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GLOBAL EXISTENCE FOR A STRONGLY COUPLED

REACTION-DIFFUSION SYSTEMS WITH

NONLINEARITIES OF EXPONENTIAL GROWTH

BELGACEM REBIAI AND SAÏD BENACHOUR

Abstract. The aim of this study is to construct the invariant
regions in which we can establish the global existence of classical
solutions for reaction-diffusion systems with a general full matrix
of diffusion coefficients. Our techniques are based on invariant
regions and Lyapunov functional methods. The nonlinear reaction
term has been supposed to be of exponential growth.

1. Introduction

In this work, we are interested in global existence of classical solu-
tions to the following reaction-diffusion system

∂u

∂t
− a11∆u− a12∆v = f(u, v) in (0,+∞) × Ω,(1.1)

∂v

∂t
− a21∆u− a22∆v = g(u, v) in (0,+∞) × Ω,(1.2)

with the initial conditions:

(1.3) u(0, x) = u0(x), v(0, x) = v0(x) in Ω,

and the homogeneous boundary conditions:

(1.4) αu+(1−α)
∂u

∂ν
= 0, αv+(1−α)

∂v

∂ν
= 0 on (0,+∞)×∂Ω,

where Ω is an open bounded domain of class C1 in R
n, ∂

∂ν
denotes

the outward normal derivative on ∂Ω, α is a function of class C1 on
∂Ω such that 0 ≤ α ≤ 1 and the diffusion terms aij, i, j = 1, 2 are
supposed to be positive constants such that

(a12 + a21)
2 < 4a11a22,
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which reflects the parabolicity of the system and implies at the same
time that the matrix of diffusion

A =

(

a11 a12

a21 a22

)

is positive definite. The eigenvalues λ1 and λ2 (λ1 < λ2) of A are
positive.
If we put

a = min {a11, a22} and a = max {a11, a22}

then, the positivity of the diffusion terms implies that

λ1 < a ≤ a < λ2.

We also put

Σ1 =
{

(r, s) ∈ R
2 : µ2r ≤ s ≤ µ1r

}

,

Σ2 =

{

(r, s) ∈ R
2 :

1

µ2

s ≤ r ≤
1

µ1

s

}

,

where

(1.5) µ1 =
a21

a11 − λ1

> 0 > µ2 =
a21

a11 − λ2

.

We suppose:

(A1) f and g are continuously differentiable on Σ1 ∪ Σ2,

(A2) (−1)j(f(r, s), g(r, s)) ∈ Σj and µif(r, µir) = g(r, µir)

for all (r, s) ∈ Σi, i, j = 1, 2 (j 6= i),

(A3) g(r, s) − µjf(r, s) ≤ (−1)jψ(s− µjr)(g(r, s) − µif(r, s))

for all (r, s) ∈ Σi, i, j = 1, 2 (j 6= i),

where ψ is a nonnegative continuously differentiable function on [0,+∞)
such that there exists a constant β ≥ 1 satisfying lim

η→+∞
ηβ−1ψ(η) = ℓ

where ℓ is a nonnegative constant,

(A4) g(r, s) − µjf(r, s) ≤ Cϕ((−1)i(s− µir))e
α(s−µjr)β

for all (r, s) ∈ Σi, i, j = 1, 2 (j 6= i),

where C > 0, α > 0, β is the same as in (A3) and ϕ is any nonnega-
tive continuously differentiable function on [0,+∞) such that ϕ(0) = 0.

The initial data are assumed to be in Σ where Σ = Σ1 or Σ = Σ2.
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The present investigation is a continuation of results obtained in [24].
In this study, we will treat the case of a general full matrix of diffusion
coefficients and prove that if f and g satisfying (A1)-(A4), then Σ is an
invariant region for problem (1.1)-(1.4). Once the invariant regions are
constructed, we demonstrate that for any initial data in Σ satisfying

(1.6) ‖µiu0 − v0‖∞ <
8λ1λ2

αβℓn(λ1 − λ2)2
, ℓ > 0 when Σ = Σi, i = 1, 2,

problem (1.1)-(1.4) is equivalent to a problem for which the global exis-
tence follows from the technique based on Lyapunov functional method
(see, e.g., [3], [8], [14], [16], [18], [21] and [24]).

In [12] J. I. Kanel and M. Kirane proved the global existence of
solutions for a strongly coupled reaction-diffusion system with homo-
geneous Neumann boundary conditions and

g(u, v) = −f(u, v) = uvm, m > 0 is an odd integer,

under the conditions

• 0 < a22 − a11 < a21,

• 0 < a12 ≪ 1,

• |a22 − a11 + a12 − a21| <
γ1 + 1

γ1Cp

,

where

γ1 =
a22 − a11 −

√

(a22 − a11)2 + 4a12a21

2a12

< −1

and Cp is the same constant used in Theorem 1 of [20]. Later they
improved their results in [13] where they obtained the global existence
under the following assumptions

• a22 < a11 + a21,

• a12 < ε0 =
a11a22(a11 + a21 − a22)

a11a22 + a21(a11 + a21 − a22)
if a11 ≤ a22 < a11 + a21,

• a12 < min

{

1

2
(a11 + a21), ε0

}

if a22 < a11,

and

• |F (v)| ≤ CF (1 + |v|1−ε), vF (v) ≥ 0 for all v ∈ R,

where CF > 0, ε is any constant such that 0 < ε < 1 and

g(u, v) = −f(u, v) = uF (v).
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On the same direction, S. Kouachi [17] has proved the global exis-
tence of solutions for two-component reaction-diffusion systems with a
general full matrix of diffusion coefficients, nonhomogeneous boundary
conditions and polynomial growth conditions on the nonlinear terms
and he obtained in [16] the global existence of solutions for the same
system with homogeneous Neumann boundary conditions and

g(u, v) = ρF (u, v), f(u, v) = −σF (u, v), ρ > 0, σ > 0,

where

• F (u, v) ≤ Ceαvβ

, C > 0, α > 0, 0 < β ≤ 1, when − µ2 >
ρ

σ
,

• F (u, v) ≤ Ceαuβ

, C > 0, α > 0, 0 < β ≤ 1, when − µ2 <
ρ

σ
,

under these conditions

• ‖u0 − µ2v0‖∞ <
−8λ1λ2µ1(ρ+ σµ2)

αnµ2(ρ+ σµ1)(λ1 − λ2)2
, when − µ2 >

ρ

σ
,

• ‖u0 − µ1v0‖∞ <
8λ1λ2µ2(ρ+ σµ1)

αnµ1(ρ+ σµ2)(λ1 − λ2)2
, when − µ2 <

ρ

σ
,

where µ1 and µ2 are the same as in (1.5).

Many chemical and biological operations are described by reaction
diffusion systems with a full matrix of diffusion coefficients. The com-
ponents u (t, x) and v (t, x) can be represent either chemical concentra-
tions or biological population densities (see, e.g., E. L. Cussler [5] and
[6]).

We note that the resolution of the problem (1.1)-(1.4) is quite more
difficult. As a consequence of the blow-up examples found in [23], we
can prove that there is blow-up of the solutions in finite time for such
full systems even though the initial data are regular, the solutions are
positive and the nonlinear terms are negative, a structure that ensured
the global existence in the diagonal case.

Our goal is to understand how the results of the diagonal case extend
to the nondiagonal situation without any additional assumption on the
diffusion coefficients in the case of possiblity of growth faster than ex-
ponential for the reaction terms. For this purpose, we construct the
invariant regions in which we can demonstrate that for any initial data
in this regions satisfying (1.6), problem (1.1)-(1.4) is equivalent to a
problem for which the global existence follows from the same Lyapunov
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functional used in [24] when the reactive terms satisfies (A1)-(A4).

Throughout this work, we denote by ‖ · ‖p, p ∈ [1,+∞) the norm
in Lp(Ω) and ‖ · ‖∞ the norm in C(Ω) or L∞(Ω).

2. Local existence and invariant regions

The study of local existence and uniqueness of solutions (u, v) of
(1.1)-(1.4) follows from the basic existence theory for parabolic semi-
linear equations (see, e.g., [2], [9], [11] and [22]). As a consequence, for
any initial data in C(Ω) or L∞(Ω) there exists a T ∗ ∈ (0,+∞] such that
(1.1)-(1.4) has a unique classical solution on [0, T ∗)×Ω. Furthermore,
if T ∗ < +∞, then

lim
t↑T ∗

(‖u(t)‖∞ + ‖v(t)‖∞) = +∞.

Therefore, if there exists a positive constant C such that

‖u(t)‖∞ + ‖v(t)‖∞ ≤ C for all t ∈ [0, T ∗),

then, T ∗ = +∞.

Since the initial conditions are in Σ, then under the assumptions
(A1)-(A2), the next proposition says that the classical solution of
(1.1)-(1.4) on [0, T ∗) × Ω remains in Σ for all t in [0, T ∗).

Proposition 2.1. Suppose that the assumptions (A1)-(A2) are satis-
fied. Then for any (u0, v0) in Σ the classical solution (u, v) of problem
(1.1)-(1.4) on [0, T ∗) × Ω remains in Σ for all t in [0, T ∗).

Proof of Proposition 2.1. One starts with the case where Σ = Σ1.
Multiplying equations (1.1) one time through by µ1 and subtracting
(1.2) and another time by −µ2 and adding (1.2), then if we put

• z1 = µ1u− v and z2 = −µ2u+ v for all (u, v) ∈ Σ1,

• F1 = −µ1f + g and F2 = −µ2f + g for all (u, v) ∈ Σ1,

we get

∂z1

∂t
− λ1∆z1 = −F1(z1, z2) in (0,+ ∞) × Ω,(2.1)

∂z2

∂t
− λ2∆z2 = F2(z1, z2) in (0,+ ∞) × Ω.(2.2)

with the initial conditions:

(2.3) zi(0, x) = z0
i (x), i = 1, 2, in Ω,
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and the homogeneous boundary conditions:

(2.4) αzi + (1 − α)
∂zi

∂ν
= 0, i = 1, 2, on (0,+∞) × ∂Ω,

Since λ1 and λ2 are the eigenvalues of the matrix At, (1.1)-(1.4) is
equivalent to (2.1)-(2.4). Then to prove that Σ1 is an invariant region
for system (1.1)-(1.2) it is sufficient to prove that the region

(2.5)
{

(z0
1 , z

0
2) ∈ R

2 : z0
i ≥ 0, i = 1, 2

}

= [0,+∞)2

is invariant for system (2.1)-(2.2).
Since, from (A2), we have F1(0, z2) = 0 for all z2 ≥ 0 and F2(z1, z2) ≥ 0
for all (z1, z2) ∈ [0,+∞)2, then we obtain zi(t, x) ≥ 0, i = 1, 2 for all
(t, x) ∈ [0, T ∗) × Ω, thanks to the invariant regions method (see [25]).
As a consequence, Σ1 is an invariant region for (1.1)-(1.2).

For the case Σ = Σ2, the same reasoning with

• z1 = −µ1u+ v and z2 = −µ2u+ v for all (u, v) ∈ Σ2,

• F1 = −µ1f + g and F2 = µ2f − g for all (u, v) ∈ Σ2,

implies the invariance of [0,+∞)2, and then of Σ2. �

3. Global existence

Since λ1 and λ2 are the eigenvalues of the matrix At, then to prove
global existence of solutions for problem (1.1)-(1.4) we need to prove
it for problem (2.1)-(2.4).

Since we can use the same way to treat the two cases relating to
Σ = Σ1 or Σ = Σ2, we only deal with the first case.

Since, from (A2), we have F1 ≥ 0, then z1 satisfies the maximum
principle, i.e.,

‖z1(t)‖∞ ≤ ‖z0
1‖∞ for all t ∈ [0, T ∗).

Based on that, the problem of global existence reduces to establish the
uniform boundedness of z2 in [0, T ∗). By Lp-regularity theory for par-
abolic operator (see, e.g., [19]) it follows that it is sufficient to derive a
uniform estimate of ‖F2(z1, z2)‖p on [0, T ∗) for some p > n

2
.

The main result is stated in the following key proposition.

Proposition 3.1. Suppose that the assumptions (A1)-(A4) and the
restriction (1.6) are fulfilled. For every classical solution (z1, z2) of
(2.1)-(2.4) on [0, T ∗) × Ω, let the function

L : t 7−→

∫

Ω

[

δz1 + (M − z1)
−γeαp(z2+1)β

]

(x, t)dx,
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where α, β, γ, δ, p and M are positive constants such that

(3.1) β ≥ 1, ‖z0
1‖∞ < M <

2γ

αβℓn
and γ =

4λ1λ2

(λ1 − λ2)2
.

Then there exists δ > 0 and p > n
2

such that

(3.2) L is nonincreasing on [0, T ∗).

Before proving this proposition we first need the following lemma.

Lemma 3.2. Let (z1, z2) be a solution of (2.1)-(2.4) on [0, T ∗) × Ω,
then under the assumptions (A1)-(A4), we have

(3.3)

∫

Ω

F1(z1(x, t), z2(x, t))dx ≤ −
d

dt

∫

Ω

z1(x, t)dx

and there exists δ1 > 0 and p > n
2

such that
(3.4)
∫

Ω

[

αpβM(z2 + 1)β−1F2(z1, z2) − γF1(z1, z2)
]

eαp(z2+1)β

dx ≤ δ1

∫

Ω

F1(z1, z2)dx,

where α, β, γ and M are positive constants satisfying (3.1).

Proof of Lemma 3.2. It suffices to integrate the both sides of (2.1)
satisfied by z1 on Ω, to obtain (3.3).
Now, from (3.1), we get n

2
< γ

αβℓM
, so we can choose p such that

n
2
< p < γ

αβℓM
. According to the assumption (A3), we have

[

αpβM(z2 + 1)β−1F2(z1, z2) − γF1(z1, z2)
]

eαp(z2+1)β

≤
[

αpβM(z2 + 1)β−1ψ(z2) − γ
]

eαp(z2+1)β

F1(z1, z2).

Since αpβℓM < γ and (η + 1)β−1ψ(η) goes to ℓ as η → +∞, there
exists η0 > 0 such that for all η > η0, we obtain

[

αpβM(η + 1)β−1ψ(η) − γ
]

eαp(η+1)β

F1(ξ, η) ≤ 0.

On the other hand, if η is in the compact interval [0, η0], then the
continuous function

η 7−→
[

αpβM(η + 1)β−1ψ(η) − γ
]

eαp(η+1)β

is bounded. So that (3.4) immediately follows. �

Proof of Proposition 3.1. Differentiating L(t) with respect to t and
using the Green formula, one obtains

(3.5)
d

dt
L(t) = δ

d

dt

∫

Ω

z1(x, t)dx+ I + J,



8 BELGACEM REBIAI AND SAÏD BENACHOUR

where

I =

∫

∂Ω

[

λ1γ
∂z1

∂ν
+ λ2αpβ(M − z1)(z2 + 1)β−1∂z2

∂ν

]

(M − z1)
−γ−1eαp(z2+1)β

ds

−

∫

Ω

[

λ1γ(1 + γ)|∇z1|
2 + αpβγ(λ1 + λ2)(M − z1)(z2 + 1)β−1∇z1∇z2

+ λ2αpβ(M − z1)
2
(

β − 1 + αpβ(z2 + 1)β
)

(z2 + 1)β−2|∇z2|
2
]

(M − z1)
−γ−2eαp(z2+1)β

dx,

where ds denotes the (n− 1)-dimensional surface element and

J =

∫

Ω

[

αpβ(M − z1)(z2 + 1)β−1F2(z1, z2) − γF1(z1, z2)
]

(M−z1)
−γ−1eαp(z2+1)β

dx.

We now take advantage of (2.4) and β ≥ 1, to obtain that

I ≤ −

∫

Ω

Q(∇z1,∇z2)(M − z1)
−γ−2eαp(z2+1)β

dx,

where

Q(∇z1,∇z2) = λ1γ(1 + γ)|∇z1|
2 + αpβγ(λ1 + λ2)(M − z1)(z2 + 1)β−1∇z1∇z2

+λ2

(

αpβ(M − z1)(z2 + 1)β−1
)2

|∇z2|
2

is a quadratic form with respect to ∇z1 and ∇z2. The discriminant of
Q is given by

D = γ
(

αpβ(M − z1)(z2 + 1)β−1
)2 [

γ(λ1 − λ2)
2 − 4λ1λ2

]

.

From conditions (3.1) we have Q(∇z1,∇z2) ≥ 0 and consequently

(3.6) I ≤ 0.

Concerning the term J , since 0 ≤ z1 ≤ ‖z0
1‖∞ < M , we observe that

J ≤ (M−‖z0
1‖∞)−γ−1

∫

Ω

[

αpβM(z2 + 1)β−1F2(z1, z2) − γF1(z1, z2)
]

eαp(z2+1)β

dx.

Thanks to (3.4), we get δ1 > 0 such that

J ≤ δ1(M − ‖z0
1‖∞)−γ−1

∫

Ω

F1(z1, z2)dx.

Let δ = δ1(M − ‖z0
1‖∞)−γ−1 and using (3.3), we obtain

(3.7) J ≤ −δ
d

dt

∫

Ω

z1(x, t)dx.

From (3.5)-(3.7), we conclude that

d

dt
L(t) ≤ 0.

This concludes the proof of Proposition 3.1. �
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We can now establish the main result of this article.

Theorem 3.3. Under the assumptions (A1)-(A4), the classical solu-
tions of (1.1)-(1.4) with initial data in Σ1 satisfying (1.6) are global
and uniformly bounded on [0,+∞) × Ω.

Proof of Theorem 3.3. Let p be the same as in Proposition 3.1.
Since M−γ ≤ (M − ξ)−γ for all ξ ∈ [0, ‖z0

1‖∞], it follows that

‖F2(z1, z2)‖
p
p =

∫

Ω

|F2(z1, z2)|
pdx ≤MγKpL(t)

where
K = max

0≤ξ≤‖z0

1
‖∞

ϕ(ξ).

By Proposition 3.1, we deduce

‖F2(z1, z2)‖
p
p ≤MγKpL(0).

Consequently, F2(z1(t, .), z2(t, .)) is uniformly bounded in Lp(Ω) for all
t ∈ [0, T ∗) with p > n

2
. Using the regularity results for solutions of par-

abolic equations in [19], we conclude that the solutions of the problem
(1.1)-(1.4) are uniformly bounded on [0,+∞) × Ω. �

Remark 3.4. When ℓ is a nonnegative constant, we can replace the
restriction (1.6) by

ℓ‖µiu0 − v0‖∞ <
8λ1λ2

αβn(λ1 − λ2)2
when Σ = Σi, i = 1, 2,

and we observe that if ℓ = 0, then the initial conditions in Σ are given
arbitrarily.
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