by, X, a) ~ 12
otherwise, for each of the other valuesjaf S

(Ajlys 1y, X, ) ~ T2 O (YIA}, 4y, X, 0) # TR (12)

3.7 Conditional foH

Recall that the distributionl is determined by the transition rate matfand the initial distribution.
The conditional distribution off is given by the following proposition which is nothing buetbtandard
Maximun Likelihood Estimation for a CTMC. Refer tdin, G. G.andZhan Q. (1997)r Noris J. R.
(1997)for more details.

Proposition 8 Let X = (X(1),...,X(n)) be the values of the CTMC X at timés..,n. Letiand j be
two distinct states in S, and+ (pjj ) the transition probability matrix of X.

Sl
Sk
>

il

(i) = 8j(X(k),X(k+1)) and Qj = Bipi,

1

S 5(X(K), pi =
k;d(()) Pij

wheredj (X(k),X(k+1)) =1if X(k) =i and X(k+1) = j, and 0 otherwise §3; is the reciprocal of the
average durations spent in state .

4 Estimation procedure

4.1 Algorithm

We now describe the estimation procedure. Observe that §)efiv), (v), (viii) and (ix) are new as com-
pared to the procedures lishwaran-Zarepour (200@ndlshwaran-James (2002)

i. Choose a large integédt and generat®\ pathsXy,..., Xy, of the continuous time Markov
chain with distributiorH.
ii. Draw a from Gammdn1,n2) and drawpy, ..., py according to (5) wittex = 1 andby = a.
iii. Draw A = (A1,...,Am) andpt = (U, ..., uv) from their priorsrg, 7o respectively.



iv. Draw one of the pathXy, ..., Xy, with probability ps, ..., pn, respectively.

Iterate over the following ste®) through(ix):
v. - Computegi; = COV(y, y;) from Proposition 3
- Definepj O pj fa(y, 4, Z), using Proposition 2
- Excecute (iv) withp; replaced byp’j‘.
vi. - Definea; andby using (7) and (8) wher¥ is the index of the chosen path.
- Computepy = V;', andpy = (1-V;y)...(1-V )V, k=23,...,N
whereV," ~ Betaa, by), andVy = 1.
vii. Draw o from (a|p) ~ GammaN +ny — 1,02 — 3N og(1—-Vy)).
viii. Given y,A and a chosen patk, for each statg € S
-If X(t) # j forallt € {1,...,n}, then drawy; from the priorrm.
- otherwise, deternime the timeg, ..., tn; ; at which the Markov chain takes the valpiand
computeg;(s,t) from corollary 1.
- draw 1j from the conditional distribution oft; given by Proposition 7.
ix. -If X(t) # jforallt € {1,...,n}, then drawA; from the prior7s.
- otherwise, determine the timésg, . .. ,tn;j at which the Markov chain takes the valjiand
computeg;(s,t) from corollary 1.
- drawA; from the conditional distribution of;j given by (12)

Remark 2 Since n will be very large for the application that we have inari{n~ 72,000), the algorithm
will be computationally infeasible since we have to invé matrix>. Hence breaking the dataset
into smaller pieces will help. However we keep the size lamgaugh to estimate the largest significant
correlation. We use the posterior obtained for one subsé¢hagprior for the subsequent data set.

Remark 3 Another way to simulatd is to generate a path of the Brownian motion Br all times
t1j,...,tn;j for which X takes value j, solve equation (2)Ap numerically, using a discretization of
[tj +1—Aj, tj]. This gives valuedyj, ..., An, j. Use the values obtained this way for a large number of
Brownian paths to compute the conditional fgrand draw value of; from this conditional.

The algorithm below summarizes the estimation proceduarpractice it will be implemented using
the Gibbs sampling technique.

1. Initialization
- Let y be the vector of observations
- Choose the hyper-parameters, n, andN
- Generatex from Gammal1, n2)
- GenerateN paths of the Markov chain
- Draw p= (py,..., pn) from stick-breakingg, N)
- Choose one of thil paths according tp
- Generateu andA from their priors
2. Iterations
- Computef,(y, 4, A) and updatey, k being the index of the chosen path.
- Choose one of thHdl paths according tp
- For each state j, dray;j, drawj|
- Drawa
- Draw a newp



4.2 Truncation error bound

Let y(t) be defined as in (2) and lgt= (yi,...,¥n) be an sample from the procesgt). Let my(y)
andm.(y) denote the marginal density gfsubject to£?y and 2(aH) respectively. Using a result in
Ishwaran (2002 can be shown that

[ Ima) = ma(y)ldy < dexp(—(N-1)/a) (13)

This result provides an error bound for the truncated Dieithrocess and shows that the sample mize
has no effect on the bound. The adequacy of the truncationdéeends ol anda. Of course the value
of a changes during the different iterations of our Gibbs samplewever, since the bound decreases
exponentially fast, even for a fairy large value= 3 for example, a truncation with = 30 leads to an
error bound of 25¢ 10-°. For the computations in the next section we have choserua @N = 50.

5 Numerical results
5.1 Simulated data

The present subsection aims at testing the reliability efrtfodel. We perform numerical simulations of
the stochastic processt). We consider a model with five regimes. The associated Mackain then
has five states and is defined by the following transition abilly matrix

0 02 07 0 01
0.5 0 01 026 014
P=] 06 018 0 Q17 005
055 013 01 0 022
0.08 043 016 033 O

and the initial distributiorrp, = [0.20 020 020 020 020]. We also suppose that the parameters of
the average durations of time spent in the states of the CTid@igen in table 1.

Table1l Parameters of the exponential distributions of the duratfmmt in the states of the CTMC

Regime1l Regime2 Regime3 Regime4 Regime5
B 0.05 0.1 0.02 0.2 0.041

So the transition rate matrix of the chain is

—0.05 001 0035 0 0005

0.05 -0.1 0.01 0026 0014

Qo= 0012 Q0036 —-0.02 00034 0001
0.11 0026 Q02 -0.2 0.044

0.00328 001763 000656 001353 —0.041

We choose the prior oft andA to be independent truncated Gaussian distributions, andlaie the
parametergt = (U, ..., Us) andA = (Aq,...,As), corresponding to the five regimes. We also simulate a
path of lengthn = 600 of the Markov chain. Using, A and the Markov chain, we simulate a sample
pathy of the stochastic procesg(t) (see Fig. 1). Taking the dateas input, we estimate the parameters
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o 100 200 300 400 500 600

Fig. 1 A sample path of the stochastic procg§s

of the model through the algorithm presented in Section 4.t® purpose, we performed 500 Gibbs
sampling runs each with, @00 iterations. At the end of each run Gibbs sampling, we sbdbe path
with maximum likelihood and the corresponding values ofpgheameterg: andA. This path is used to
update the matrice® andP for the next run of the Gibbs sampling. The summary staisoc ¢ and

A are given in table 2 and table 3 respectively. The estimatduaes are the averages of the estimates
obtained in the 500 runs.

Table2 Summary statistics qf.

Regimel Regime 2 Regime 3 Regime 4 Regime 5
Actual Values 0.19 0.33 0.36 0.41 0.45
Estimated Values 0.22 0.31 0.38 0.42 0.46

95% credible interval  [0.189, 0.25]  [0.285,0.335]  [0.3%@ [0.405, 0.43]  [0.44, 0.48]

Table3 Summary statistics of

Regimel Regime 2 Regime 3 Regime 4 Regime 5
Actual Values 1067 997 1234 1743 1408
Estimated Values 1070 996 1234 1742 1410

95% credible interval ~ [1064, 1075] [992, 1000] [1228, 1240]1734,1749] [1403, 1416]

Table4 Regime characteristics of the procest)

Regimel Regime2 Regime3 Regime4 Regime5
u  0.22 0.31 0.38 0.43 0.46
A 1070 996 1234 1742 1410

5.2 Wind speed data

This section is aimed at testing the model on real data. Weidena dataset collected at the entrance of
the mangrove ecosystem in Guadeloupe isldhdBERNARD and C. D’ALEXIS 200§ Wind velocity
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was recorded at a frequency of 20Hz by i3 Bomponentsx, vy, andv,. As we are interested in the
longitudinal velocity, only the componenig andvy are considered. Our observation time interval is one

hour, providing a P series of lengtin = 72 000. Letu = W(\TX,@) be the mean longitudinal
x y

velocity vector andv = (—Vy, Vx). Let (S,S) be the new coordinates ¢¥y,Vy) in the basis

1
()2 +(v)g
(u,w) and letS= |/ + S be the wind modulus. Computing the energy dissipation seft¢ = (S(t +

1) — S(t))?/(1/20), the aim is to fit our model (3) to the serig&) = log(S(t)). Estimates oft andA on
sliding windows of 60 seconds length, show that these passieemain stable for random durations of
time and then jump to another value. Regimes can be obsaenfd.R.

1270

1265

1260

1255

~< 1250

1245

1240

0.341 1 1235

1230

I I I I I I I I I i i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 2000 3000 4000 5000

Fig. 2 Regime changes fqt (left) andA (right).

Considering the histogram of the valuesio{resp. ofA) over the above sliding windows (see Fig.
3), a truncated Gaussian (respGamma distribution is taken as inital prior fou (resp. forA). We

o)
0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 1230 1235 1240 1245 1250 1255 1260 1265 1270
[ A

Fig. 3 Histograms ofu (left) andA (right)

first ran our algorithm with many values & and statistical comparasion tests lead us to tdke 4
states for the Markov chain. We present here the results oélgorithm for 500 Gibbs sampling runs
of 25,000 iterations each, including 3,000 burn-in itemasi. At each run of the Gibbs sampling, we
evaluated the log-likelihood (LLH) of the selected path atleof the 25000 iterations and choose the
path with maximum likelihood. So, after 500 runs, 500 patfesratained. Among these 500 paths, we



11

consider that the one with the highest likelihood (that estlest of the best in terms of likelihood) is the
one that best fits the data. It has the characteristics pegbentable 5 and table 6.

Table5 Characteritics of the path with highest likelihood

Regime1l Regime2 Regime3 Regime4

u 0.3885 0.2703 0.1314 0.2914
A 1281 1448 1367 1240
% of occupation  17.2% 14% 8.5% 60.3%

Table6 Sequence of regimes in the highest likelihood path

Regimes 4 1 3 4 2 1
Duration 287 38 51 75 84 65

6 Conclusion

We have proposed a new model for dissipation: cascade SBMWetkov regime switching to represent
randomness in the environment, and Dirichlet prior on thih gpace of the continuous time Markov
chain to make the model more flexible. It can be seen that thidefris a complex mixture hierarchical
model. The numerical results obtained lead us to believestizh mixture model better fit to many real
world data sets than usual SDE models. The proposed Bayagjarithmic method, whose key idea is
the simulation of paths, can be extended to many other gitsahs soon as posterior distributions can be
computed or simulated and priors used cautiously. A topidudher research may consist in replacing
the continuous time Markov chain by a diffusion processsThuires a deeper study of the behaviour
of the parameters.
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APPENDIX: PROOFS

Proof (Lemma 1)
Note thatPr(X = j|p) = pj = (1—V1)---(1—Vj_1)Vj. Thus, ifA,...,A, are measurable subsets of [0,1], andfifs the joint
distribution of theVi's, we have,

N
Pr(Vi € Ar, ..V € An, X = j):/|‘| | veag PTX = Vo, o Vi) TI(AVA, .., V)
v k=1
- N
:/k|‘| veeag (1= Va) - (1= V1)V 7i(dV4, .., V)
=1

1= (dxg, ..., dx)

I
\
=
¥
m
£
T
=
=
z
=
-

\
X
£
-

-

\

X

|

e
X
=z

k

j—1 N

aj — -1 -1 _

= / | ekt N} (L=X))P 1k|‘|xi‘k (1—xk>bkk|‘| X (L =% (A, o D).
k =1 =j+1

1

This implies that

Vj|X = j ~Betgaj +1,bj)
VX = j ~Betaag,bg+1) for 0<k<]j
V|X = j ~Betaay,by) for k> j
as sumarized in the Lemma.

Proof (Proposition 2)
According to definition (2), each compongnbf y is a Gaussian r.v. with mean

M (X) = E(K) = ~ 3 Hx() 090hx)

since

E </il“m (i+1-u)~Y2d B(u)) =0.

1 1
E() = mX) = (= 1y 08 )~ i 0B )

Now letZ = Z]']:l ajy; be alinear combination of componentsyof

Therefore

g

J Bx )
Z=y aj (-5 log(Ax(y) + (hx;))*2 [
jzl J( 5 () DI fiaiag,

which can be written in the form

(tj+1—u)~Y2d B(u)>

J .
Z=A;+ Zla](ux(”)l/z/(tj +17u)71/2|[tj+1’)\><(j)’ tJ_]dB(U)
i=
that is
Z=A+ /(tj 1) Bl g B,

showing tha is a Gaussian r.v. It follows thatis a Gaussian random vector. Moreover

Ost = CoM(¥s(X), #(X)) = E[(ys(X) = ms(X)) (1 (X) —m(X))]

S 't
—E ((px(s))l/z/ (s+1—u)~Y2dB(u) x y;{f)/ (t+ 1v)-1/2dB(v)>
s+1-Ax(s) t+1-Ax )

= (kx(9)Hx ()" *E (/S (s+1—u)"Y2dB(u) x /t

st1-Ax() R )

(t+ 1—v)1/2d5(v)> .
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Proof (Proposition 3)
The covariance matrix coefficients; = COV(ys, 1t ) involve two Gaussian stochastic integrals:

st = (Hx (s Hx(t) ) 2E </S (s+1—u)~¥2dB(u) x /l (t+1u)l/2dB(u)>.

SHL-Ayg) 1Ay

Recall that Gaussian stochastic integrals are zero mearsi@aaus.s that have the property

E( [ FoodBE « /A 2 G(x)dB(x)) - /A , F0G(ax

So, if )
| = /b F(x)dB(x)

then a
a|2:/b F2(x)dx.

Suppose thad < t, thenw = sandt = s+ 1. Let

S t
K=E </ (s+1—u)~Y2dB(u) ></ (t+1u)1/2dB(u)>.
Jst1-Ay(g) Jt1l-Ay)
It follows that

S
K= / (s+1-u) Y2t +1-u)Y2du
Ja
As in Schmitt Schmitt 2003 we see that

_ S du
K= Ja (s+1—u)(t+1—u)

_ fs du
a . /(s+1-u)(s+1-ut1)

1+s-a dx

/1 V/X(X+T)

Vstl-atvstl-a+tt
2log (41”1? )

where we have made the variable charges+ 1 — u and used the identity

i dx
——— =2log(y/X+ VX+T1).
/\/x(x-',-r) o )
Therefore
12 vwr+l-a+vwt+l-a+T1
Ot = 2(kx (g Hx (1)) |09< T Vitt :

Proof (Proposition 4)
We know that the conditional density Xfis

(X, p,y, 4,A) (%, y,8,m,1)
SO R, ys 1, A) (%, y,9,m DdP(x)

X=xp=yy=gu=mA=I)=

But,
X, BV, 1, A) (%Y, gml) = (Y=g X=xp=y,u=mA = )(X=x,p=y,u=mA =)
=(y=gX=xp=yu=mA=)(X=xp=y,p=mA=1)
x(p=y,H=mA =)
= fa(@gmh(X=xp=y,u=mA =l)(p=y,u=mA =1).
Since

N
(X=xp,u,A) :_lei@q ({x}),
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and since the distribution @f, 1, A ) does not depends ot we have

N
(X7 P, Y7“=)‘)(X=yvga mvl) = fn(g7 m7|);pléx4 ({X}) .
Using that
f(x)3x ({x}) = f(X)3x ({x}), for any functionf, we get
(X7 p, V‘,H-,/\)(Xv pvgvmvl) = ZIN:]. fn(gvml)pléxc ({X})
= 3Ny ({x})
SO,

N
(XIp.y,1,2) D_lei*%

Proof (Proposition 5)
By proposition (4),(X|p) O zi’\‘:l p; O, . The result then follows from Lemma 1.

Proof (Proposition 6)
By Connor and MosimanrQONNOR and MOSSIMANN 196 the probability density op defined by equation (5) is

= I" (ax, bx) a3 —1 ay-1—-1 by-1-1 b by_2—
’ - - _ py )b (a2tb) _ pOno2—(an-1tby-1)
{k Flagr (g [Pr P P x(1-P) ~-(1-RT )

whereR = p1+ ...+ pk. Whenay = 1 andby = o, usingl (14 a) = ol (a), we get that the conditional density pfgivena is
f(p|a) 0 aN—lpﬁ—l _ aN—le(a—l)log(pN).
As f(a|p) O f(pla)f(a) and the prior forr is Gamman1,n2), we get

f(a|p) O aN-+me (n2-loglpn))a

So,(a|p) ~ GammaN+n1 —1,n2 —log(pn)), that is

N1
(alp) ~ Gamma(N +m—1n2— Zl |09(1Vi*)> :
i=

Proof (Proposition 7)
Lettyj,... Ao be the times at which the Markov chain takes vajue
We know from corollary 1 that,

(g Mg r ~ Ay (=L 10g()(L L, 2), 1y ).

Moreover
(yaujr/\jvxva) = (V\N17A17x7‘7)®(ﬂj7/\17xa) = (y‘“b)\lvxva)@(l'll ®AJ ®x®a)

sinceX, uj,Aj anda are independent. It follows that

(VM A X, ) @ ®A X ®a
Sy, 1y, A5, X, a)dP(uj)

(Hjly, A1, X, a) =

As Aj, X anda do not depend opj we have
(Kl A1, X, @) D (yIp, Aj, X, @) @ j

Thatis
(Hilv,Aj, X @) ~ T O Ay (M, 1 Z5) + T8
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