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A Stochastic Differential Equation appearing in the statistical theory of turbulence is extended in random environment by assuming that its two parameters are switched by an unobserved continuoustime Markov chain whose states represent the states of the environment. A Dirichlet process is placed as a prior on the space of the sample paths of this chain, leading to a hierarchical Dirichlet model whose estimation is done both on simulated data and on real data of wind speed measured at the entrance of a mangrove ecosystem.

In the present paper, our estimation approach is Bayesian, the aim being to find a pair (parameters, CTMC path) with likelihood as large as possible. Standard priors are placed on the parameters space but, as the CTMC paths are unobserved, a large number of paths are drawn from a Dirichlet process placed as a prior on the path space of the CTMC. The complete model then appears as a Hierarchical Dirichlet Model (HDM) (see [START_REF] Ishwaran | Markov Chain Monte Carlo in Approximate Dirichlet and Beta Two-Parameter Process Hierarchical Models[END_REF]Ishwaran andLancelot 2002, 2003) whose estimation procedure requires some rather nontrivial computations of posterior distributions due to the temporal level induced by the specific SDE and the CTMC. Using the well-known stick-breaking approximation, each set of iterations selects the pair with largest likelihood and then the Dirichlet process is updated in order to look for other paths which can eventually improve the likelihood.

The considered SDE, called here cascade SDE, is the one introduced by F. Schmitt [START_REF] Schmitt | Stochastic equations generating continuous multiplicative cascades[END_REF]) in the statistical theory of turbulence. This model depends on two parameters, one representing the energy dissipation and the other being a scaling parameter. As will be shown for the data set considered in this paper, these parameters change considerably with time. We model these changes by assuming that the system operates in a finite number of regimes, each characterized by different values of the parameters. The evolution of these regimes is modeled by a CTMC, thus extending the cascades SDE to a MRS setting.

Our paper is structured as follows. In Section 2 we present the cascade SDE with MRS and the complete HDM. Section 3 is devoted to the posterior computations. The algorithm used for estimation is described in Section 4. Section 5 contains numerical results. The proposed algorithm is first tested on a simulated data set. Then it is applied to a real data set of wind speed measured at the entrance of a Mangrove ecosystem. Thus the CTMC transitions correspond to micro-meteorological regime changes. We conclude in the last Section. The proofs of the results are given in the Appendix.

Cascade SDE with Markov regime-switching and Dirichlet prior

2.1 Cascade SDE with Markov regime-switching F. Schmitt and D. Marsan (see [START_REF] Schmitt | A causal multifractal stohastic equation and its statistical properties[END_REF]Marsan 1998, Schmitt 2001) introduced a stochastic dissipation process ε, with a continuum of scale levels, which satisfies a stochastic differential equation (SDE), called the cascade SDE, which depends on an intermittency parameter µ and a scale parameter λ . This SDE is a continuous version of the Yaglom multiplicative cascade model (Kolmogorov 1962, Yaglom 1966). The process γ λ (t) = log(ε λ (t)), called the singularity process satisfies the SDE,

γ λ (t) = - µ 2 ln λ + µ 1/2 t t+1-λ (t + 1 -u) -1/2 dB(u). ( 1 
)
where B(.) is a standard Brownian motion.

We propose an extension of this cascade SDE to a model in random environment by defining a dissipation process subject to regime changes. In order to take into account random regime changes in the environment, we assume that the parameters µ and λ are themselves stochastic processes driven by a continuous time Markov chain. This idea is well-known in mathematical finance when modelling regime switching markets with stochastic volatility (see e.g. [START_REF] Kabanov | Mean-variance hedging of options on stocks with Markov volatility[END_REF][START_REF] Ghosh | Risk minimizing option pricing in a regime switching market[END_REF].

We consider the following cascade stochastic differential equation

γ(t) = - µ X(t) 2 log(λ X(t) ) + µ 1/2 X(t) t t+1-λ X(t) (t + 1 -u) -1/2 dB(u), (2) 
where B(.) is a standard Brownian motion, X = (X(t)) t≥0 is a continuous time Markov chain taking values in a finite set S = {1, 2, . . . , M} that represents different regimes of the environment. If, at a given time, t X(t) = i (i ∈ S), then the environment is in regime i so that µ X(t) = µ i and λ X(t) = λ i . Observe that the distribution of γ appears as a mixture of distributions of cascade SDE. The chain X(t) spends an exponential amount of time with parameter β i in state i ∈ S, and then jumps to state j ∈ S, j = i with probability p i j . The transition rate matrix Q = (q i j ) i, j∈S is such that off-diagonal entries q i j are nonnegative real values, and the diagonal element q ii is constrained to be q ii = -∑ j =i q i j , so that the row sums of Q are zero. We have q ii = -β i for all i ∈ S, and q i j = β i × p i j for j = i. We complete the above model by placing a Dirichlet process (DP) as a prior on the path space of the Markov chain X. This leads us to the following Bayesian modeling framework:

   (X|P, α) ∼ P (P|α) ∼ D(αH) (α) ∼ Gamma(η 1 , η 2 ) (3) 
where H is the distribution of a specific Markov chain determined by the transition rate matrix Q and an initial distribution π 0 . In practice, process ( 2) is sampled at times t 1 , . . . ,t n , providing a finite random vec- tor γ = (γ 1 , . . . , γ n ) of observations, where γ i is the value recorded at time t i . We prove that the conditional distribution of the vector γ is Gaussian so that we arrive at the following hierarchical model that we want estimate from the observed data:

                 (γ|X, µ, λ , P) ∼ N n (m(X), Σ ) µ 1 , ..., µ M iid ∼ Γ 1 λ 1 , ..., λ M iid ∼ Γ 2 (X|P, α) ∼ P (P|α) ∼ D(αH) (α) ∼ Gamma(η 1 , η 2 ) (4)
The next section recalls some notions that are important for the estimation procedure.

Stick-breaking representation of Dirichlet process

A constructive approach to the Dirichlet process is the so called stick-breaking scheme. Let H be a probability distribution on some measurable space V and let N ≥ 2 be an integer. Let

V k i.i.d ∼ Beta(a k , b k ), k = 1 . . . N -1,
with shape parameters a k , b k > 0, and let V N = 1. Let p 1 . . . p N , be defined by

p 1 = V 1 , p k = (1 -V 1 )(1 -V 2 )...(1 -V k-1 )V k , k ≥ 2. ( 5 
) Note that ∑ N k=1 p k = 1. Let Z k i.i.d.
∼ H, k = 1, . . . , N, be independent of (p k ) k=1,...,N . The random measure P N defined by

P N = N ∑ k=1 p k δ Z k (.) (6) 
is said to be a stick-breaking construction. The Ferguson Dirichlet process D(αH) [START_REF] Ferguson | A Bayseian analysis of some non parametric problems[END_REF]) is the best known example of an infinite stick-breaking prior. This is made explicit by the following proposition due to [START_REF] Sethuraman | A constructive defnition of Dirichlet priors[END_REF].

Proposition 1 ) a.s.

P N (.) = N ∑ k=1 p k δ Z k (.
-→ D(αH).

This proposition yields an efficient approximation of a Dirichlet process that is very useful in Bayesian nonparametrics statistics. The following Lemma will be crucial in our estimation procedure.

Lemma 1 Let X : Ω → {1, . . . , N} be a r.v. with conditional distribution Pr(X ∈ .|P) = ∑ N k=1 p k δ k (.), where P is defined by the stick-breaking construction [START_REF] Durbin | Biological Sequence Analysis[END_REF]. Then the conditional distribution of P given X is also defined by [START_REF] Durbin | Biological Sequence Analysis[END_REF], where V N = 1 and the V k , k = 1, . . . , N -

1 are independent Beta(a * k , b * k ) r.v.'s with a * k = a k + I {X=k} (7) b * k = b k + N ∑ j=k+1 I {X= j} . (8) 

Posterior computations

The estimation procedure of the various parameters of the model is based on the Gibbs sampling scheme. Implementation of this scheme requires the computation of the following conditional distributions:

(γ|X, µ, λ , p), (µ|γ, λ , X), (λ |γ, µ, X), (X|p, α), (α|P), (p|α) and (H|X)

For simplicity, γ(t i ) and X(t i ) will be denoted below by γ i and X(i), respectively.

Conditional for γ

Proposition 2

(γ|X, µ, λ , p) ∼ N n (m, Σ ), with m = - 1 2 µ X(1) log(λ X(1) ), . . . , - 1 2 µ X(n) log(λ X(n) ) and Σ = (σ st ) s,t=1,...,n , where σ st = (µ X(s) µ X(t) ) 1/2 COV ( s s+1-λ X(s) (s + 1 -u) -1/2 dB(u), t t+1-λ X(t) (t + 1 -u) -1/2 dB(u)).
The coefficients σ st can be given explicitly using a computation of F. G. Schmitt (see Schmitt 2003, pages 89-90).

Proposition 3 Let s and t be integers, let w

= min(s,t), a = max(s + 1-λ X(s) ,t + 1-λ X(t) and τ = |s -t|. Then σ st = 2(µ X(s) .µ X(t) ) 1/2 log √ w + 1 -a + √ w + 1 -a + τ 1 + √ 1 + τ .
If j is a state reached by the Markov chain, let t 1 j , . . . ,t n j j be the times at which j is reached and let

γ j = (γ t 1 j , . . . , γ t n j j ). (9) 
Corollary 1

(γ j |µ, λ , X) ∼ N n j (- µ j 2 log(λ j )(1, 1, . . . , 1 n j times ), Σ j ),
where Σ j = (σ j (s,t)), is a n j × n j matrix with

σ j (s,t) = 2µ j log √ w + 1 -a + √ w + 1 -a + τ 1 + √ 1 + τ .
In the following sections, the probability densities of N n and N n j will be denoted by f n and f n j respectively, that is

f n (γ, µ, λ ) = exp -1 2 (γ -m)Σ -1 (γ -m) T (2π) n/2 (det(µΣ )) 1/2 . ( 10 
)
f n j (γ j , µ j , λ j ) = exp -1 2 (γ j -m j )(µ j Σ j ) -1 (γ j -m j ) T (2π) n j /2 (det(µ j Σ j )) 1/2 .
where m j = -

µ j 2 log(λ j )(1, 1, . . . , 1 n j times ) 3.2 Conditional for X.
Proposition 4 Let N be a positive integer.

X|p = N ∑ i=1 p i δ X i , γ, µ, λ ∝ N ∑ i=1 p * i δ X i where p * i = p i f n (γ, µ, λ )
, where f n is as defined in [START_REF] Ishwaran | Markov Chain Monte Carlo in Approximate Dirichlet and Beta Two-Parameter Process Hierarchical Models[END_REF].

Conditional for p

Proposition 5

(p 1 |X) ∼ V * 1 , (p k |X) ∼ V * k k-1 ∏ i=1 (1 -V * k ) k = 2, 3, . . . , N, ( 11 
)
where V * k ∼ Beta a * k , b * k f or k = 1, . . . , N -1, with a * k , b * k given by Lemma 1 and V * N = 1.

Remark 1

The fact stated in this proposition is that the current value of parameter a k increases by 1 each time the path k is chosen. What this does is that as we repeat the process of generating from the conditional within each iteration, the Beta distributions will gradually concentrate on paths that best explain the data.

Conditional for α

Proposition 6

(α|p) ∼ Gamma N + η 1 -1, η 2 - N-1 ∑ i=1 log(1 -V * i ) ,
where the V * i are the same as those obtained in the conditional for p.

Conditional for µ

Let j ∈ S be a state of X and π 1 be the prior for µ j .

Proposition 7

If for all t ∈ {1, . . . , n}, X(t) = j, then (µ j |γ, λ j , X, α) ∼ π 1 , otherwise

(µ j |γ, λ j , X, α) ∼ Γ 1 ∝ N n j (m j , µ j Σ j ) * π 1 ,
where m j = -

µ j 2 log(λ j )(1, 1, . . . , 1 n j times
).

Conditional for λ

Let j ∈ S be a state of X and let π 2 be the prior for λ j . As in the case of µ, if for all t ∈ {1, . . . , n}, X(t) = j, then (λ j |γ, µ j , X, α) ∼ π 2 otherwise, for each of the other values of j ∈ S,

(λ j |γ, µ j , X, α) ∼ Γ 2 ∝ (γ|λ j , µ j , X, α) * π 2 . ( 12 
)

Conditional for H

Recall that the distribution H is determined by the transition rate matrix Q and the initial distribution π 0 .

The conditional distribution of H is given by the following proposition which is nothing but the standard Maximun Likelihood Estimation for a CTMC. Refer to Yin, G. G. and Zhan Q. (1997) or Noris J. R.

(1997) for more details.

Proposition 8 Let X = (X(1), . . . , X(n)) be the values of the CTMC X at times 1, . . . , n. Let i and j be two distinct states in S, and P = (p i j ) the transition probability matrix of X.

π 0 (i) = 1 n n ∑ k=1 δ i (X(k)), p i j = 1 n n ∑ k=1 δ i j (X(k), X(k + 1)) and Q i j = β i p i j ,
where δ i j (X(k), X(k + 1)) = 1 if X(k) = i and X(k + 1) = j, and 0 otherwise. β i is the reciprocal of the average durations spent in state i.

4 Estimation procedure

Algorithm

We now describe the estimation procedure. Observe that steps (i), (iv), (v), (viii) and (ix) are new as compared to the procedures in [START_REF] Ishwaran | Markov Chain Monte Carlo in Approximate Dirichlet and Beta Two-Parameter Process Hierarchical Models[END_REF] and Ishwaran-James (2002).

i. Choose a large integer N and generate N paths X 1 , . . . , X N , of the continuous time Markov chain with distribution H. ii. Draw α from Gamma(η 1 , η 2 ) and draw p 1 , . . . , p N according to (5) with a k = 1 and b k = α. iii. Draw λ = (λ 1 , . . . , λ M ) and µ = (µ 1 , . . . , µ M ) from their priors π 1 , π 2 respectively. iv. Draw one of the paths X 1 , . . . , X N , with probability p 1 , . . . , p N , respectively.

Iterate over the following steps (v) through (ix): v. -Compute σ i j = COV (γ i , γ j ) from Proposition 3 -Define p * j ∝ p j f n (γ, µ, Σ ), using Proposition 2 -Excecute (iv) with p j replaced by p * j . vi. -Define a * k and b * k using ( 7) and ( 8) where X is the index of the chosen path. -Compute p 1 = V * 1 , and

p k = (1 -V * 1 ) . . . (1 -V * k-1 )V * k , k = 2, 3, . . . , N where V * k ∼ Beta(a * k , b * k ), and V * N = 1. vii. Draw α from (α|p) ∼ Gamma N + η 1 -1, η 2 -∑ N-1 i=1 log(1 -V * i )
. viii. Given γ, λ and a chosen path X, for each state j ∈ S, -If X(t) = j for all t ∈ {1, . . . , n}, then draw µ j from the prior π 1 .

-otherwise, deternime the times t 1 j , . . . ,t n j , j at which the Markov chain takes the value j and compute σ j (s,t) from corollary 1.

-draw µ j from the conditional distribution of µ j given by Proposition 7. ix. -If X(t) = j for all t ∈ {1, . . . , n}, then draw λ j from the prior π 2 .

-otherwise, determine the times t 1 j , . . . ,t n j , j at which the Markov chain takes the value j and compute σ j (s,t) from corollary 1.

-draw λ j from the conditional distribution of λ j given by ( 12)

Remark 2 Since n will be very large for the application that we have in mind (n ≈ 72, 000), the algorithm will be computationally infeasible since we have to invert the matrix Σ . Hence breaking the dataset into smaller pieces will help. However we keep the size large enough to estimate the largest significant correlation. We use the posterior obtained for one subset as the prior for the subsequent data set.

Remark 3

Another way to simulate λ is to generate a path of the Brownian motion B. For all times t 1 j , . . . ,t n j j for which X takes value j, solve equation ( 2) in λ j numerically, using a discretization of [t j + 1 -λ j , t j ]. This gives values λ 1 j , . . . , λ n j , j . Use the values obtained this way for a large number of Brownian paths to compute the conditional for λ j and draw value of λ j from this conditional.

The algorithm below summarizes the estimation procedure. In practice it will be implemented using the Gibbs sampling technique.

Initialization

-Let γ be the vector of observations -Choose the hyper-parameters η 1 , η 2 and N -Generate α from Gamma(η 1 , η 2 ) -Generate N paths of the Markov chain -Draw p = (p 1 , . . . , p N ) from stick-breaking(α, N) -Choose one of the N paths according to p -Generate µ and λ from their priors 2. Iterations -Compute f n (γ, µ, λ ) and update p k , k being the index of the chosen path.

-Choose one of the N paths according to p -For each state j, draw µ j , drawλ j -Draw α -Draw a new p

Truncation error bound

Let γ(t) be defined as in [START_REF] Connor | Concept of indepedence for proportions with a generalization of Dirichlet Distribution[END_REF] and let γ = (γ 1 , . . . , γ n ) be a n sample from the process γ(t). Let m N (γ) and m ∞ (γ) denote the marginal density of γ subject to P N and D(αH) respectively. Using a result in [START_REF] Ishwaran | Approximate Dirichlet process computing in finite normal mixtures: smoothing and prior information[END_REF] it can be shown that

n |m N (γ) -m ∞ (γ)|dγ ≤ 4exp(-(N -1)/α). ( 13 
)
This result provides an error bound for the truncated Dirichlet process and shows that the sample size n has no effect on the bound. The adequacy of the truncation then depends on N and α. Of course the value of α changes during the different iterations of our Gibbs sampler. However, since the bound decreases exponentially fast, even for a fairy large value, α = 3 for example, a truncation with N = 30 leads to an error bound of 25 × 10 -5 . For the computations in the next section we have chosen a value of N = 50.

5 Numerical results

Simulated data

The present subsection aims at testing the reliability of the model. We perform numerical simulations of the stochastic process γ(t). We consider a model with five regimes. The associated Markov chain then has five states and is defined by the following transition probability matrix We also suppose that the parameters of the average durations of time spent in the states of the CTMC are given in table 1. 

      0 
     
We choose the prior of µ and λ to be independent truncated Gaussian distributions, and simulate the parameters µ = (µ 1 , ..., µ 5 ) and λ = (λ 1 , ..., λ 5 ), corresponding to the five regimes. We also simulate a path of length n = 600 of the Markov chain. Using µ, λ and the Markov chain, we simulate a sample path γ of the stochastic process γ(t) (see Fig. 1). Taking the data γ as input, we estimate the parameters of the model through the algorithm presented in Section 4. For the purpose, we performed 500 Gibbs sampling runs each with 1, 000 iterations. At the end of each run Gibbs sampling, we choose the path with maximum likelihood and the corresponding values of the parameters µ and λ . This path is used to update the matrices Q and P for the next run of the Gibbs sampling. The summary statistics for µ and λ are given in table 2 and table 3 respectively. The estimated values are the averages of the estimates obtained in the 500 runs. 

Wind speed data

This section is aimed at testing the model on real data. We consider a dataset collected at the entrance of the mangrove ecosystem in Guadeloupe island (D. BERNARD and C. D'ALEXIS 2006). Wind velocity was recorded at a frequency of 20Hz by its 3D components v x , v y and v z . As we are interested in the longitudinal velocity, only the components v x and v y are considered. Our observation time interval is one hour, providing a 2D series of length n = 72, 000. Let u = 1 √ (v x ) 2 +(v y ) 2 ( vx , vy ) be the mean longitudinal velocity vector and w

= 1 √ (v x ) 2 +(v) 2 y
(vy , vx ). Let (S 1 , S 2 ) be the new coordinates of (v x , v y ) in the basis (u, w) and let S = S 2 1 + S 2 2 be the wind modulus. Computing the energy dissipation series ε(t) = (S(t + 1) -S(t)) 2 /(1/20), the aim is to fit our model (3) to the series γ(t) = log(S(t)). Estimates of µ and λ on sliding windows of 60 seconds length, show that these parameters remain stable for random durations of time and then jump to another value. Regimes can be observed in Fig. 2. Considering the histogram of the values of µ (resp. of λ ) over the above sliding windows (see Fig. 3), a truncated Gaussian (resp. a Gamma) distribution is taken as inital prior for µ (resp. for λ ). We first ran our algorithm with many values of M and statistical comparasion tests lead us to take M = 4 states for the Markov chain. We present here the results of our algorithm for 500 Gibbs sampling runs of 25,000 iterations each, including 3,000 burn-in iterations. At each run of the Gibbs sampling, we evaluated the log-likelihood (LLH) of the selected path at each of the 25, 000 iterations and choose the path with maximum likelihood. So, after 500 runs, 500 paths are retained. Among these 500 paths, we consider that the one with the highest likelihood (that is the best of the best in terms of likelihood) is the one that best fits the data. It has the characteristics presented in table 5 and table 6. 

Conclusion

We have proposed a new model for dissipation: cascade SDE with Markov regime switching to represent randomness in the environment, and Dirichlet prior on the path space of the continuous time Markov chain to make the model more flexible. It can be seen that this model is a complex mixture hierarchical model. The numerical results obtained lead us to believe that such mixture model better fit to many real world data sets than usual SDE models. The proposed Bayesian algorithmic method, whose key idea is the simulation of paths, can be extended to many other situations as soon as posterior distributions can be computed or simulated and priors used cautiously. A topic for further research may consist in replacing the continuous time Markov chain by a diffusion process. This requires a deeper study of the behaviour of the parameters.

APPENDIX: PROOFS

Proof (Lemma 1)

Note that Pr(X = j|p) = p j = (1 -V 1 ) • • • (1 -V j-1 )V j .
Thus, if A 1 , ..., A n are measurable subsets of [0,1], and if π is the joint distribution of the V i 's, we have,

Pr(V 1 ∈ A 1 , ...V N ∈ A N , X = j) = N ∏ k=1 I {V k ∈A k } Pr(X = j|V 1 , ..,V N )π(dV 1 , ..., dV N ) = N ∏ k=1 I {V k ∈A k } (1 -V 1 ) • • • (1 -V j-1 )V j π(dV 1 , ...,V N ) = I {x k ∈A k ,k=1,...,N} (1 -x 1 ) • • • (1 -x j-1 )x j N ∏ k=1 x a k -1 k (1 -x k ) b k -1 (dx 1 , ..., dx N ) = I {x k ∈A k ,k=1,...,N} x a j j (1 -x j ) b j -1 j-1 ∏ k=1 x a k -1 k (1 -x k ) b k N ∏ k= j+1 x a k -1 k (1 -x k ) b k -1 (dx 1 , ..., dx N ).
This implies that

V j |X = j ∼ Beta(a j + 1, b j ) V k |X = j ∼ Beta(a k , b k + 1) f or 0 < k < j V k |X = j ∼ Beta(a k , b k ) f or k > j
as sumarized in the Lemma.

Proof (Proposition 2)

According to definition (2), each component γ i of γ is a Gaussian r.v. with mean

m i (X) = E(γ i ) = - 1 2 µ X(i) log(λ X(i) ) since E i i+1-λ X(i) (i + 1 -u) -1/2 dB(u) = 0. Therefore E(γ) = m(X) = - 1 2 µ X(1) log(λ X(1) ), . . . , - 1 2 µ X(n) log(λ X(n) ) .
Now let Z = ∑ J j=1 α j γ j be a linear combination of components of γ.

Z = J ∑ j=1 α j - µ X(t j ) 2 log(λ X( j) ) + (µ X( j) ) 1/2 t j t j +1-λ X( j) (t j + 1 -u) -1/2 dB(u)
which can be written in the form

Z = A J + J ∑ j=1 α j (µ X( j) ) 1/2 (t j + 1 -u) -1/2 I [tj+1-λ X( j) , t j ] dB(u) that is Z = A J + (t j + 1 -u) -1/2 B J I [tj+1-λ X( j) , t j ] dB(u),
showing that Z is a Gaussian r.v. It follows that γ is a Gaussian random vector. Moreover

σ st = Cov(γ s (X), γ t (X)) = E [(γ s (X) -m s (X))(γ t (X) -m t (X))] = E (µ X(s) ) 1/2 s s+1-λ X(s) (s + 1 -u) -1/2 dB(u) × µ 1/2 X(t) t t+1-λ X(t) (t + 1 -v) -1/2 dB(v) = (µ X(s) )µ X(t) ) 1/2 E s s+1-λ X(s) (s + 1 -u) -1/2 dB(u) × t t+1-λ X(t) (t + 1 -v) -1/2 dB(v) .

Proof (Proposition 3)

The covariance matrix coefficients σ st = COV (γ s , γ t ) involve two Gaussian stochastic integrals:

σ st = (µ X(s) µ X(t) ) 1/2 E s s+1-λ X(s) (s + 1 -u) -1/2 dB(u) × t t+1-λ X(t) (t + 1 -u) -1/2 dB(u) .
Recall that Gaussian stochastic integrals are zero mean Gaussian r.v.s that have the property

E A 1 F(x)dB(x) × A 2 G(x)dB(x) = A 1 ∩A 2 F(x)G(x)dx. So, if I = a b F(x)dB(x) then σ 2 I = a b F 2 (x)dx.
Suppose that s < t, then w = s and t = s + τ. Let

K = E s s+1-λ X(s) (s + 1 -u) -1/2 dB(u) × t t+1-λ X(t) (t + 1 -u) -1/2 dB(u) . It follows that K = s a (s + 1 -u) -1/2 (t + 1 -u) -1/2 du.
As in Schmitt [START_REF] Schmitt | A causal multifractal stohastic equation and its statistical properties[END_REF] we see that

K = s a du √ (s+1-u)(t+1-u) = s a du √ (s+1-u)(s+1-u+τ) = 1+s-a 1 dx √ x(x+τ) = 2 log √ s+1-a+ √ s+1-a+τ 1+ √ 1+τ
where we have made the variable change x = s + 1u and used the identity

dx x(x + τ) = 2 log √ x + √ x + τ . Therefore σ st = 2(µ X(s) µ X(t) ) 1/2 log √ w + 1 -a + √ w + 1 -a + τ 1 + √ 1 + τ .

Proof (Proposition 4)

We know that the conditional density of X is and since the distribution of (p, µ, λ ) does not depends on X, we have (X, p, γ, µ, λ )(x, y, g, m, l) = f n (g, m, l) N ∑ i=1 p i δ X i ({x}) .

(X = x|p = y, γ = g, µ = m, λ = l) = (X, p, γ, µ, λ )(x, y, g, m, l) (X, p, γ, µ, λ )(x, y, g, m, l)dP(x) .
Using that f (x)δ X i ({x}) = f (X i )δ X i ({x}), for any function f , we get (X, p, γ, µ, λ )(x, p, g, m, l) = ∑ N i=1 f n (g, m, l)p i δ X i ({x}) = ∑ N i=1 p * i δ X i ({x}) so,

(X|p, γ, µ, λ ) ∝ N ∑ i=1 p * i δ X i .
Proof (Proposition 5) By proposition ( 4), (X|p) ∝ ∑ N i=1 p * i δ X i . The result then follows from Lemma 1.

Proof (Proposition 6)

By Connor and Mosimann (CONNOR and MOSSIMANN 1969), the probability density of p defined by equation ( 5) is

N-1 ∏ k=1 Γ (a k , b k ) Γ (a k )Γ (b k ) p a 1 -1 1 . . . p a N-1 -1 N-1 p b N-1 -1 N × (1 -P 1 ) b 1 -(a 2 +b 2 ) . . . (1 -P b N-2 -(a N-1 +b N-1 ) N-2
),

where P k = p 1 + . . . + p k . When a k = 1 and b k = α, using Γ (1 + α) = αΓ (α), we get that the conditional density of p given α is f (p|α) ∝ α N-1 p α-1 N = α N-1 e (α-1) log(p N ) .

As f (α|p) ∝ f (p|α) f (α) and the prior for α is Gamma(η 1 , η 2 ), we get f (α|p) ∝ α N-1+η 1 e -(η 2 -log(p N ))α

So, (α|p) ∼ Gamma (N + η 1 -1, η 2 -log(p N )), that is

(α|p) ∼ Gamma N + η 1 -1, η 2 - N-1 ∑ i=1 log(1 -V * i ) .

Proof (Proposition 7)

Let t 1 j , . . . ,t n j j be the times at which the Markov chain takes value j. We know from corollary 1 that, (γ t 1 j , . . . , γ t n j j )| µ,λ ∼ N n j (-µ j 2 log( j )(1, 1, . . . , 1), µ j Σ j ).

Moreover

(γ, µ j , λ j , X, α) = (γ|µ j , λ j , X, α) ⊗ (µ j , λ j , X, α) = (γ|µ j , λ j , X, α) ⊗ (µ j ⊗ λ j ⊗ X ⊗ α)

since X, µ j , λ j and α are independent. It follows that (µ j |γ, λ j , X, α) = (γ|µ j , λ j , X, α) ⊗ µ j ⊗ λ j ⊗ X ⊗ α (γ, µ j , λ j , X, α)dP(µ j ) .

As λ j , X and α do not depend on µ j we have (µ j |γ, λ j , X, α) ∝ (γ|µ j , λ j , X, α) ⊗ µ j That is (µ j |γ, λ j , X, α) ∼ Γ 1 ∝ N n j (m j , µ j Σ j ) * π 1 .

  distribution π o = [0.20 0.20 0.20 0.20 0.20].
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  p, γ, µ, λ )(x, y, g, m, l) = (γ = g|X = x, p = y, µ = m, λ = l)(X = x, p = y, µ = m, λ = l) = (γ = g|X = x, p = y, µ = m, λ = l)(X = x|p = y, µ = m, λ = l) ×(p = y, µ = m, λ = l) = f n (g, m, l)(X = x|p = y, µ = m, λ = l)(p = y, µ = m, λ = l). Since (X = x|p, µ, λ ) = N ∑ i=1 p i δ X i ({x}) ,

Table 1

 1 Parameters of the exponential distributions of the duration spent in the states of the CTMC

	β i	Regime 1 0.05	Regime 2 Regime 3 Regime 4 Regime 5 0.1 0.02 0.2 0.041
	So the transition rate matrix of the chain is
			Q O =	     	0.01 -0.1 0.0036 0.026 0.00328 0.01763 0.00656 0.01353 -0.041 0.035 0 0.005 -0.05 0.05 0.01 0.026 0.014 0.012 0.0034 0.001 -0.02 0.11 0.02 0.044 -0.2

Table 2

 2 Summary statistics of µ.

		Regime1	Regime 2	Regime 3	Regime 4	Regime 5
	Actual Values	0.19	0.33	0.36	0.41	0.45
	Estimated Values	0.22	0.31	0.38	0.42	0.46
	95% credible interval [0.189, 0.25] [0.285, 0.335] [0.35, 0.40] [0.405, 0.43] [0.44, 0.48]

Table 3

 3 Summary statistics of λ

		Regime1	Regime 2	Regime 3	Regime 4	Regime 5
	Actual Values	1067	997	1234	1743	1408
	Estimated Values	1070	996	1234	1742	1410
	95% credible interval [1064, 1075] [992, 1000] [1228, 1240] [1734, 1749] [1403, 1416]

Table 4

 4 Regime characteristics of the process γ(t)

	µ λ	Regime1 Regime 2 Regime 3 0.22 0.31 0.38 1070 996 1234	Regime 4 Regime 5 0.43 0.46 1742 1410

Table 5

 5 Characteritics of the path with highest likelihood

		Regime 1 Regime 2 Regime 3 Regime 4
	µ λ	0.3885 1281	0.2703 1448	0.1314 1367	0.2914 1240
	% of occupation	17.2%	14%	8.5%	60.3%

Table 6

 6 Sequence of regimes in the highest likelihood path

	Regimes	4	1	3	4	2	1
	Duration	287 38 51 75 84 65