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Predictions are established for linear differential current-current cross-correlations dSa,b/dV in
a symmetrically biased three-terminal normal metal-superconductor-normal metal (NSN) device.
Highly transparent contacts turn out to be especially interesting because they feature positive
dSa,b/dV . At high transparency, processes based on Crossed Andreev Reflection (CAR) contribute
only negligibly to the current and to dSa,b/dV . Under these circumstances, current-current cross-
correlations can be plausibly interpreted as a coherent coupling between the two NS interfaces in
the form of synchronized Andreev and inverse Andreev reflections (AR-AR), corresponding to the
process where a pair of electron-like quasi-particles and a pair of hole-like quasi-particles arrive from
the normal electrodes and annihilate in the superconductor. Hence, positive dSa,b/dV does not
automatically imply CAR. For tunnel contacts, dSa,b/dV is positive because of CAR. In between
these two extremities, at intermediate transparencies, dSa,b/dV is negative because both processes
which cause positive correlations, occur only with small amplitude.

I. INTRODUCTION

Beautiful experiments on transport and noise in
normal-superconducting (NS) hybrids allow probing the
microscopic physics associated to the superconducting
condensate and quasi-particles. For instance, the super-
conducting gap ∆ was revealed by tunnel spectroscopy
on a normal metal-insulator-superconductor tunnel junc-
tion. In NS structures with highly transparent contacts,
Andreev reflection1 is the phenomenon by which pairs
of electron-like quasi-particles from the normal electrode
N can enter the superconductor S and join the conden-
sate. Additional processes appear in NaSNb structures
with two normal electrodes Na and Nb: an electron com-
ing from Na may be transmitted as an electron into Nb

(elastic cotunneling, EC), or it may be transmitted as a
hole into Nb (crossed Andreev reflection, CAR2–37). The
amplitudes of these two processes decrease exponentially
with a characteristic length scale: the coherence length
ξ, which is inverse proportional to the energy gap ∆ in
the ballistic limit. Therefore, three-terminal nanoscale
devices with distance R >∼ ξ between contacts are espe-
cially interesting: conductance and noise experiments on
them probe both the condensate and the quasi-particle
states.
Concerning current-current correlations, theorists have

envisioned two kinds of experiments for the long term:
using entanglement in quantum information devices, and
testing entanglement in the electronic Einstein-Podolsky-
Rosen (EPR) experiment.3,26,38 The EPR experiment is
not considered here, but instead the basic problem of
current-current cross-correlations39 in NSN structures is
addressed. Some experiments based on NISIN structures
have been reported recently.40 Our task here is not to
understand the tunnel limit, where an insulating oxide
layer I is inserted in between the normal and the super-
conducting electrodes, but the opposite limit of highly
transparent interfaces where Coulomb interactions17 are
not expected to play a predominant role.

Based on the limiting case of tunnel contacts,6,27

one may erroneously conclude that positive differential
current-current cross-correlations dSa,b/dV are equiva-
lent to CAR. However, this is not the case because, as
we show, positive dSa,b/dV can well be obtained in the
absence of CAR.

Current-current cross-correlations are negative41–43 for
non-interacting fermions. A flux of bosons leads to pos-
itive cross-correlations44 and negative cross-correlations
are found for bosons impinging one by one onto a beam
splitter.45 Cross-correlations can be positive in interact-
ing fermionic systems,46–52 as well as in multiterminal
NS structures.22–31

The recent experiment40 and other experiments un-
der way involve normal electrodes separately connected
to a superconductor,29 with a geometry similar to that
considered in the following. Not only the noise can be
evaluated in various set-ups, but also the full histogram
of the charge transmitted in a given time interval.26,28,31

In addition to these set-ups, relevant information was
also obtained from “zero dimensional” chaotic cavities
in contact with a superconductor, in connection with
the possibility to observe positive current-current cross-
correlations due to CAR.24

In what follows, attractive interaction binding pairs
of electron-like quasi-particles is present everywhere in
the superconducting region. Two electron-like quasi-
particles of a pair injected into the superconducting re-
gion remain glued by the BCS mean field interaction,
in contrast with the dissociation of a Cooper pair enter-
ing a chaotic cavity (see Ref. 24). The physics behind
current-current cross-correlations in the NSN structure
with highly transparent contacts considered here was not
really elucidated in Ref. 29, in spite of the important
observation that dSa,b/dV is positive but the non-local
conductance is negative at low bias. Unusual properties
can be realized with the following experimental condi-
tions: First it is assumed that the same voltage is ap-
plied on the two normal electrodes. Second the tempera-
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ture is very low, and third, high values of interface trans-
parencies are used. Direct electron transmission is Pauli
blocked at zero temperature because of the same voltage
Va = Vb ≡ V applied on the two normal electrodes Na

and Nb. On the other hand, crossed Andreev reflection is
strongly reduced at high transmission, regardless of the
applied voltages Va and Vb. These two features of EC and
CAR are shown to be a sufficient condition for deducing
dSa,b/dV > 0, not due to CAR, but due to what is called
here synchronized Andreev reflection and inverse Andreev

reflection (AR-AR). The positive current-current corre-
lations at high transparency are not in disagreement with
what is found in Ref. 24 for strong coupling to the su-
perconductor, where a gap is induced in a chaotic cavity.
The cross-over between high values of interface trans-
parency and tunnel contacts will also be investigated:
CAR has a dominant contribution to dSa,b/dV for tun-
nel contacts, and dSa,b/dV is negative at the cross-over
for intermediate values of interface transparency, where
AR-AR is suppressed.
The article is divided into two independent main sec-

tions where current-current correlations are evaluated on
the basis of (i) the scattering approach for a homogeneous
superconducting gap (see Sec. III) and of (ii) microscopic
calculations taking into account the strong inverse prox-
imity effect (see Sec. IV). Technically, these two sections
rely on different approaches and are based on different
assumptions. Overall agreement between the two calcu-
lations is obtained. Final remarks are provided in Sec. V.
Technical details are as much as possible left for Appen-
dices. The article starts with a preliminary section con-
taining definitions and a summary of the main results.

II. PRELIMINARIES

A. Current, noise and current-current correlations

We start with general definitions of current and
current-current cross-correlations. The geometry of the
considered set-up is shown in Fig. 1. The central island
is superconducting, and it is connected by highly trans-
parent contacts to the two superconducting reservoirs on
top and bottom. The superconductor S is made of the
central island and of the two reservoirs.
The operator giving the current flowing at time t from

the normal electrode Na to the superconducting island S
at the NaS interface [see Na in Fig. 1(b)] takes the form

Îa,α(t) =

M
∑

σ,n=1

(

tan,αn
c+αn,σ(t)can,σ(t) (1)

+tαn,an
c+an,σ(t)cαn,σ(t)

)

,

where σ is the projection of the spin on the quantization
axis and the sum over n runs over the M tight-binding
sites describing the interface. Tight-binding sites on the
normal side of the interface NaS are labeled by an, and
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FIG. 1: (Color online). The two models studied in this pa-
per: Panel (a) shows a one-dimensional geometry used in the
BTK calculation, which is a simplified description for a NSN
structure in three dimensions. The central superconducting
electrode has length R and the superconducting gap ∆0 is
uniform. Panel (b) shows a representation of a three-terminal
device described by a tight-binding Hamiltonian. The two su-
perconducting reservoirs have the same phase and thus con-
stitute a single terminal.

their counterparts in the superconducting electrode are
labeled by αn. The hopping amplitudes between elec-
trode Na and the superconductor are denoted by tan,αn

and tαn,an
. One has tan,αn

= tαn,an
≡ ta in the absence

of a magnetic field. The average current Ia ≡ 〈Îa,α(t)〉
is the expectation value of the current operator given in
Eq. (1).
Current-current auto-correlations in electrode Na are

given by

Sa,a(t
′) = 〈δÎa(t+ t′)δÎa(t)〉 + 〈δÎa(t)δÎa(t+ t′)〉, (2)

with δÎa(t) = Îa(t) − 〈Îa(t)〉. In the absence of ac-
excitations, the average current given in Eq. (1) is time-
independent and the auto-correlations Sa,a(t

′) given in
Eq. (2) depend only on the difference t′ of the time ar-
guments.
Similarly, current-current cross-correlations between

electrodes Na and Nb are given by

Sa,b(t
′) = 〈δÎa(t+ t′)δÎb(t)〉+ 〈δÎb(t)δÎa(t+ t′)〉, (3)

where Îb describes the current at the interface with the
normal electrode Nb. Zero-frequency auto-correlations
(Sa,a) and cross-correlations (Sa,b) are defined as the
integral over t′ of Sa,a(t

′) and of Sa,b(t
′). The defini-

tion used here for the Fano factor is as follows: Fa,a =
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FIG. 2: (Color online). Two independent local AR processes
are shown on panel (a), for two interfaces separated by a
distance R much larger than the coherence length ξ. The
labels 1 and 2 on the diagram correspond to electron and
hole respectively. For each AR process, an electron impinging
from the normal electrode onto the interface is converted into
a hole, and a pair is transmitted into the superconductor. If
R ∼ ξ, the two AR processes are coupled coherently by non-
local propagation in the superconductor [see panel (b)], with
a quartet as an intermediate state and penetration of a charge
4e into the superconductor, which is qualitatively equivalent
to double CAR. Panel (c) shows independent AR and AR
processes at the two interfaces, supposed to far apart. Panel
(d) shows AR-AR for R ∼ ξ, which is qualitatively equivalent
to double EC.

Sa,a/2eIa and Fa,b = Sa,b/2e
√
IaIb, with Ia = Ib. With

this definition, the Schottky formula leads to F = q∗/e
for a Poisson process transmitting a charge q∗.

B. Known results and open questions

A few facts related to the non-local conductance for
arbitrary values of interface transparency are known al-
ready. Only local Andreev reflection AR and local inverse

Andreev reflection AR come into account for contacts
separated by a distance much larger than the coherence
length [see Figs. 2(a) and (c)]. Local AR means that an
electron is converted into a hole and a pair is transmit-
ted into the superconductor, and local AR means that a
hole is converted into an electron. For the latter, a pair of
hole-like quasi-particles is transmitted into the supercon-
ductor, which annihilates a Cooper pair. Two electrons
enter the superconductor in AR, two electrons exit the
superconductor in AR. Local AR and AR contributes
to transport if the separation between the interfaces is
much larger than ξ, and for a two-terminal configuration
where the superconductor is not connected to ground.

Other quantum processes appear in a three-terminal
configuration if the distance between the contacts is com-
parable to the coherence length: CAR and EC. However,
non-standard types of “non-local” processes can be also
obtained by merging AR at the interface NaS to AR at
the interface SNb, forming what is called here AR-AR [see
Fig. 2(b)]. Physically, AR-AR would correspond to the
synchronized transmission of two pairs from electrodes
Na and Nb into the superconductor, which can be seen as
double CAR. However, this process does not contribute
to non-local transport at zero temperature. Conversely,
AR at interface NaS might be associated to AR at in-
terface SNb, leading to AR-AR. The corresponding non-
local resistance is independent on the value of interface
transparency.13,14 Qualitatively, AR-AR can also be seen
as double EC.

The non-standard non-local process AR-AR in-
volving pairs appears naturally when expanding
diagrammatically14 the non-local conductance to order
t8, with t the hopping amplitude at the interfaces. As
it is shown below, AR-AR plays a central role in under-
standing the positive29 current-current cross-correlations
for highly transparent contacts, in a regime which is not
described by perturbation theory in t.

A very recent preprint58 points out the possibility
of “synchronized Andreev transmission” in the current-
voltage characteristics of a SNS junction array. Syn-
chronization manifests itself in this work as specific fea-
tures in the current-voltage characteristics of the two-
terminal SNS junction. We arrive here at the conclusion
that synchronization of Andreev processes is also possi-
ble if the separation between the NS interfaces is com-
parable to the coherence length. The dominant chan-
nel AR-AR is shown to result in positive current-current
cross-correlations.

As mentioned in the introduction, experiments on
current-current cross-correlations in NSN structures have
already started.40 A few basic questions regarding
current-current cross-correlations for highly transparent
contacts have not yet received a satisfactory explanation.

First what is the physics behind the positive29 linear
differential current-current correlations dSa,b/dV for a
highly transparent NSN beam splitter? It is shown that
dSa,b/dV > 0 is not an evidence for CAR (which would
prevail27 for tunnel contacts in the absence of Coulomb
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interactions). An interpretation in terms of AR-AR is
proposed.
Second, how do current-current cross-correlations de-

pend on the sample geometry? Current-current cross-
correlations decay with the geometry-dependent coher-
ence length, as it will be obtained from microscopic cal-
culations in Sec. IV.
Third, what is the value of cross-correlations at in-

termediate transparencies? Experimentalists can realize
tunnel or highly transparent contacts, by oxidizing or not
the sample during fabrication. Intermediate values of in-
terface transparency are more difficult to control but it is
nevertheless useful to quantify how “perfectly transpar-
ent” the NS contacts should be in order to obtain AR-AR.
A cross-over from positive to negative dSa,b/dV is found
in BTK calculations as the normal state transmission co-
efficient TN is reduced below a value typically of order
TN ∼ 1/2.
Fourth, do the predictions established with a ballistic

superconductor hold also for a disordered superconduc-
tor? It is shown at the end of Sec. IV that, for strong in-
verse proximity effect, AR-AR is responsible for positive
cross-correlations also in the case of a disordered super-
conductor in the regime where the elastic mean free path
is shorter than the coherence length.

III. HOMOGENEOUS SUPERCONDUCTING

GAP: BTK CALCULATION

The BTK approach59 allows calculations of the
current-voltage characteristics of a NS point contact with
arbitrary interfacial scattering potential. It was first gen-
eralized in Ref. 13 and later in Ref. 18 to the case of
non-local transport. Useful physical informations can be
obtained even though the gap is not self-consistent in the
BTK calculation. We will consider a one-dimensional ge-
ometry, as shown in Fig. 1(a).
The current Ii at the interface with the normal

electrode Ni, and the current-current correlations Si,j

between the two normal electrodes Ni and Nj are
expressed22 in terms of the s-matrix as

Ii =
e

h

∫

dω
∑

j,α,β

sgn(α)

[

δi,jδα,β −
∣

∣

∣s
α,β
i,j

∣

∣

∣

2
]

fβ(ω) (4)

Si,j =
2e2

h

∫

dω
∑

k,l,α,β,γ,δ

sgn(α)sgn(β) (5)

Akγ,lδ(i, α, ω)Alδ,kγ(j, β, ω)fγ(ω) [1− fδ(ω)] ,

with

Akγ,lδ(i, α, ω) = δi,kδi,lδα,γδα,δ − sα,γ†i,k sα,δi,l . (6)

Latin labels i, j, k, l run over a,b, referring to the two nor-
mal electrodes Na and Nb. Greek labels α, β, γ, δ denote
electrons or holes in the superconductor. The notation
fe(ω) = θ(eV −ω) stands for the distribution function of

electrons at zero temperature, and fh(ω) = θ(−eV − ω)
is the one of holes, where θ(x) is the Heaviside step-
function. In Eqs. (4) and (5), sgn(α) = +1 if α = e,
and sgn(α) = −1 if α = h.
The elements of the s-matrix are evaluated from the

BTK approach (see Appendix A) for a one-dimensional
NaSNb junction [see Fig. 1(a)]. Step-function varia-
tion of the superconducting gap at the interfaces is
assumed. A repulsive scattering potential V (x) =
H [δ(x) + δ(x−R)] is introduced at the interfaces. The
transparency of the interfaces is related to the BTK pa-
rameter Z = H/h̄vF , with vF the Fermi velocity. The
interface transparency is characterized by the value of the
normal state transmission coefficient TN = 1/(1 + Z2).
Highly transparent contacts correspond to TN = 1, and
tunnel contacts correspond to TN ≪ 1.
In the one-dimensional model considered in this sec-

tion, current and noise are highly sensitive to the length
R of the superconducting region: they oscillate as a func-
tion of R with period equal to the Fermi wave-length
λF ≪ R.6,8,29 These oscillations can be interpreted as
Friedel oscillations where the contacts with the normal
electrodes play the role of impurities. They are averaged
out in a multi-dimensional system. In order to simu-
late qualitatively multi-dimensional behavior with a one-
dimensional system, current and noise are averaged over
one oscillation period:

Iavi (R) =
1

λF

∫ R+λF /2

R−λF /2

Ii(r)dr (7)

Sav
i,j(R) =

1

λF

∫ R+λF /2

R−λF /2

Si,j(r)dr. (8)

The linear conductance dIava /dV , the auto-correlations
dSav

a,a/dV and the cross-correlations dSav
a,b/dV are shown

in Fig. 3 as a function of the normal transmission coef-
ficient TN , for different values of the distance between
the contacts. As it is expected, the conductance in-
creases with interface transparency for R/ξ >∼ 1. The
conductance depends on the ratio R/ξ while R is smaller
than the coherence length ξ, but it does almost not
vary as R is increased above ξ. The conductance in
Fig. 3(a1) is non-monotonous when plotted as a function
of TN . An explanation for the non-monotonous behavior
is the enhanced transmission due to the finite size of the
superconductor.55 Starting from tunnel contacts, the lin-
ear differential auto-correlation dSav

a,a/dV first increases
with interface transparency as larger current leads to
larger noise. The differential noise reaches a maximum
and almost vanishes for perfect transparency if R >∼ ξ,
as it is expected for a single NS junction.39 Differential
current-current cross-correlations dSav

a,b/dV are positive

for R/ξ <∼ 1 in the extreme cases of very high and very
low interface transparency, and they are negative in be-
tween, as it is visible in Figs. 3(c1) and (c2), and in the
insert of Fig. 3(c2).
The Fano factors Fa,a = Sav

a,a/2eI
av
a and Fa,b =

Sav
a,b/2eI

av
a correspond to the noise normalized to the cur-
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FIG. 3: (Color online). Variations of the linear differential conductance [panels (a1) and (a2)], linear differential auto-
correlations [panels (b1) and (b2)] and linear differential cross-correlations [panels (c1) and (c2)] as a function of the normal
interface transparency TN , for the values of R/ξ indicated in the figures. A single-channel one-dimensional BTK calcula-
tion is used [see Fig. 1(a)]. Panels (a2), (b2), (c2) show that dIava /dV and dSav

a,a/dV are almost independent on R/ξ for
R/ξ >

∼ 1, and that dSav
a,b/dV becomes very small as R/ξ increases above ∼ 1. The ratio between the gap and the Fermi

energy ǫF is ∆0/ǫF = 10−4 in this simulation. The insert of panel (c2) shows the variations of the normalized current-current
cross-correlations [dSav

a,b/dV (TN)]/[dSa,bav/dV (TN = 1)]. The data corresponding to R/ξ = 2, 3, 4, 5 superimpose after this
rescaling. Panels (a1) and (a2) are obtained with Eq. (4), panels (b1), (b2), (c1) and (c2) are obtained with Eq. (5), where
averaging is done according to Eqs. (7) and (8).
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channel one-dimensional BTK calculation is used [see Fig. 1(a)]. The ratio between the gap ∆0 and the Fermi energy ǫF
is ∆0/ǫF = 10−4 in this simulation. The insert of panel (b2) shows the variations of the normalized crossed Fano factor
[Fa,b(TN )]/[Fa,b(TN = 1)]. The data corresponding to R/ξ = 2, 3, 4, 5 superimpose after rescaling. The figure is obtained with
Eqs. (4) and (5), where averaging is done according to Eqs. (7) and (8).

rent, which allows to get rid of the trivial effect that, at
low transparency, the noise increases when the current
increases. The variations of Fa,a and Fa,b feature local
minima at intermediate values of TN . In the insert of
Fig. 4(b2), the Fano factor Fa,b is shown for different
R/ξ >∼ 1. As it can be seen, the Fano factor is indepen-
dent of R/ξ after normalizing to its value for TN = 1.

The Fano factor Fa,b is positive outside the region of the
minima. For R/ξ >∼ 1, Fa,a takes the value Fa,a ≃ 2 for
TN ≪ 1, and the value Fa,a ≃ 0 for TN = 1.

We first make some remarks in order to confirm the
validity of our calculation. Expected behavior is recov-
ered in some limiting cases: (i) The Fano factor on Fig. 4
is compatible with the value F av

a,a ≃ 2 for TN ≪ 1 even
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R/ξ Fa,a Fa,b Ftot

0.05 1.0001 1.0000 2.0001
0.25 0.9401 0.9401 1.8801
0.5 0.7865 0.7865 1.5730
1 0.4201 0.4201 0.8402
1.5 0.1808 0.1808 0.3617
2 0.0707 0.0707 0.1415
3 0.0099 0.0099 0.0198

TABLE I: Values of Fa,a, Fa,b and Ftot = Fa,a + Fa,b for
TN = 1 and for different values of R/ξ [see Fig. 4(a1)]. The
error-bar is given by the last digit. The differential current-
current cross-correlations take the form dSav

a,b/dV = 2eIava ,

with Iava ≃ 4(e2/h)V for R/ξ ≪ 1. It is deduced that Eq. (10)
is compatible with Fa,b = 1 in the limit R/ξ ≪ 1.

for intermediate values of R/ξ >∼ 1. This corresponds to
the doubling of the effective charge for Andreev reflection
at a single NS interface in the tunnel limit.53,54 (ii) The
Fano factor Fa,a is vanishingly small for R/ξ >∼ 1 and
for TN ≃ 1, as it is expected for a single highly trans-
parent NS interface. (iii) dSav

a,b/dV and Fa,b are positive

and very small for R/ξ >∼ 1 and TN ≃ 1, in agreement
with Ref. 27. Only CAR contributes to current-current
cross-correlations for TN ≪ 1. (iv) As it can be seen in
Fig. 3(a1), the linear conductance dIava /dV is suppressed
for R/ξ <∼ 1 because the number of normal states within
the gap energy is ∼ R/ξ for this geometry. For a three-
dimensional grain it is proportional to ∼ k2FR

3/ξ, which
can be much larger than unity even for R/ξ <∼ 1. The
suppression of Andreev processes at high transparency
for R/ξ ≪ 1 is thus not expected to occur in the case of
a three-dimensional superconducting grain.
The Schottky limit is realized for low values of interface

transparencies, which leads to 〈(δÎa − δÎb)
2〉av = 4eIava .

On the other hand 〈(δÎa + δÎb)
2〉av = 4e(Iava + Iavb ). One

concludes that Fa,a ≃ 3/2 and Fa,b ≃ 1/2, in agreement
with the plateau obtained in Figs. 4(a1) and (b1) for the
dependence on TN of the Fano factor.
For highly transmitting interfaces TN = 1, the nu-

merical data shown in Table I give Fa,a = Fa,b. This
is confirmed by analytical BTK calculation in the limit
R/ξ ≪ 1 (see Appendix B). This identity implies that

Îava − Îavb is noiseless for TN = 1, independent of R/ξ:

∫

dτ〈
(

δÎa(t)− δÎb(t)
)(

δÎa(t+ τ)− δÎb(t+ τ)
)

〉av

=
1

2

[

Sav
a,a + Sav

b,b − 2Sav
a,b

]

=
Iava
2

(Fa,a + Fb,b − 2Fa,b) = 0.

(9)
By comparison, in a fermionic beam splitter with highly
transparent contacts, a charge e transmitted from the
source to Na means no charge transmitted from the
source to Nb. Thus, for fermions, it is the sum Îa + Îb
that is noiseless.
We can see from Fig. 3, that the linear differential

cross-correlations of current noise dSav
a,b/dV are positive

for TN ≪ 1 and TN ≃ 1, while they can take negative
values in between these two limiting cases. For TN ≪ 1,
the positive dSav

a,b/dV can be explained by the presence
of CAR-processes. This is in agreement with perturba-
tive calculations carried out in Ref. 27. However, for
perfectly transmitting interfaces TN ≃ 1, CAR-processes
do not occur, as the elements of the scattering matrix

describing CAR (e.g., se,ha,b) equal zero for TN = 1 (see

Appendix B). In this Appendix we confirm this numeri-
cal result by analytical calculations in the limit R/ξ ≪ 1
and obtain

dSav
a,b

dV
= 8

e3

h







∣

∣se,ha,a

∣

∣

2
for R/ξ ≪ 1

∣

∣

∣s
e,e
a,b

∣

∣

∣

2

= TEC for R/ξ >∼ 1
(10)

and

TCAR =
∣

∣

∣
se,ha,b

∣

∣

∣

2

= 0. (11)

In section IV, we will use a microscopic model in order
to obtain an understanding of the processes contributing
to the noise, and to explain dSav

a,b/dV > 0 in the absence
of CAR.
To summarize this section, it was shown that

dSav
a,b/dV > 0, and that Eq. (10) holds for R/ξ >∼ 1

and for TN ≃ 1. Cooper pair splitting dominates for
small normal transmission coefficient TN ≪ 1, while
what will be interpreted in Sec. IV as AR-AR dominates
for TN ≃ 1. These two processes are suppressed for in-
termediate TN , resulting in negative cross-correlations in
this parameter range.

IV. MICROSCOPIC CALCULATIONS

The current-current cross-correlations for highly trans-
parent interfaces can be further investigated in the two-
dimensional tight-binding set-up shown in Fig. 1(b).
First, using analytic calculations, we analyze the different
contributions to the noise Sa,b and show the absence of
contributions due to CAR-processes. The positive con-
tributions are attributed to processes, which we refer to
as AR-AR (this notation stands for Andreev reflection
and inverse Andreev reflection), a denomination which is
motivated by the microscopic analysis. Second, numeri-
cal calculations are performed, which take into account
the inverse proximity effect by determining the gap in a
self-consistent manner. In addition, disorder will be in-
cluded in the calculation. We restrict our study to the
case where the same voltages Va = Vb = V are applied
on both normal leads and V is small compared to the
gap ∆.
The expression of current-current cross-correlations

Sa,b can be decomposed as a sum of six contributions
according to the types of transmission modes in the su-
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FIG. 5: (Color online). The anomalous Green function
G1,2

αn,βm
is small compared to the normal Green function

G1,1

αn,βm
. As the elements Gαn,βm (between site n on the left

interface and site m on the right interface) decay exponen-
tially with d = |yn − ym|, we have evaluated the mean values
|〈Gαn,βm |〉n,m of the elements with the same value of d. The
main contribution to non-local transport comes from small
values of d. While the main frame shows the results obtained
for a constant gap ∆, the inset shows the corresponding data
with the self-consistent gap.

perconductor:

Sa,b = SCAR + SEC + SAR-AR + SAR-AR + S′ + SMIXED,
(12)

where the expression and the meaning of the different
contributions are provided in Appendix D. SCAR con-
tains the noise attributed to crossed Andreev reflections,
which contains transmission modes in the electron-hole
channels. SEC, the noise due to elastic cotunneling, con-
tains transmission modes in the electron-electron or hole-
hole channels. With AR-AR, we refer to synchronous lo-
cal Andreev reflections at both interfaces, while AR-AR
links a local Andreev at one interface to a local inverse
Andreev process at the other one (see Fig. 2).
The Andreev-reflection is highly local18 (compare with

the BTK-calculations in Sec. III, where it vanishes ex-
actly). This motivates the assumption |G1,2

α,β | ≪ |G1,1
α,β |,

which is confirmed by our numerical calculations also in
the presence of the inverse proximity effect (see Fig. 5).
Using this simplification, one obtains SCAR = SAR-AR =
0 and S′ and SMIXED vanish after integration over the en-
ergy ω. Thus the total current-current cross-correlations
Sa,b depends only on the term SAR-AR.
In order to understand what type of microscopic pro-

cesses are described in AR-AR, we start from the formula
giving the current-current cross-correlations in terms of
the Keldysh Green functions Ĝ+,− and Ĝ−,+:

Sa,b(ω) =Tr
[

Ĝ+,−
b,a Ĝ−,+

α,β + Ĝ+,−
β,α G

−,+
a,b

− Ĝ+,−
b,α Ĝ−,+

a,β − Ĝ+,−
β,a Ĝ

−,+
α,b

]

,
(13)

where the trace is carried out over the Nambu labels and
the different transmission modes at the interfaces. It can

be shown that all terms in SAR-AR are obtained from
the anomalous contributions of the type G+,−,1,2G−,+,2,1

and G+,−,2,1G−,+,1,2. Let us consider one of these terms
as an example (the same conclusions are obtained for all

terms) and suppose again that GA,1,2
α,β = 0 if α and β are

on different interfaces (that is, crossed Andreev reflection
does not contribute), and that a symmetric bias voltage
is applied on the two normal electrodes. One has

G+,−,2,1
b,a (t, t′)G−,+,1,2

α,β (t′, t)

= 〈ca,↓(t′)cb,↑(t)〉〈c+β,↑(t′)c+α,↓(t)〉.
(14)

This equation can be understood as a relation between
initial and final states, as it is shown in Fig. 6. In gen-
eral, these states can be connected by many different pro-
cesses. However, the microscopic formula for the current-
current cross-correlations [see Eq. (D4)] shows that the
initial and final states are related by an Andreev process
at interface NaS, and, at the same time, by an inverse
Andreev process at interface SNb [see Fig. 6(b)]. In an
Andreev process, an electron is converted into a hole and
a pair of electron-like quasi-particles is transmitted into
the superconductor. In an inverse Andreev process, a
hole is converted into an electron and a pair of hole-like
quasi-particles is transmitted into the superconductor.
The pair of electron-like quasi-particles annihilates with
the pair of hole-like quasi-particles and the remaining
electron and the hole are exchanged between the two in-
terfaces. This results in dSAR-AR/dV > 0.
In addition to the analytic calculation, we performed

numerical simulations in order to analyze a more realistic
model. Details about the used method21 are presented
in Appendix C. The self-consistent simulations presented
below take into account the inverse proximity effect cor-
responding to the reduction of the superconducting gap
within a distance ∼ ξ from the contacts. Self-consistency
is equivalent to current conservation for the electrons in-
jected from the normal reservoirs and transmitted into
the superconducting ones.
The values for the linear differential cross-correlations

dSa,b/dV , and for the EC and CAR transmission coef-
ficients TEC and TCAR are plotted as functions of the
length N of the superconductor in Fig. 7 and Fig. 8. The
notations TEC and TCAR refer to the transmission modes
in the superconductor (advanced-advanced or retarded-
retarded modes not exchanging electrons and holes for
TEC, and advanced-retarded Green functions exchanging
electrons and holes for TCAR). TEC and TCAR are given
by

TEC =W 2Tr
(

GA,1,1
α,β GR,1,1

β,α +GA,2,2
α,β GR,2,2

β,α

)

(15)

TCAR =W 2Tr
(

GA,1,2
α,β GR,2,1

β,α +GA,2,1
α,β GR,1,2

β,α

)

, (16)

where W is the hopping amplitude in the bulk and at
the interfaces, and αn and βm run respectively over all
the sites on the superconducting side of the NaS and

SNb interfaces. The notation G
A(R),ni,nj

i,j stands for the
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′

FIG. 6: (Color online). Schematic representation of how
AR-AR couples to current-current cross-correlations. The ini-
tial state consists of (i) a spin-down electron created at α at
time t, on the superconducting side of the NaS interface, and
of (ii) a spin-up electron destroyed at time t at b, on the
normal side of interface SNb. The final state consists of a
spin-down electron destroyed at time t′ at a, on the normal
side of interface NaS, and of a spin-up electron created at
time t′ at β, on the superconducting side of interface SNb.
To the AR-AR process shown on Fig. 2d for the non-local
conductance is added the permutation of two fermions. Tak-
ing into account the resulting minus sign leads to positive
current-current cross-correlations.
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FIG. 7: (Color online). The figure shows dSa,b/dV as
a function of N for highly transmitting interfaces [for N
see Fig. 1(b)]. In agreement with the BTK calculations
dSa,b/dV > 0. The exponential decay is described by the
coherence length which increases with M , in agreement with
Ref. 21. The values M = 20 (red squares) and M = 25
(blue circle) are used. Strong deviations from the expo-
nential decay (red lines) appear for N ≃ M (see Ref. 21).
The data points are obtained from Eq. (C4). The decay is
∝ exp[−2Na0/ξ(M)].
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FIG. 8: (Color online). The exponential decay of the EC
transmission coefficient TEC [Eq. (15), open red squares for
M = 20 and open blue circles for M = 25], and of the crossed
Andreev transmission coefficient TCAR [Eq. (16), filled green
squares for M = 20 and filled purple circles for M = 25] is
shown. The decay is ∝ exp[−2Na0/ξ(M)], with ξ(20) = 8a0

and ξ(25) = 9a0.

Nambu component (ni, nj) of the advanced (retarded)
Green function connecting i to j.
The dependence on M of the coherence length was

already found in a previous work.21 The differential cross-
correlations dSa,b/dV are positive, which is in agreement
with the preceding BTK calculation. Differential cross-
correlations dSa,b/dV show exponential decay (see Fig. 7)
as a function of N , because the two normal electrodes
Na and Nb are coherently coupled by evanescent states
in the superconductor. The BCS coherence length as
obtained from the fits fulfills Rx/ξ >∼ 1 in a wide range
of simulation parameters. This is the range in which the

BTK-calculation leads to dSav
a,b/dV = 8 e3

h TEC.
For a highly transparent NS contact, one has

G2,1
αn,αn

G1,2
βm,βm

≃ 1/4W 2 where W is the hopping ampli-
tude in the normal and superconducting electrodes, and

at the interface (see Appendix E). The identity TA,A

AR-AR
≃

TEC holds if |G1,2
α,β | ≪ |G1,1

α,β | (see Appendix E), with

TA,A

AR-AR
= −W 2Tr

(

GA,1,1
α,β GA,2,2

β,α +GA,2,2
α,β GA,1,1

β,α

)

, (17)

where the superscript “A,A” refers to an advanced-
advanced transmission mode where electrons and hole
are conserved. With these assumptions, the total noise
can be written as

dSa,b

dV
≃ 8

e3

h
TA,A

AR-AR
(18)

TA,A

AR-AR
≃ TEC. (19)

Considering the numerical data, plots of dSa,b/dV as
functions of TEC and TCAR (see Fig. 9), and a comparison

between TA,A

AR-AR
and TEC confirm Eqs. (18) and (19) and

show in addition

dSa,b

dV
≃ 50

e3

h
TCAR. (20)
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FIG. 9: (Color online). Relation between dSa,b/dV and the transmission coefficients TEC and TCAR: Panel (a) shows the
relation between dSa,b/dV and TEC and panel (b) shows the relation between dSa,b/dV and TCAR. The data are the same as
in Fig. 7. The different points correspond to different lengths N along Ox axis [see N in Fig. 1(b)]. The blue dashed lines show
the linear fits dSa,b/dV = 8TEC, and dSa,b/dV = 50TCAR.

Comparing with the previous BTK calculation, it is
suggested that Eq. (20) is model-dependent, because
TCAR = 0 for the BTK model while TCAR is finite but
small in the self-consistent microscopic calculation. On
the other hand, Eq. (18), which is obtained also for the
BTK model, is expected to be a fundamental relation.

Eq. (18) remains approximately valid in the presence of
weak disorder, introduced in the form of a random on-site
potential uniformly distributed in the interval [−V, V ],
with elastic mean free path le ∼ (W/V )2a0 smaller than
the ballistic coherence length ∼ (W/∆)a0, but not small
compared with the Fermi wave-length (strong disorder).
The parameter W is the hopping amplitude in the bulk
of the superconductor, taking the same value at the in-
terfaces because of highly transparent contacts.

The coherence length is reduced as the strength of
disorder increases. The coherence lengths are fitted to
ξ = 3.8a0, 3.6a0 for V/W = 1.00, 1.25, as compared to
ξ = 8a0 with V/W = 0 in the ballistic limit. The coher-
ence length in the presence of disorder becomes smaller
than its ballistic value, as for a superconductor in the
dirty limit. Within error-bars, Eq. (18) is fulfilled also
in the presence of weak disorder, while the coefficient in
Eq. (19) is changed, resulting in

dSa,b

dV
≃ 40

e3

h
TCAR. (21)

It is concluded that TCAR ≪ TEC implies that Sa,b ≃
SAR-AR
a,b and that Eq. (18) is fulfilled. Thus, it was shown

that, in this parameter regime, dSa,b/dV > 0 is evidence

for AR-AR, not for CAR.

The BTK approach and the microscopic calculations
lead to positive dSa,b/dV > 0, which is due to the ex-
change of fermionic quasi-particles (see Fig. 6). This is
the main physical result of our article: dSa,b/dV > 0 is
synonym of pairs of electron-like quasi-particles, pairs of
hole-like quasi-particles, and exchange of fermions.

V. CONCLUSIONS

The article was already summarized in Sec. II B and
thus we conclude with a brief overview and final remarks.
We have evaluated current-current cross-correlations in
a NSN structure with a homogeneous superconductor
(without self-consistency in the order parameter), and
with strong inverse proximity effect (with self-consistent
microscopic calculations for a two-dimensional three-
terminal set-up). For both approaches, the linear differ-
ential cross-correlations dSa,b/dV are positive for highly
transparent contacts and decay exponentially with a
characteristic length set by the coherence length. Pos-
itive dSa,b/dV arises in this set-up not because of CAR,
but because of what is identified as the correlated pene-
tration of pairs of electron-like quasi-particles and pairs
of hole-like quasi-particles into the superconductor in the
form of AR-AR. The positive sign of dSa,b/dV is due to
the additional exchange of two fermions. It is emphasized
that the proposed mechanism does not involve quartets in
the superconductor, because AR-AR does not contribute
to the current-current cross-correlations. Direct evalu-
ation of dSa,b/dV leads to dSa,b/dV = 4(e3/h)TA,A

AR-AR
,

and to TA,A

AR-AR
≃ TEC , which holds also for a super-

conductor with weak disorder and with elastic mean free
path shorter than the coherence length.
Finally, correlations between pairs of Andreev pairs

were discussed60,61 in connection with noise in an An-
dreev interferometer.
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Appendix A: Details on the scattering approach

The elements sα,βi,j of the scattering matrix are calcu-

lated using the BTK approach59, using two-component
wave-functions describing electrons and holes respec-
tively. The indices i, j refer to the normal electrodes Na

and Nb, while α, β run over the two components describ-
ing the electrons and holes.
For example, the wave-functions for an electron incom-

ing from electrode Na take the form

ψa(x) =

(

1
0

)

(

eiq
(+)x + se,ea,ae

−iq(+)x
)

+ sh,ea,a

(

0
1

)

eiq
(−)x

(A1)

ψS(x) =

(

u0
v0

)

(

c1e
ik(+)x + c′1e

−ik(+)(x−R)
)

+

(

v0
u0

)

(

d1e
−ik(−)x + d′1e

ik(−)(x−R)
)

(A2)

ψb(x) =

(

0
1

)

sh,eb,ae
−iq(−)(x−R) +

(

1
0

)

se,eb,ae
iq(+)(x−R),

(A3)

where ψa(x), ψS(x) and ψb(x) are the parts of the wave-
functions in the electrodes Na, S, and Nb respectively [see
Fig. 1(a)]. The notations q(+), q(−), k(+) and k(−) stand
for the wave-vectors in the normal and superconducting
electrodes:

k(±) = kF ± i/ξ (A4)

q(±) = kF , (A5)

with kF ξ ≫ 1.

The elements se,ea,a, s
h,e
a,a, s

h,e
b,a and se,eb,a can be deter-

mined using the continuity of the wave-functions at the
interfaces [ψa(0) = ψS(0) and ψS(R) = ψb(R)] and the
boundary condition for the derivatives [ψ′

S(0)− ψ′
a(0) =

Hψa(0) and ψ′
b(R) − ψ′

S(R) = Hψb(R)]. The BTK pa-
rameter Z is defined by Z = H/h̄vF .
The remaining elements of the scattering matrix can

be obtained from the other possible scattering processes
(e.g., a hole incoming from electrode Nb) by analogous
calculation.
By comparing the different equations, the symmetry

se,ha,a(ω) = sh,eb,b (−ω), (A6)

of the scattering matrix can be obtained.
The BCS coherence factors u0, v0 appearing in these

equations are given by:

u20 = 1− v20 =
1

2

(

1 +

√
ω2 −∆2

ω

)

. (A7)

The coherence factors u0 and v0 are interchanged under
complex conjugation and changing sign of the real part of
energy (a small imaginary part is supposed to be added
to ω).

Appendix B: Current-current cross-correlations for

the BTK model in the limit Z ≃ 0

For highly transparent interfaces (Z ≃ 0), the expres-

sions obtained for sα,βi,j simplify considerably, local re-

flections (sα,αi,i = 0) and non-local Andreev reflections

(sα,βi,j = 0, with i 6= j, α 6= β) are suppressed.18 Thus,

only local Andreev reflection (sα,βi,i , with α 6= β) and

transmission without branch-crossing (sα,αi,j , with i 6= j)
can occur. The non-zero elements of the scattering ma-



11

trix are given by

sh,ea,a = u0v0
eR/ξ − e−R/ξ

v20e
R/ξ − u20e

−R/ξ
(B1)

se,eb,a = e−ikFR u20 − v20
u20e

−R/ξ − v20e
R/ξ

(B2)

Assuming s(ω) to be constant in the range [−eV, eV ]
(we study the case eV ≪ ∆), Eqs. (4) and (5) can be
written as

Ia =
4e2

h
V
∣

∣se,ha,a

∣

∣

2
(B3)

Sa,b = −4e3

h
|V |
(

sh,h†a,b sh,eb,b s
e,e
b,as

e,h†
a,a + sh,e†a,a s

e,e
a,bs

e,h
b,b s

h,h†
b,a

)

(B4)

for i 6= j. In the limit R/ξ ≪ 1, the elements of the
scattering matrix (evaluated for ω → 0) are given by

sh,ea,a = se,hb,b ≃ i
R

ξ
(B5)

se,eb,as
h,h
a,b ≃ 1, (B6)

leading to

Sa,a = Sa,b =
8e3

h
|V |
(

R

ξ

)2

≥ 0 . (B7)

The result for Sa,a has been obtained by an analogous
calculation.
Combining Eq. (B3) for Ia with Eq. (B7) for Sa,a and

Sb,b leads to Fa,a ≃ Fb,b ≃ 1 for eV ≪ ∆0, TN = 1
and R/ξ ≪ 1, in agreement with the numerical results
discussed in Sec. III.

Appendix C: Technical details on microscopic

calculations

The microscopic calculations are based on the following
tight-binding model on a square lattice:

HS =−W
∑

〈n,m〉

∑

σ

(

c+n,σcm,σ + c+m,σcn,σ
)

+
∑

n

∆n

(

c+n,↑c
+
n,↓ + cn,↓cn,↑

)

−
∑

n,σ

Vnc
+
n,σcn,σ,

(C1)

with energy W for hopping between nearest neighbor
sites n and m separated by a distance a0. The normal

electrodes are described by an analogous Hamiltonian
with no pairing term and no disorder. Highly transparent
contacts with interfacial hopping equal to W are used in
Sec. IV. The parameter ∆n is the superconducting order
parameter at site n. It is determined self-consistently in
Sec. IV on the basis of the recursive algorithm developed
in Ref. 21. The gap in the superconducting reservoirs
takes the fixed value ∆0. Disorder is introduced at the
end of Sec. IV in the form of a random on-site poten-
tial Vn on each tight-binding site, uniformly distributed
in the interval [−V, V ]. The gap and phase profiles in
the superconducting island are shown in Fig. 11 in order
to illustrate the output of the part of the code perform-
ing the self-consistent calculation. Because of disorder,
the gap fluctuates strongly from one tight-binding site
to the next. The phase profile shows a smooth exponen-
tial decay from the NS interfaces. The accuracy of the
self-consistent calculation gives access to variations of the
phase over almost two orders of magnitude.

The average current in Eq. (1) is evaluated from the
Keldysh Green function:56

Ia,α =
2e

h

∑

m

∫

dω
[

t̂am,αm
Ĝ+,−

αm,am
(ω)

− t̂αm,am
Ĝ+,−

am,αm
(ω)
]

1,1
.

(C2)

Zero frequency noise (see Sec. II) is obtained
from Sa,a = 2e2t2/h

∫

dωSa,a(ω) and Sa,b =
2e2t2/h

∫

dωSa,b(ω), with

Sa,a(ω) =
∑

n,m

Tr
[

Ĝ+,−
am,an

(ω)Ĝ−,+
αn,αm

(ω)

+ Ĝ+,−
αm,αn

(ω)Ĝ−,+
an,am

(ω)

− Ĝ+,−
am,αn

(ω)Ĝ−,+
an,αm

(ω)

− Ĝ+,−
αm,an

(ω)Ĝ−,+
αn,am

(ω)
]

(C3)

Sa,b(ω) =
∑

n,m

Tr
[

Ĝ+,−
bm,an

(ω)Ĝ−,+
αn,βm

(ω)

+ Ĝ+,−
βm,αn

(ω)Ĝ−,+
an,bm

(ω)

− Ĝ+,−
bm,αn

(ω)Ĝ−,+
an,βm

(ω)

− Ĝ+,−
βm,an

(ω)Ĝ−,+
αn,bm

(ω)
]

.

(C4)

The trace is evaluated over the Nambu labels. Eq. (C4)
is a generalization of Ref. 57 to two interfaces with many
channels. The numerical calculations presented in the
main body of the article are based on Eqs. (C2), (C3)
and (C4).
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FIG. 11: (Color online). The figure shows the gap profile in panel (a), the phase profile in semi-log scale in panel (b), for a
given realization of disorder with V/W = 1. See the text for the meaning of the parameters V and W . The x and y axis are
the same as in Fig. 1(b). This figure is obtained with the self-consistent algorithm developed in Ref. 21 for the ballistic case.
The phase in panel (b) is small but non-zero because the algorithm takes into account non-equilibrium effects.

Appendix D: Microscopic calculations for the noise formula

In this Appendix we provide the complete formula for the noise Sa,b(ω) given by Eq. (C4) for sub-gap voltage
(|ω| < eV < ∆). This allows considerable simplification of the expression of Sa,b because the Keldysh Green function
g+− = 0 in the isolated superconductor, as there exist no single-electron states. The total noise can be decomposed
into different terms according to the types of transmission modes in the superconductor as:

Sa,b(ω) = SCAR + SEC + SAR-AR + SAR-AR + SMIXED + S′. (D1)

In the normal lead N , the Keldysh Green functions read g+−,11
NN = 2iπρNnF (ω − eV ), g+−,22

NN = 2iπρNnF (ω + eV ),

g−+,11
NN = 2iπρNnF (−ω + eV ) and g−+,22

NN = 2iπρNnF (−ω − eV ), where ρN is the density of states at the interface in
the normal lead, and, at zero temperature, nF (x) = θ(−x), with θ(x) being the Heaviside step-function. This gives

g+−,11
N,N g−+,22

N,N = g+−,22
N,N g−+,11

N,N = 0, leading to further simplification of the expression for Sa,b.
The contribution SCAR is given by the advanced-advanced or retarded-retarded transmission modes in the electron-

hole channel, in the form of the combinations of the type GA,12
αβ GR,21

βα . Physically, these microscopic processes can be
interpreted as Cooper pair splitting as appearing in CAR. The expression for SCAR is as follows:

SCAR = 2t4
[

+ g−+,11
bb g+−,22

aa GR,21
αβ GR,12

βα (1 + 2iGA,22
αα πt2ρa)(1 + 2iGA,11

ββ πt2ρb)

+ g−+,22
bb g+−,11

aa GR,12
αβ GR,21

βα (1 + 2iGA,11
αα πt2ρa)(1 + 2iGA,22

ββ πt2ρb)

− g−+,22
aa g+−,11

bb GA,21
αβ GA,12

βα (i+ 2GR,22
αα πt2ρa)(i + 2GR,11

ββ πt2ρb)

− g−+,11
aa g+−,22

bb GA,12
αβ GA,21

βα (i+ 2GR,11
αα πt2ρa)(i + 2GR,22

ββ πt2ρb)
]

,

(D2)

where t is the hopping amplitude at the interfaces.
The contribution SEC contains advanced-advanced and retarded-retarded transmission modes in the electron-

electron or hole-hole channel, in the form of the combinations of the type GA,12
αβ GA,21

βα . This is the contribution
to the noise of normal electron transmission in the form of EC. The expression reads

SEC = 2t4
[

+ g−+,11
bb g+−,11

aa GR,11
αβ GR,11

βα (i − 2GA,11
αα πt2ρa)(i − 2GA,11

ββ πt2ρb)

+ g−+,22
bb g+−,22

aa GR,22
αβ GR,22

βα (i − 2GA,22
αα πt2ρa)(i − 2GA,22

ββ πt2ρb)

+ g−+,11
aa g+−,11

bb GA,11
αβ GA,11

βα (i+ 2GR,11
αα πt2ρa)(i+ 2GR,11

ββ πt2ρb)

+ g−+,22
aa g+−,22

bb GA,22
αβ GA,22

βα (i+ 2GR,22
αα πt2ρa)(i+ 2GR,22

ββ πt2ρb)
]

(D3)

Now we consider processes that do not appear in lowest order perturbation theory. First the contribution SAR-AR
contains advanced-advanced and retarded-retarded transmission modes, in the form of the combinations of the type

GA,11
αβ GA,22

βα . Physically, this can be interpreted as the contribution to the noise of synchronized Andreev and inverse
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Andreev processes (AR-AR), with the exchange of two fermions at the same time, thus leading to dSa,b/dV > 0 (see
Fig. 6). This contribution dominates the current-current cross-correlations dSa,b/dV in the considered set-up. This
contribution reads:

SAR-AR = −8π2t8ρaρb

(

+ g−+,22
bb g+−,11

aa GA,12
αα GA,21

ββ GR,22
αβ GR,11

βα + g−+,11
bb g+−,22

aa GA,21
αα GA,12

ββ GR,11
αβ GR,22

βα

+ g−+,11
aa g+−,22

bb GA,11
αβ GA,22

βα GR,21
αα GR,12

ββ + g−+,22
aa g+−,11

bb GA,22
αβ GA,11

βα GR,12
αα GR,21

ββ

) (D4)

Another contribution not appearing in lowest order contains processes involving electron-hole conversion both at
the interfaces and during propagation in the superconductor. The transmission modes in the superconductor are

of the type GA,12
α,β GA,12

β,α . These terms correspond to the synchronization of two Andreev processes (AR-AR). The
corresponding expression reads

SAR-AR = 8π2t8ρaρb

(

+ g−+,22
bb g+−,22

aa GA,21
αα GA,21

ββ GR,12
αβ GR,12

βα + g−+,11
bb g+−,11

aa GA,12
αα GA,12

ββ GR,21
αβ GR,21

βα

+ g−+,22
aa g+−,22

bb GA,21
αβ GA,21

βα GR,12
αα GR,12

ββ + g−+,11
aa g+−,11

bb GA,12
αβ GA,12

βα GR,21
αα GR,21

ββ

) (D5)

Another contribution contains transmission modes of the type GA,11
α,β GA,12

β,α . These terms read

S′ =8π2t8ρaρb

[

+ g+−,11
aa GA,11

αα

(

g−+,22
bb GA,21

ββ GR,12
αβ GR,11

βα − g−+,11
bb GA,12

ββ GR,11
αβ GR,21

βα

)

+ g+−,11
aa GA,12

αα

(

g−+,22
bb GA,22

ββ GR,22
αβ GR,21

βα − g−+,11
bb GA,11

ββ GR,21
αβ GR,11

βα

)

+ g+−,22
aa GA,21

αα

(

g−+,11
bb GA,11

ββ GR,11
αβ GR,12

βα − g−+,22
bb GA,22

ββ GR,12
αβ GR,22

βα

)

+ g+−,22
aa GA,22

αα

(

g−+,11
bb GA,12

ββ GR,21
αβ GR,22

βα − g−+,22
bb GA,21

ββ GR,22
αβ GR,12

βα

)

+ g−+,22
aa GA,21

αβ

(

g+−,11
bb GA,11

βα GR,12
αα GR,11

ββ − g+−,22
bb GA,22

βα GR,22
αα GR,12

ββ

)

+ g−+,22
aa GA,22

αβ

(

g+−,11
bb GA,12

βα GR,22
αα GR,21

ββ − g+−,22
bb GA,21

βα GR,12
αα GR,22

ββ

)

+ g−+,11
aa GA,11

αβ

(

g+−,22
bb GA,21

βα GR,11
αα GR,12

ββ − g+−,11
bb GA,12

βα GR,21
αα GR,11

ββ

)

+ g−+,11
aa GA,12

αβ

(

g+−,22
bb GA,22

βα GR,21
αα GR,22

ββ − g+−,11
bb GA,11

βα GR,11
αα GR,21

ββ

) ]

(D6)

+ 4iπt6ρa

[

+ g−+,22
aa GR,12

αα

(

g+−,11
bb GA,21

αβ GA,11
βα − g+−,22

bb GA,22
αβ GA,21

βα

)

+ g−+,11
aa GR,21

αα

(

g+−,22
bb GA,12

αβ GA,22
βα − g+−,11

bb GA,11
αβ GA,12

βα

)

+ g+−,11
aa GA,12

αα

(

g−+,11
bb GR,21

αβ GR,11
βα − g−+,22

bb GR,22
αβ GR,21

βα

)

+ g+−,22
aa GA,21

αα

(

g−+,22
bb GR,12

αβ GR,22
βα − g−+,11

bb GR,11
αβ GR,12

βα

) ]

+ 4iπt6ρb

[

+ g−+,22
bb GA,21

ββ

(

g+−,22
aa GR,22

αβ GR,12
βα − g+−,11

aa GR,12
αβ GR,11

βα

)

+ g−+,11
bb GA,12

ββ

(

g+−,11
aa GR,11

αβ GR,21
βα − g+−,22

aa GR,21
αβ GR,22

βα

)

+ g+−,22
bb GR,12

ββ

(

g−+,11
aa GA,11

αβ GA,21
βα − g−+,22

aa GA,21
αβ GA,22

βα

)

+ g+−,11
bb GR,21

ββ

(

g−+,22
aa GA,22

αβ GA,12
βα − g−+,11

aa GA,12
αβ GA,11

βα

) ]
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The last term involves advanced-retarded transmission modes:

SMIXED =8π2t8ρaρb

[

+ g−+,22
aa g+−,11

aa (GA,11
αα GR,12

αα −GA,12
αα GR,22

αα )(GA,21
αβ GR,11

βα −GA,22
αβ GR,21

βα )

+ g−+,11
aa g+−,22

aa (GA,21
αα GR,11

αα −GA,22
αα GR,21

αα )(GA,11
αβ GR,12

βα −GA,12
αβ GR,22

βα )

+ g−+,22
bb g+−,11

bb (GA,11
βα GR,12

αβ −GA,12
βα GR,22

αβ )(GA,21
ββ GR,11

ββ −GA,22
ββ GR,21

ββ )

+ g−+,11
bb g+−,22

bb (GA,21
βα GR,11

αβ −GA,22
βα GR,21

αβ )(GA,11
ββ GR,12

ββ −GA,12
ββ GR,22

ββ )
]

− 4iπt6ρa

[

+ g−+,11
bb g+−,22

bb (GA,12
ββ +GR,12

ββ )(GA,21
βα GR,11

αβ −GA,22
βα GR,21

αβ )

− g−+,22
bb g+−,11

bb (GA,21
ββ +GR,21

ββ )(GA,11
βα GR,12

αβ −GA,12
βα GR,22

αβ )
]

− 4iπt6ρb

[

+ g−+,22
aa g+−,11

aa (GA,12
αα +GR,12

αα )(GA,21
αβ GR,11

βα −GA,22
αβ GR,21

βα )

− g−+,11
aa g+−,22

aa (GA,21
αα +GR,21

αα )(GA,11
αβ GR,12

βα −GA,12
αβ GR,22

βα )
]

(D7)

Appendix E: Evaluation of the Green function Ĝα,β connecting two interfaces

It will be shown that, at small energy compared to the gap, the advanced-advanced AR-AR transmission mode

〈GA,1,1
α,β GA,2,2

β,α 〉av can be replaced by the opposite of the advanced-retarded EC transmission mode −〈GA,1,1
α,β GR,1,1

β,α 〉av.
The Green function is expanded in powers of the exponential coefficient exp(−Rx/ξ) appearing in ĝα,β , giving

8

ĜA
α,β = M̂A

α,αĝ
A
α,βN̂

A
β,β +O

(

(gAα,β)
3
)

(E1)

M̂A
α,α =

(

Î − ĝAα,αt̂α,aĝ
A
a,at̂a,α

)−1

(E2)

N̂A
β,β =

(

Î − t̂β,bĝ
A
b,bt̂b,β ĝ

A
β,β

)−1

. (E3)

This expansion leads to

ĜA
α,β =

1

4





gA,1,1
α,β − gA,2,2

α,β + i
(

gA,1,2
α,β + gA,2,1

α,β

)

i(gA,1,1
α,β + gA,2,2

α,β ) + gA,1,2
α,β − gA,2,1

α,β

i
(

gA,1,1
α,β + gA,2,2

α,β

)

+ gA,2,1
α,β − gA,1,2

α,β −gA,1,1
α,β + gA,2,2

α,β + i
(

gA,1,2
α,β + gA,2,1

α,β

)



 . (E4)

One has ĝAα,β = ĝRα,β ≡ ĝα,β for energies within the gap. The off-diagonal Nambu components are vanishingly small if
ω ≪ ∆. It is deduced that

〈GA,1,1
α,β GA,2,2

β,α 〉av = −〈
(

g1,1α,β − g2,2α,β

)2

〉av − 〈
(

g1,2α,β + g2,1α,β

)2

〉av (E5)

〈GA,1,1
α,β GR,1,1

β,α 〉av = 〈
(

g1,1α,β − g2,2α,β

)2

〉av + 〈
(

g1,2α,β + g2,1α,β

)2

〉av, (E6)

leading to the identification of the advanced-advanced AR-AR transmission coefficient to the opposite of the advanced-
retarded EC transmission coefficient, for small energy compared to the gap and forNa0 >∼ ξ. Eq. (E5) has no imaginary

part because 〈g1,2α,βg
2,2
α,β〉av = 0 at small energy compared to the gap.

The fully dressed local Green function can be evaluated approximately by inverting the Dyson equation Ĝα,α =

ĝα,α + ĝα,αt̂α,aĝa,at̂a,αĜα,α, leading to GA,1,2
α,α = GA,2,1

α,α = 1/2W at energy small compared to the gap.
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