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The aim of this study is to construct the invariant regions in which we can establish the global existence of classical solutions for reaction-diffusion systems with a general full matrix of diffusion coefficients. Our techniques are based on invariant regions and Lyapunov functional methods. The nonlinear reaction term has been supposed to be of exponential growth.

Introduction

In this work, we are interested in global existence of classical solutions to the following reaction-diffusion system ∂u ∂t a 11 ∆ua 12 ∆v = f (u, v) in (0, +∞) × Ω, (1.1) ∂v ∂t a 21 ∆ua 22 ∆v = g(u, v) in (0, +∞) × Ω, (1.2) with the initial conditions:

(1.3) u(0, x) = u 0 (x), v(0, x) = v 0 (x) in Ω, and the homogeneous boundary conditions:

(1.4) αu+(1-α) ∂u ∂ν = 0, αv +(1-α) ∂v ∂ν = 0 on (0, +∞)×∂Ω,

where Ω is an open bounded domain of class C 1 in R n , ∂ ∂ν denotes the outward normal derivative on ∂Ω, α is a function of class C 1 on ∂Ω such that 0 ≤ α ≤ 1 and the diffusion terms a ij , i, j = 1, 2 are supposed to be positive constants such that (a 12 + a 21 ) 2 < 4a 11 a 22 , which reflects the parabolicity of the system and implies at the same time that the matrix of diffusion A = a 11 a 12 a 21 a 22 is positive definite. The eigenvalues λ 1 and λ 2 (λ 1 < λ 2 ) of A are positive.

If we put a = min {a 11 , a 22 } and a = max {a 11 , a 22 } then, the positivity of the diffusion terms implies that

λ 1 < a ≤ a < λ 2 .
We also put

Σ 1 = (r, s) ∈ R 2 : µ 2 r ≤ s ≤ µ 1 r , Σ 2 = (r, s) ∈ R 2 : 1 µ 2 s ≤ r ≤ 1 µ 1 s ,
where

(1.5) µ 1 = a 21 a 11 -λ 1 > 0 > µ 2 = a 21 a 11 -λ 2 .
We suppose:

(A1) f and g are continuously differentiable on Σ 1 ∪ Σ 2 , (A2) (-1) j (f (r, s), g(r, s)) ∈ Σ j and µ i f (r, µ i r) = g(r, µ i r) for all (r, s) ∈ Σ i , i, j = 1, 2 (j = i),

(A3) g(r, s) -µ j f (r, s) ≤ (-1) j ψ(s -µ j r)(g(r, s) -µ i f (r, s)) for all (r, s) ∈ Σ i , i, j = 1, 2 (j = i),
where ψ is a nonnegative continuously differentiable function on [0, +∞) such that there exists a constant β ≥ 1 satisfying lim

η→+∞ η β-1 ψ(η) = ℓ where ℓ is a nonnegative constant, (A4) g(r, s) -µ j f (r, s) ≤ Cϕ((-1) i (s -µ i r))e α(s-µ j r) β for all (r, s) ∈ Σ i , i, j = 1, 2 (j = i),
where C > 0, α > 0, β is the same as in (A3) and ϕ is any nonnegative continuously differentiable function on [0, +∞) such that ϕ(0) = 0.

The initial data are assumed to be in Σ where Σ = Σ 1 or Σ = Σ 2 .

The present investigation is a continuation of results obtained in [START_REF] Rebiai | Global classical solutions for reaction-diffusion systems with nonlinearities of exponential growth[END_REF]. In this study, we will treat the case of a general full matrix of diffusion coefficients and prove that if f and g satisfying (A1)-(A4), then Σ is an invariant region for problem (1.1)- (1.4). Once the invariant regions are constructed, we demonstrate that for any initial data in Σ satisfying (1.6) 

µ i u 0 -v 0 ∞ < 8λ 1 λ 2 αβℓn(λ 1 -λ 2 ) 2 , ℓ > 0 when Σ = Σ i , i = 1, 2, problem (1.1)-(1.4
) is equivalent to a problem for which the global existence follows from the technique based on Lyapunov functional method (see, e.g., [START_REF] Barabanova | On the global existence of solutions of a reaction-diffusion equation with exponential nonlinearity[END_REF], [START_REF] Haraux | On a result of K. Masuda concerning reactiondiffusion equations[END_REF], [START_REF] Kirane | Global solutions to a system of strongly coupled reaction-diffusion equations[END_REF], [START_REF] Kouachi | Global existence of solutions in invariant regions for reactiondiffusion systems with a balance law and a full matrix of diffusion coefficients[END_REF], [START_REF] Kouachi | Global existence for a class of reaction-diffusion systems[END_REF], [START_REF] Masuda | On the global existence and asymptotic behavior of solutions of reaction-diffusion equations[END_REF] and [START_REF] Rebiai | Global classical solutions for reaction-diffusion systems with nonlinearities of exponential growth[END_REF]).

In [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations with a balance law[END_REF] J. I. Kanel and M. Kirane proved the global existence of solutions for a strongly coupled reaction-diffusion system with homogeneous Neumann boundary conditions and

g(u, v) = -f (u, v) = uv m , m > 0 is an odd integer, under the conditions • 0 < a 22 -a 11 < a 21 , • 0 < a 12 ≪ 1, • |a 22 -a 11 + a 12 -a 21 | < γ 1 + 1 γ 1 C p ,
where

γ 1 = a 22 -a 11 -(a 22 -a 11 ) 2 + 4a 12 a 21 2a 12 < -1
and C p is the same constant used in Theorem 1 of [START_REF] Lamberton | Equations d'évolution linéaires associées a des semi-groupes de contractions dans les espaces L p[END_REF]. Later they improved their results in [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations[END_REF] where they obtained the global existence under the following assumptions

• a 22 < a 11 + a 21 , • a 12 < ε 0 = a 11 a 22 (a 11 + a 21 -a 22 ) a 11 a 22 + a 21 (a 11 + a 21 -a 22 ) if a 11 ≤ a 22 < a 11 + a 21 , • a 12 < min 1 2 (a 11 + a 21 ), ε 0 if a 22 < a 11 , and 
• |F (v)| ≤ C F (1 + |v| 1-ε ), vF (v) ≥ 0 for all v ∈ R,
where C F > 0, ε is any constant such that 0 < ε < 1 and

g(u, v) = -f (u, v) = uF (v).
On the same direction, S. Kouachi [START_REF] Kouachi | Invariant regions and global existence of solutions for reactiondiffusion systems with full matrix of diffusion coefficients and nonhomogeneous boundary conditions[END_REF] has proved the global existence of solutions for two-component reaction-diffusion systems with a general full matrix of diffusion coefficients, nonhomogeneous boundary conditions and polynomial growth conditions on the nonlinear terms and he obtained in [START_REF] Kouachi | Global existence of solutions in invariant regions for reactiondiffusion systems with a balance law and a full matrix of diffusion coefficients[END_REF] the global existence of solutions for the same system with homogeneous Neumann boundary conditions and

g(u, v) = ρF (u, v), f (u, v) = -σF (u, v), ρ > 0, σ > 0,
where

• F (u, v) ≤ Ce αv β , C > 0, α > 0, 0 < β ≤ 1, when -µ 2 > ρ σ , • F (u, v) ≤ Ce αu β , C > 0, α > 0, 0 < β ≤ 1, when -µ 2 < ρ σ ,
under these conditions

• u 0 -µ 2 v 0 ∞ < -8λ 1 λ 2 µ 1 (ρ + σµ 2 ) αnµ 2 (ρ + σµ 1 )(λ 1 -λ 2 ) 2 , when -µ 2 > ρ σ , • u 0 -µ 1 v 0 ∞ < 8λ 1 λ 2 µ 2 (ρ + σµ 1 ) αnµ 1 (ρ + σµ 2 )(λ 1 -λ 2 ) 2 , when -µ 2 < ρ σ ,
where µ 1 and µ 2 are the same as in (1.5).

Many chemical and biological operations are described by reaction diffusion systems with a full matrix of diffusion coefficients. The components u (t, x) and v (t, x) can be represent either chemical concentrations or biological population densities (see, e.g., E. L. Cussler [START_REF] Cussler | Multicomponent diffusion[END_REF] and [START_REF] Cussler | Diffusion, Mass Transfer in Fluid Systems[END_REF]).

We note that the resolution of the problem (1.1)-(1.4) is quite more difficult. As a consequence of the blow-up examples found in [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF], we can prove that there is blow-up of the solutions in finite time for such full systems even though the initial data are regular, the solutions are positive and the nonlinear terms are negative, a structure that ensured the global existence in the diagonal case.

Our goal is to understand how the results of the diagonal case extend to the nondiagonal situation without any additional assumption on the diffusion coefficients in the case of possiblity of growth faster than exponential for the reaction terms. For this purpose, we construct the invariant regions in which we can demonstrate that for any initial data in this regions satisfying (1.6), problem (1.1)-(1.4) is equivalent to a problem for which the global existence follows from the same Lyapunov functional used in [START_REF] Rebiai | Global classical solutions for reaction-diffusion systems with nonlinearities of exponential growth[END_REF] when the reactive terms satisfies (A1)-(A4).

Throughout this work, we denote by • p , p ∈ [1, +∞) the norm in L p (Ω) and • ∞ the norm in C(Ω) or L ∞ (Ω).

Local existence and invariant regions

The study of local existence and uniqueness of solutions (u, v) of (1.1)-(1.4) follows from the basic existence theory for parabolic semilinear equations (see, e.g., [START_REF] Amann | Dynamic theory of quasilinear parabolic equations -I. Abstract evolution equations[END_REF], [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF], [START_REF] Hollis | Global existence and boundedness in reaction-diffusion systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). As a consequence, for any initial data in C(Ω) or L ∞ (Ω) there exists a T * ∈ (0, +∞] such that (1.1)-(1.4) has a unique classical solution on [0, T * ) × Ω. Furthermore, if T * < +∞, then

lim t↑T * ( u(t) ∞ + v(t) ∞ ) = +∞. Therefore, if there exists a positive constant C such that u(t) ∞ + v(t) ∞ ≤ C for all t ∈ [0, T * ), then, T * = +∞.
Since the initial conditions are in Σ, then under the assumptions (A1)-(A2), the next proposition says that the classical solution of (1.1)-(1.4) on [0, T * ) × Ω remains in Σ for all t in [0, T * ). Proof of Proposition 2.1. One starts with the case where Σ = Σ 1 . Multiplying equations (1.1) one time through by µ 1 and subtracting (1.2) and another time by -µ 2 and adding (1.2), then if we put

• z 1 = µ 1 u -v and z 2 = -µ 2 u + v for all (u, v) ∈ Σ 1 , • F 1 = -µ 1 f + g and F 2 = -µ 2 f + g for all (u, v) ∈ Σ 1 , we get ∂z 1 ∂t -λ 1 ∆z 1 = -F 1 (z 1 , z 2 ) in (0,+ ∞) × Ω, (2.1) ∂z 2 ∂t -λ 2 ∆z 2 = F 2 (z 1 , z 2 ) in (0,+ ∞) × Ω. (2.2)
with the initial conditions:

(2.3) z i (0, x) = z 0 i (x), i = 1, 2, in Ω,
and the homogeneous boundary conditions:

(2.4)

αz i + (1 -α) ∂z i ∂ν = 0, i = 1, 2, on (0, +∞) × ∂Ω,
Since λ 1 and λ 2 are the eigenvalues of the matrix A t , (1.1)-(1.4) is equivalent to (2.1)- (2.4). Then to prove that Σ 1 is an invariant region for system (1.1)-(1.2) it is sufficient to prove that the region

(2.5) (z 0 1 , z 0 2 ) ∈ R 2 : z 0 i ≥ 0, i = 1, 2 = [0, +∞) 2 is invariant for system (2.1)-(2.2).
Since, from (A2), we have F 1 (0, z 2 ) = 0 for all z 2 ≥ 0 and F 2 (z 1 , z 2 ) ≥ 0 for all (z 1 , z 2 ) ∈ [0, +∞) 2 , then we obtain z i (t, x) ≥ 0, i = 1, 2 for all (t, x) ∈ [0, T * ) × Ω, thanks to the invariant regions method (see [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF]). As a consequence, Σ 1 is an invariant region for (1.1)-(1.2).

For the case Σ = Σ 2 , the same reasoning with

• z 1 = -µ 1 u + v and z 2 = -µ 2 u + v for all (u, v) ∈ Σ 2 , • F 1 = -µ 1 f + g and F 2 = µ 2 f -g for all (u, v) ∈ Σ 2 ,
implies the invariance of [0, +∞) 2 , and then of Σ 2 .

Global existence

Since λ 1 and λ 2 are the eigenvalues of the matrix A t , then to prove global existence of solutions for problem (1.1)-(1.4) we need to prove it for problem (2.1)-(2.4).

Since we can use the same way to treat the two cases relating to Σ = Σ 1 or Σ = Σ 2 , we only deal with the first case.

Since, from (A2), we have F 1 ≥ 0, then z 1 satisfies the maximum principle, i.e.,

z 1 (t) ∞ ≤ z 0 1 ∞ for all t ∈ [0, T * ).
Based on that, the problem of global existence reduces to establish the uniform boundedness of z 2 in [0, T * ). By L p -regularity theory for parabolic operator (see, e.g., [START_REF] Ladyzenskaja | Linear and quasilinear equations of parabolic type[END_REF]) it follows that it is sufficient to derive a uniform estimate of

F 2 (z 1 , z 2 ) p on [0, T * ) for some p > n 2 .
The main result is stated in the following key proposition.

Proposition 3.1. Suppose that the assumptions (A1)-(A4) and the restriction (1.6) are fulfilled. For every classical solution (z 1 , z 2 ) of (2.1)-(2.4) on [0, T * ) × Ω, let the function

L : t -→ Ω δz 1 + (M -z 1 ) -γ e αp(z 2 +1) β (x, t)dx,
where α, β, γ, δ, p and M are positive constants such that

(3.1) β ≥ 1, z 0 1 ∞ < M < 2γ αβℓn and γ = 4λ 1 λ 2 (λ 1 -λ 2 ) 2 .
Then there exists δ > 0 and p > n 2 such that (3.2)

L is nonincreasing on [0, T * ).

Before proving this proposition we first need the following lemma.

Lemma 3.2. Let (z 1 , z 2 ) be a solution of (2.1)-(2.4) on [0, T * ) × Ω, then under the assumptions (A1)-(A4), we have

(3.3) Ω F 1 (z 1 (x, t), z 2 (x, t))dx ≤ - d dt Ω z 1 (x, t)dx
and there exists δ 1 > 0 and p > n 2 such that (3.4)

Ω αpβM (z 2 + 1) β-1 F 2 (z 1 , z 2 ) -γF 1 (z 1 , z 2 ) e αp(z 2 +1) β dx ≤ δ 1 Ω F 1 (z 1 , z 2 )dx,
where α, β, γ and M are positive constants satisfying (3.1).

Proof of Lemma 3.2. It suffices to integrate the both sides of (2.1) satisfied by z 1 on Ω, to obtain (3.3). Now, from (3.1), we get n 2 < γ αβℓM , so we can choose p such that n 2 < p < γ αβℓM . According to the assumption (A3), we have

αpβM (z 2 + 1) β-1 F 2 (z 1 , z 2 ) -γF 1 (z 1 , z 2 ) e αp(z 2 +1) β ≤ αpβM (z 2 + 1) β-1 ψ(z 2 ) -γ e αp(z 2 +1) β F 1 (z 1 , z 2 ).
Since αpβℓM < γ and (η + 1) β-1 ψ(η) goes to ℓ as η → +∞, there exists η 0 > 0 such that for all η > η 0 , we obtain αpβM (η + 1) β-1 ψ(η)γ e αp(η+1) β F 1 (ξ, η) ≤ 0.

On the other hand, if η is in the compact interval [0, η 0 ], then the continuous function η -→ αpβM (η + 1) β-1 ψ(η)γ e αp(η+1) β is bounded. So that (3.4) immediately follows.

Proof of Proposition 3.1. Differentiating L(t) with respect to t and using the Green formula, one obtains

(3.5) d dt L(t) = δ d dt Ω z 1 (x, t)dx + I + J,
where

I = ∂Ω λ 1 γ ∂z 1 ∂ν + λ 2 αpβ(M -z 1 )(z 2 + 1) β-1 ∂z 2 ∂ν (M -z 1 ) -γ-1 e αp(z 2 +1) β ds - Ω λ 1 γ(1 + γ)|∇z 1 | 2 + αpβγ(λ 1 + λ 2 )(M -z 1 )(z 2 + 1) β-1 ∇z 1 ∇z 2 + λ 2 αpβ(M -z 1 ) 2 β -1 + αpβ(z 2 + 1) β (z 2 + 1) β-2 |∇z 2 | 2 (M -z 1 ) -γ-2 e αp(z 2 +1) β dx,
where ds denotes the (n -1)-dimensional surface element and

J = Ω αpβ(M -z 1 )(z 2 + 1) β-1 F 2 (z 1 , z 2 ) -γF 1 (z 1 , z 2 ) (M -z 1 ) -γ-1 e αp(z 2 +1) β dx.
We now take advantage of (2.4) and β ≥ 1, to obtain that

I ≤ - Ω Q(∇z 1 , ∇z 2 )(M -z 1 ) -γ-2 e αp(z 2 +1) β dx,
where

Q(∇z 1 , ∇z 2 ) = λ 1 γ(1 + γ)|∇z 1 | 2 + αpβγ(λ 1 + λ 2 )(M -z 1 )(z 2 + 1) β-1 ∇z 1 ∇z 2 +λ 2 αpβ(M -z 1 )(z 2 + 1) β-1 2 |∇z 2 | 2
is a quadratic form with respect to ∇z 1 and ∇z 2 . The discriminant of Q is given by

D = γ αpβ(M -z 1 )(z 2 + 1) β-1 2 γ(λ 1 -λ 2 ) 2 -4λ 1 λ 2 .
From conditions (3.1) we have Q(∇z 1 , ∇z 2 ) ≥ 0 and consequently (3.6) I ≤ 0.

Concerning the term J, since 0 ≤ z 1 ≤ z 0 1 ∞ < M , we observe that

J ≤ (M -z 0 1 ∞ ) -γ-1
Ω αpβM (z 2 + 1) β-1 F 2 (z 1 , z 2 ) -γF 1 (z 1 , z 2 ) e αp(z 2 +1) β dx.

Thanks to (3.4), we get δ 1 > 0 such that 

J ≤ δ 1 (M -z 0 1 ∞ ) -γ-1 Ω F 1 (z 1 , z 2 )dx. Let δ = δ 1 (M -z 0 1 ∞ ) -γ-

Proposition 2 . 1 .

 21 Suppose that the assumptions (A1)-(A2) are satisfied. Then for any (u 0 , v 0 ) in Σ the classical solution (u, v) of problem (1.1)-(1.4) on [0, T * ) × Ω remains in Σ for all t in [0, T * ).
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		1 and using (3.3), we obtain
	(3.7)	J ≤ -δ	d dt Ω	z 1 (x, t)dx.
	From (3.5)-(3.7), we conclude that
		d dt	L(t) ≤ 0.
	This concludes the proof of Proposition 3.1.
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We can now establish the main result of this article. 

where

By Proposition 3.1, we deduce

Using the regularity results for solutions of parabolic equations in [START_REF] Ladyzenskaja | Linear and quasilinear equations of parabolic type[END_REF], we conclude that the solutions of the problem (1.1)-(1.4) are uniformly bounded on [0, +∞) × Ω.

Remark 3.4. When ℓ is a nonnegative constant, we can replace the restriction (1.6) by

and we observe that if ℓ = 0, then the initial conditions in Σ are given arbitrarily.