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Nekhoroshev estimates for finitely

differentiable quasi-convex Hamiltonians

Bounemoura Abed

February 8, 2010

Abstract

A major result concerning perturbations of integrable Hamiltonian
systems is given by Nekhoroshev estimates, which ensures exponen-
tial stability of all solutions provided the system is analytic and the
integrable Hamiltonian not too degenerate. In the particular but im-
portant case where the latter is quasi-convex, these exponential esti-
mates have been generalized by Marco and Sauzin if the Hamiltonian
is Gevrey regular, using a method introduced by Lochak in the ana-
lytic case. In this paper, using the same approach we will investigate
the situation where the Hamiltonian is assumed to be only finitely dif-
ferentiable, it is known that exponential stability does not hold but
nevertheless we will prove estimates of polynomial stability.

1 Introduction

In this paper, we are concerned with the stability properties of near-integrable
Hamiltonian systems of the form

{

H(θ, I) = h(I) + f(θ, I)

|f | < ε << 1

where (θ, I) ∈ T
n ×R

n are action-angles coordinates for the integrable part
h and f is a small perturbation in some suitable topology defined by a norm
|.|. More precisely, we are interested in the evolution of the action variables
I(t), which are trivially constant in the absence of perturbation.

The first known result in this direction is given by an application of the
KAM theory on the persistence of quasi-periodic solutions (see [Pös01] for a
recent exposition). Assuming h satisfy some non-degeneracy condition and
the system is analytic, if ε is sufficiently small there exists a constant c such
that

|I(t)− I0| ≤ c
√
ε, t ∈ R
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for “most” initial actions I0, more precisely for a set of large measure but
with empty interior. When n = 2, this is even true for all solutions but for
n > 3, the famous example of Arnold ([Arn64]) shows that there exist “un-
stable” solutions, along which the variation of the actions can be arbitrarily
large no matter how small the perturbation is. From its very beginning,
KAM theory was known to hold for non-analytic Hamiltonians (see [Mos62]
in the context of twist maps). It is now well established in various regular-
ity, including the C∞ case (essentially by Herman, see [Bos86] and [Féj04])
and the Gevrey case ([Pop04]). Following ideas of Moser, the theorem also
holds if H is only of class Ck, with k > 2n (see [Pös82], [Sal04], [SZ89] and
[Alb07]), even though the minimal number of derivatives is still an open
question, except in a special case for n = 2 ([Her86]).

Another fundamental result, which complements KAM theory, is given
by Nekhoroshev theorem ([Nek77], [Nek79]). If the integrable part h satisfy
some generic condition and the system is analytic, then for ε sufficiently
small there exist constants c1, c2, c3, a and b such that

|I(t)− I0| ≤ c1ε
b, |t| ≤ c2 exp(c3ε

−a)

for all initial actions I0. Hence all solutions are stable, not for all time,
but for an exponentially long time. In the special case where h is strictly
quasi-convex, a completely new proof of these estimates was given by Lochak
([Loc92]) using periodic averagings and simultaneous Diophantine approxi-
mation. The method of Lochak had many applications, in particular it was
used by Marco and Sauzin to extend Nekhoroshev theorem in the Gevrey
regular case under the quasi-convexity assumption ([MS02]). However, no
such estimates have been studied if the Hamiltonian is merely finitely dif-
ferentiable, and this is the content of the paper. We will prove below (the-
orem 2.1) that if H is of class Ck, for k ≥ 2, and h quasi-convex, then one
has the stability estimate

|I(t)− I0| ≤ c1ε
1

2n , |t| ≤ c2ε
− k−2

2n .

for some constants c1 and c2, and provided that ε is small enough. Of course,
under our regularity assumption the exponential estimates have been re-
placed by polynomial estimates, and earlier examples show that exponential
stability cannot possibly hold under such a weak regularity assumption (this
was discussed in [MS04]). The proof will use once again the ideas of Lochak
which, among other things, reduces the analytic input to its minimum and
we will also follow the implementation made by Marco and Sauzin in the
Gevrey case.

As we recalled, KAM theory for finitely differentiable Hamiltonians have
been widely studied, and so we believe that Nekhoroshev estimates under
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weaker regularity assumptions have their own interest. Moreover, for obvi-
ous reasons, examples of unstable solutions (the so-called Arnold diffusion)
are more easily constructed in the non-analytic case, and it is a natural
question to estimate the speed of instability (see [KL08a] and [KL08b] for
examples of class Ck with a polynomial speed of diffusion). Finally, one of
our motivation is to generalize these estimates using the method of [BN09],
where Lochak’s ideas are extended to handle analytic but Ck-generic unper-
turbed Hamiltonians, with k > 2n+ 2, but this appears more difficult.

2 Main result

We consider a Hamiltonian function H defined on the domain

DR = T
n ×BR

where BR is the open ball of Rn of radius R around the origin. We assume
that H is of class Ck, for an integer k ≥ 2, i.e. it is k-times differentiable
and all its derivatives up to order k extends continuously to the closure DR.
We denote by Ck(DR) the space of such functions, it is a Banach space with
the norm

|H|Ck(DR) = sup
0≤l≤k

sup
|α|=l

(

sup
x∈DR

|∂αH(x)|
)

where x = (θ, I), α = (α1, . . . , α2n) ∈ N
2n, |α| = α1 + · · ·+ α2n and

∂α = ∂α1

1 . . . ∂α2n
2n .

In case the Hamiltonian H = h depends only on the action variables, we
will simply write |h|Ck(BR).

Our Hamiltonian H ∈ Ck(DR) is assumed to be Ck-close to integrable,
that is of the form

{

H(θ, I) = h(I) + f(θ, I)

|f |Ck(DR) < ε << 1
(∗)

where h is the integrable part and f a small perturbation of size ε in the
Ck topology. Moreover, we may assume |h|Ck(BR) < M for some positive
constant M , and we will require that it satisfies the following quasi-convexity
assumption :

∀I ∈ BR,∀v ∈ R
n, ∇h(I).v = 0 =⇒ ∇2h(I)v.v ≥ m|v|2 (C)

for some constant m > 0.
Our main theorem is the following.
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Theorem 2.1. Let H as in (∗), with k ≥ 2 and h satisfying (C), and define

a =
k − 2

2n
, b =

1

2n
.

Then there exist ε0, c1 and c2 such that if ε ≤ ε0, all solutions (θ(t), I(t))
of H with I(0) ∈ BR/2 satisfy

|I(t)− I(0)| ≤ c1ε
b, |t| ≤ c2ε

−a.

First note that we have stated our theorem for H of class Ck, k ≥ 2, but
the statement also holds with no changes if H is of class Ck−1,1, k ≥ 1, that
is H is of class Ck−1 and its partial derivatives of order k − 1 are Lipschitz
continuous. For k = 2, this estimate is not useful since trivially all solutions
satisfy

|I(t)− I(0)| ≤ ε, |t| ≤ 1

hence the result is only interesting when k ≥ 3, and this is the case where
the regularity allows us to perform at least one averaging step.

Moreover, the time of stability obtained is “optimal” in the sense that
one can construct examples of unstable orbits with a polynomial speed of
diffusion, but we do not know what should be the optimal value of the
exponent of stability a. Note however that using the method of [BM10] one
can choose a arbitrarily close to (k − 2)(2(n − 1))−1.

Let us finally point out that if H is C∞, then it is an immediate conse-
quence of the above result that the action variables are stable for an interval
of time which is longer than any prescribed power of ε−1, but even in this
case exponential stability does not hold.

Then, as in the analytic or Gevrey case, we can also state a refined result
near resonances. Suppose Λ is a submodule of Zn of rank r, d = n− r and
let SΛ be the corresponding resonant manifold, that is

SΛ = {I ∈ BR | k.∇h(I) = 0, k ∈ Λ}.

We can prove the following statement, which actually contains the previous
one.

Theorem 2.2. Under the previous hypotheses, assume d(I(0), SΛ) ≤ σ
√
ε

for some constant σ > 0, and define

ad =
k − 2

2d
, bd =

1

2d
.

Then there exist ε′0, c
′
1 and c′2 such that if ε ≤ ε′0, one has

|I(t)− I(0)| ≤ c′1ε
bd , |t| ≤ c′2ε

−ad .
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For Λ = {0}, d = n and SΛ = BR, we recover theorem 2.1 and therefore
it will be enough to prove theorem 2.2.

The constants ε0, c1 and c2 depend only on h, more precisely they depend
on k, n,R,M and m while the constants ε′0, c

′
1 and c′2 also depends on σ and

Λ. However we will not give explicit value for them to avoid complicated and
rather meaningless expressions, hence we shall replace them by the symbol
· when it is convenient : for instance, we shall write u<· v when there exists
a constant c depending on the previous parameters but not on f such that
u < cv.

Plan of the paper
It is divided into two sections. The next section contains the analytical

part of the proof, where we will construct a normal form, that is a system
of local coordinates for our Hamiltonian which is more convenient to study
the evolution of the action variables. Then, in the last section we will con-
clude the proof using our convexity assumption and Dirichlet theorem on
simultaneous Diophantine approximation.

3 Analytical part

Given an action I ∈ BR and denoting by ω = ∇h(I) its frequency, we know
from classical averaging theory that the relevant part of the perturbation

f(θ, I) =
∑

k∈Zn

f̂k(I)e
i2πk.θ

is given by those harmonics associated to integers k ∈ Z
n that are in res-

onance with ω, that is such that k.ω = 0. Actually one can construct a
symplectic, close to identity transformation Φ, defined around I such that

H ◦ Φ = h+ g + f̃

where g contains only harmonics that resonates with ω and f̃ is a small
remainder, which can be made exponentially small if the system is analytic
as was first shown by Nekhoroshev. These are usually called resonant normal
forms, and to obtain them one has to deal with small divisors k.ω and
therefore technical estimates.

It is a remarkable fact discovered by Lochak ([Loc92]) that to prove
exponential estimates in the quasi-convex case, it is enough to average along
periodic frequencies, which are frequencies ω such that Tω ∈ Z

n \ {0} for
some T > 0 (see also [BN09] for an extension of this method for generic
integrable Hamiltonians). These periodic frequencies correspond to periodic
orbits of the unperturbed Hamiltonian. In this approach no small divisors
arise and therefore this special resonant normal is much more easy to prove.
Moreover, this method appears useful for non-analytic Hamiltonians, as was
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shown in the Gevrey case in [MS02] and as we will show here for the Ck

case.
In this section we will construct such a normal form, up to a polynomial

remainder, in 3.3 but before we will recall some useful estimates concerning
the Ck norm in 3.1 and then prove an intermediate statement in 3.2.

3.1 Elementary estimates

Let us begin by recalling some easy estimates. Given two functions f, g ∈
Ck(DR), their product fg belongs to Ck(DR) and by Leibniz rule

|fg|Ck(DR)<· |f |Ck(DR)|g|Ck(DR)

while their Poisson Bracket {f, g} belongs to Ck−1(DR), and by its definition
and Leibniz rule one gets

|{f, g}|Ck−1(DR)<· |f |Ck(DR)|g|Ck(DR)

where the above implicit constants depend only on k (in fact in the first
estimate one can trivially modify the definition of the Ck norm so as to
have a constant equal to one, but this will not be important for us). These
are very elementary facts, but we shall also need estimates concerning vector
fields, canonical transformations and compositions.

First, given a vector-valued function F ∈ Ck(DR,R
l), F = (F1, . . . , Fl)

and l ∈ N, we extend the norm componentwise, that is

|F |Ck(DR) = sup
1≤i≤l

|Fi|Ck(DR).

Now for a function f ∈ Ck(DR), we define its Hamiltonian vector field Xf

by
Xf = (∂If,−∂θf)

where
∂If = (∂I1f, . . . , ∂Inf), ∂θf = (∂θ1f, . . . , ∂θnf).

Obviously Xf ∈ Ck−1(DR,R
2n), and if we denote

|Xf |Ck−1(DR) = sup
{

|∂If |Ck−1(DR), |∂θf |Ck−1(DR)

}

then one has trivially

|Xf |Ck−1(DR) ≤ |f |Ck(DR).

Moreover, by classical theorems on ordinary differential equations, if Xf is of

class Ck−1 then so is Φf
t , the time-t map of the vector fieldXf when it exists.
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Assuming |∂θf |C0(DR) < r for some r < R (for example |Xf |C0(DR) < r),
then by the mean value theorem

Φf = Φf
1 : DR−r −→ DR

is a well-defined Ck−1-embedding. In the case f is integrable, one can choose
r = 0.

In the sequel, we will need to estimate the Ck norm of Φf in terms of the
Ck norm of the vector field Xf . More precisely we need the rather natural
fact that Φf is Ck close to the identity when Xf is Ck close to zero. This
is trivial for k = 0, but in the general case, this follows by induction on k

using on one hand the relation

Φf
t = Id+

∫ t

0
Xf ◦ Φf

sds

and on the other the formula of Faà di Bruno (see [AR67] for example),
which gives bounds of the form

|F ◦G|Ck <· |F |Ck |G|kCk

and also
|F ◦G|Ck <· |F |C1 |G|kCk + |F |Ck |G|kCk−1

for Ck vector-valued functions on appropriate domains (once again, the
above implicit constants depend only on k). Let us state this a lemma,
for which we refer to [DH09], Lemma 3.15 and appendix C, for a detailed
proof.

Lemma 3.1. Let Xf ∈ Ck(DR,R
2n), and assume that |Xf |C0(DR) < r and

|Xf |Ck(DR) < 1. (1)

Then we have
|Φf − Id|Ck(DR−r)<· |Xf |Ck(DR).

The above implicit constant depends only on k and R. Now if H ∈
Ck(DR), under the above hypotheses we have H ◦ Φf ∈ Ck(DR−r) and the
estimate

|H ◦ Φf |Ck(DR−r)<· |H|Ck(DR)|Φf |kCk(DR−r)
(2)

follows trivially from Faà di Bruno formula.

3.2 The linear case

Following [MS02], we change for a moment our setting and we consider a
perturbation of a linear Hamiltonian, more precisely the Hamiltonian

{

H(θ, I) = l(I) + f(θ, I)

|f |Ck(Dρ) < µ << 1
(∗∗)
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where ρ is a fixed number and l(I) = ω.I is a linear Hamiltonian with a
T -periodic frequency ω. Recall that the latter means that Tω ∈ Z

n \{0} for
some T > 0, and in this context our small parameter is µ.

In the sequel, ω will be chosen of the form ∇h(I∗) for some action I∗ ∈
BR, hence we may assume |ω|<· 1 and therefore we may write

|Φl
t|Ck(Dρ)<· 1 (3)

for t ∈ [0, T ]. In the proposition below, we will construct a “global” nor-
mal form for the Hamiltonian (∗∗), that we will use in the next section
to produce a “local” normal form around periodic orbits for our original
Hamiltonian (∗).

Proposition 3.2. Consider H as in (∗∗) with k ≥ 2, and assume

Tµ<· 1. (4)

Then there exists a C2 symplectic transformation

Φ : Dρ/2 → Dρ

with |Φ− Id|C2(Dρ/2)
<·Tµ such that

H ◦Φ = l + g + f

with {g, l} = 0 and the estimate

|g|C2(Dρ/2)
<·µ, |f |C2(Dρ/2)

<· (Tµ)k−2µ.

First note that {g, l} = 0 means exactly that ∂θg.ω = 0 and expanding g

in Fourier series, one easily sees that it contains only harmonics associated
to integers k satisfying k.ω = 0. Therefore the proposition below is indeed
a resonant normal form, up to a polynomial remainder.

Note also that we need our transformed Hamiltonian H ◦ Φ, and hence
our transformation Φ, to be at least of class C2 simply because we need our
transformed vector field to be of class C1 to have existence and uniqueness
of solutions (or course, a Lipschitz regularity would have been enough). This
explains the factor (k − 2) in our stability exponent a.

Proof. Our transformation Φ will be obtained by a finite composition of
averaging transformations. Let us define

r =
ρ

2(k − 2)

and for j ∈ {0, . . . , k − 2}, let

ρj = ρ− jr.
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Then we claim that for any j ∈ {0, . . . , k− 2}, there exists Ck−j symplectic
transformation Φj : Dρj → Dρ with |Φj − Id|Ck−j(Dρj )

<·Tµ such that

H ◦ Φj = l + gj + fj

with {gj , l} = 0 and the estimate

|gj |Ck−j(Dρj )
<·µ, |fj|Ck−j(Dρj )

<· (Tµ)jµ.

The proposition follows easily by taking Φ = Φk−2, g = gk−2 and f = fk−2.
We will prove the claim by induction on j ∈ {0, . . . , k − 2}. For j = 0,

there is nothing to prove since we can simply write H = l + g0 + f0 with
g0 = 0, f0 = f and therefore Φ0 is the identity. Now assume the claim is
true for some j ∈ {0, . . . , k − 3}, and consider

Hj = H ◦ Φj = l + gj + fj.

Let us define

[fj] =
1

T

∫ T

0
fj ◦Φl

tdt

and

χj =
1

T

∫ T

0
(fj − [fj]) ◦Φl

ttdt.

We have
|[fj]|Ck−j(Dρj )

≤ |fj ◦ Φl
t|Ck−j(Dρj )

hence by (2) and (3) we obtain

|[fj]|Ck−j(Dρj )
<· |fj|Ck−j(Dρj )

and with our hypotheses of induction, this gives

|[fj]|Ck−j(Dρj )
<· (Tµ)jµ.

Similarly we have

|χj|Ck−j(Dρj )
<·T (Tµ)jµ = (Tµ)j+1

and the latter can also be estimated by

|χj |Ck−j(Dρj )
<·Tµ

by our condition (4).
If we let Φχj be the time-one map of the Hamiltonian vector field gen-

erated by χj , then we will show that the map

Φj+1 = Φj ◦ Φχj
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satisfies the assumptions.
Indeed, thanks to our condition (4), we can ensure that Φχj , which is of

class Ck−j−1, is a well-defined embedding

Φχj : Dρj+1
−→ Dρj .

Moreover, as |Xχ|Ck−j(Dρj
)<·Tµ and using once again (4), we can arrange

condition (1) and apply lemma 3.1 to obtain

|Φχj − Id|Ck−j−1(Dρj+1
)<·Tµ.

Now we have

|Φj+1 − Id|Ck−j−1(Dρj+1
) = |Φj ◦Φχj − Φχj +Φχj − Id|Ck−j−1(Dρj+1

)

≤ |(Φj − Id) ◦ Φχj |Ck−j−1(Dρj+1
)

+ |Φχj − Id|Ck−j−1(Dρj+1
)

<· |Φj − Id|Ck−j(Dρj
) + |Φχj − Id|Ck−j−1(Dρj+1

)

where we have used (2) in the last line. By our hypotheses of induction, this
eventually gives

|Φj+1 − Id|Ck−j−1(Dρj+1
)<·Tµ.

Now by Taylor formula with integral remainder, we can expand

Hj+1 = H ◦ Φj+1 = h+ gj+1 + fj+1

with

gj+1 = gj + [fj ], fj+1 =

∫ 1

0
{gj + f t

j , χ} ◦ Φχ
t dt

where f t
j = tfj + (1 − t)[fj ], as one can check by a standard calculation.

Since {gj , l} = 0 by our hypothesis of induction and obviously {[fj ], l} = 0,
we have {gj+1, l} = 0 together with the estimate

|gj+1|Ck−j(Dρj )
≤ |gj |Ck−j(Dρj )

+ |[fj ]|Ck−j(Dρj )

<· µ+ (Tµ)jµ

<· µ(1 + (Tµ)j)

<· µ

using (4). For the remainder, using (2) and the trivial estimate concerning
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the Poisson bracket we compute

|fj+1|Ck−j−1(Dρj+1
) <· |{gj + f t

j , χ} ◦ Φχ
t |Ck−j−1(Dρj+1

)

<· |{gj + f t
j , χ}|Ck−j−1(Dρj )

<· |{gj , χ}|Ck−j−1(Dρj )
+ |{f t

j , χ}|Ck−j−1(Dρj )

<· |gj |Ck−j(Dρj )
|χ|Ck−j(Dρj )

+ |f t
j |Ck−j(Dρj )

|χ|Ck−j(Dρj )

<· µ(Tµ)j+1 + µ(Tµ)j(Tµ)j+1

<· µ(Tµ)j+1(1 + (Tµ)j)

<· µ(Tµ)j+1

using once again (4). This concludes the proof.

3.3 Normal form

Now let us come back to our original setting which is the Hamiltonian

{

H(θ, I) = h(I) + f(θ, I)

|f |Ck(DR) < ε << 1.

We will say that an action I∗ ∈ BR is T -periodic if its frequency vector
∇h(I∗) is T -periodic. In the proposition below, we will fix a T -periodic
action I∗, l will be the linear integrable Hamiltonian l(I) = ω.I associated
to its periodic frequency ω = ∇h(I∗) and we denote by

ΠI : T
n ×BR → BR

the projection onto action space.

Proposition 3.3 (Normal form). Suppose H as in (∗), and under the pre-
vious hypotheses, let µ > 0 such that

ε<·µ2, µ<· 1, Tµ<· 1. (5)

Then there exists a C2 symplectic transformation

Φ : Tn ×B(I∗, µ) → T
n ×B(I∗, 2µ)

with |ΠIΦ− IdI |C0(B(I∗,µ))<·Tµ such that

H ◦ Φ = h+ g + f̃

with {g, l} = 0 and the estimate

|g + f̃ |C0(Tn×B(I∗,µ))<·µ2, |∂θ̃f̃ |C0(Tn×B(I∗,µ))<· (Tµ)k−2µ2.
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Let us immediately explain how such coordinates will be used in the
sequel. If we denote them by (θ̃, Ĩ), then writing down the equation of
motions for H̃ = H ◦ Φ, using the fact that ∂θ̃g.ω = 0 and the mean value

theorem, one shows that Ĩ(t) remains close to the line generated by ω passing
through Ĩ(0), for an interval of time governed by the size of ∂θ̃f̃ . Hence any
only potential drift has to occur in the direction transversal to ω. When
we come back to the original coordinates (θ, I), this picture is only slightly
distorted since the projection of Φ onto action space is close to identity.

Proof. Without loss of generality, we may assume h(I∗) = 0. To analyze our
Hamiltonian H in a neighbourhood of size µ around I∗, we translate and
rescale the action variables using the map

σµ : (θµ, Iµ) 7−→ (θ, I) = (θµ, I∗ + µIµ)

which sends the domain D2 = T
n × B2 onto T

n × B(I∗, 2µ), and note that
by the second part of condition (5), we can assume that the latter domain
is included in DR. Let

Hµ = µ−1(H ◦ σµ)
be the rescaled Hamiltonian, so that Hµ is defined on D2 and it can be
written as

Hµ(θ, I
µ) = µ−1H(θ, I∗ + µIµ) = µ−1h(I∗ + µIµ) + µ−1f(θ, I∗ + µIµ)

for (θ, Iµ) ∈ D2. Now using Taylor formula we can expand h around I∗ to
obtain

h(I∗ + µIµ) = µω.Iµ + µ2

∫ 1

0
(1− t)∇2h(I∗ + tµIµ)Iµ.Iµdt

= µω.Iµ + µ2hµ(I
µ)

where we have set

hµ(I
µ) =

∫ 1

0
(1− t)∇2h(I∗ + tµIµ)Iµ.Iµdt

and therefore we can write
Hµ = l + fµ

with
fµ = µhµ + µ−1(f ◦ σµ).

Now we know that |f |Ck(DR) < ε<·µ2 from the first part of condition (5)
and |h|Ck(DR)<· 1 so we obviously have

|fµ|Ck(D2)<·µ.
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Therefore using the last part of our condition (5) we can apply the propo-
sition 3.2, with ρ = 2, to the Hamiltonian Hµ = l + fµ : there exists a C2

symplectic transformation Φµ : D1 → D2 with |Φµ − Id|C2(D1)<·Tµ such
that

Hµ ◦Φµ = l + gµ + f̃µ

with {gµ, l} = 0 and the estimate

|gµ|C2(D1)<·µ, |f̃µ|C2(D1)<· (Tµ)k−2µ.

Moreover, as we had fµ = µhµ + µ−1(f ◦ σu) with hµ integrable, we can
write

gµ = µhµ + f̂µ

with {f̂µ, l} = 0 and |f̂µ|C2(D1)<·µ, and so the transformed Hamiltonian can
also be written

Hµ ◦ Φµ = l + µhµ + f̂µ + f̃µ.

Now scaling back to our original Hamiltonian, we define Φ = σµ ◦Φµ ◦ σ−1
µ ,

therefore
Φ : B(I∗, µ) −→ B(I∗, 2µ)

and one has

H ◦Φ = µHµ ◦ Φµ ◦ σ−1
µ

= µ(l + µh′µ + f̂µ + f̃µ) ◦ σ−1
µ

= (µl + µ2hµ) ◦ σ−1
µ + µf̂µ ◦ σ−1

µ + µf̃µ ◦ σ−1
µ .

Observe that (µl + µ2hµ) ◦ σ−1
µ = h, so we may define

g = µf̂µ ◦ σ−1
µ , f̃ = µf̃µ ◦ σ−1

µ

and write
H ◦ Φ = h+ g + f̃ .

It is obvious that {g, l} = 0 with

|g|C0(Tn×B(I∗,µ)) ≤ µ|f̂µ|C0(D1)<·µ2

and similarly

|f̃ |C0(Tn×B(I∗,µ)) ≤ µ|f̃µ|C0(D1)<· (Tµ)k−2µ2 <·µ2

so that
|g + f̃ |C0(Tn×B(I∗,µ))<·µ2.

Moreover, as ∂θ̃ f̃ = µ∂θ̃f̃µ then

|∂θ̃f̃ |C0(Tn×B(I∗,µ))<· (Tµ)k−2µ2

and finally
|ΠIΦ− IdI |C0(B(I∗,µ)) <·Tµ.

is trivial. This ends the proof.
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4 Proof of theorem 2.2

Now we can complete the proof of our theorem 2.2 in the spirit of Lochak, fol-
lowing three elementary steps that use successively some arithmetic (simul-
taneous Diophantine approximation), some analysis (normal form around
periodic orbits) and some geometry (quasi-convexity). The analysis has
been done in the previous section, and the arithmetic and geometry are ex-
actly the same as in the analytic case or the Gevrey case. Therefore instead
of rewriting proofs which are well-known, we will merely explain the ideas
and state the relevant results which can be found in [Loc92] and [MS02].

Let us begin the arithmetic part, since in order to use our proposition 3.3
(the normal form), we will need to show that any action I0 ∈ BR/2, which
is close to some resonant surface SΛ, can be approximated by a periodic
action. Let ω0 = ∇h(I0), then using the isoenergetic non-degeneracy of
h, that is the non-degeneracy of the map h restricted to an energy level
(which is easily implied by quasi-convexity), it is enough to approximate ω0

by a periodic vector ω. If Λ has rank n − 1, this is totally obvious, since
necessarily we can write Λ = ω⊥ ∩ Z

n for some periodic vector ω. Now in
the case where Λ has rank r = n−d with d > 1, this approximation is given
by a theorem of Dirichlet, which moreover gives an explicit bound on its
period T .

Proposition 4.1. Let I0 ∈ BR/2, Λ a submodule of Zn of rank r = n − d,
with d > 1 and Q be a real number such that

Q ·> 1. (6)

Then there exists a T -periodic action I∗ ∈ BR such that

|I0 − I∗|<· max
(

d(I0, SΛ), T
−1Q− 1

d−1

)

and the period satisfy
1<·T <·Q.

The proof of the above proposition can be found in [MS02], Corollary
3.2.

Now it remains to explain how the quasi-convexity hypothesis (C) on h

together with the normal form obtained in proposition 3.3 will enable us to
bound the variation |I(t)− I0| for an initial action I0 close to some periodic
action I∗. The idea goes as follows.

Let ω = ∇h(I∗). We have already explained after proposition 3.3 how
in those new coordinates the evolution of the actions is bounded in the
directions generated by ω, that is if F is the hyperplane orthogonal to ω,
then Ĩ(t) remains close to the affine subspace Ĩ0 + F for an interval of
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time |t| ≤ τ which is governed by the size of the remainder in the normal
form. But by preservation of energy, for all time Ĩ(t) remains close to the
unperturbed energy hypersurface E0 = {Ĩ ∈ BR | h(Ĩ) = h(Ĩ0)}, and as the
latter is strictly convex by quasi-convexity of h, the connected component
of Ĩ0 in E0 ∩ (Ĩ0 + F ) is in fact bounded and so is the variation |Ĩ(t) − Ĩ0|
for |t| ≤ τ .

This idea is formalized in the proposition below. Once again, I∗ is a
T -periodic action and l is the linear Hamiltonian with periodic frequency
ω = ∇h(I∗).

Proposition 4.2. Under the previous hypotheses, let r > 0, τ > 0 and

H̃ = h+ g + f̃ ∈ C2(Tn ×B(I∗, r))

with h satisfying (C), {g, l} = 0 and the estimates

|g + f̃ |C0(Tn×B(I∗,r)) < r2, |∂θ̃ f̃ |C0(Tn×B(I∗,r)) < r2τ−1.

If
r <· 1 (7)

then for any Ĩ0 ∈ B(I∗, r), the solution satisfies

|Ĩ(t)− Ĩ0|<· r, |t| ≤ τ.

Once again, we refer to [MS02], Corollary 3.1, for a complete proof.

Let us not conclude the proof of theorem 2.2. In a first step we will use
proposition 4.1 to find a periodic action close to our initial action, then in
a second step we will apply proposition 3.3 to find adapted coordinates and
the third step will consist in applying proposition 4.2 to bound the evolu-
tion of the action variables in those coordinates, and hence in the original
coordinates.

Proof of theorem 2.2. Let I0 ∈ BR/2, Λ a submodule of Zn of rankm = n−d,
and we assume that d(I0, SΛ)<·

√
ε (note that this last assumption is void

if Λ is trivial).

First step. In the case d = 1, any action I ∈ SΛ has a frequency ∇h(I)
which is a multiple of some non-zero vector k∗ ∈ Z

n, therefore we can choose
a periodic action I∗ ∈ SΛ so that

|I0 − I∗| = d(I0, SΛ)<·
√
ε

and the period T trivially satisfy T <· 1. In the case d > 1, we apply propo-
sition 4.1 with

Q=· ε− d−1

2d .
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and the condition (6) gives a first smallness condition on ε. Observe that

Q
− 1

d−1 =· ε 1

2d , hence the periodic action I∗ given by the proposition satisfy

|I0 − I∗|<· max
(

d(I0, SΛ), T
−1Q− 1

d−1

)

<·T−1ε
1

2d .

and the period T is estimated by

1<·T <· ε− d−1

2d . (8)

Second step. Having found a periodic action, we will now apply propo-
sition 3.3 with

µ=·T−1ε
1

2d .

With this choice, the first part of condition (5) is satisfied thanks to the
estimate (8) on the period T and the others give only further smallness
conditions on ε. Applying the proposition, we have a C2 symplectic trans-
formation

Φ : Tn ×B(I∗, µ) → T
n ×B(I∗, 2µ)

with |ΠIΦ− Id|C0(B(I∗,µ)) <·Tµ such that

H ◦ Φ = h+ g + f̃

with {g, l} = 0 and the estimate

|g + f̃ |C0(Tn×B(I∗,µ))<·µ2, |∂θ̃f̃ |C0(Tn×B(I∗,µ))<· (Tµ)k−2µ2.

Let us write H̃ = H ◦Φ and (θ̃, Ĩ) are the new coordinates in T
n×B(I∗, µ).

Third step. Now we set

r=·µ, τ =· (Tµ)k−2.

and we apply proposition 4.2 to the Hamiltonian H̃. To do so, we need
to impose condition (7) and this gives our last smallness condition on ε.
Therefore we find

|Ĩ(t)− Ĩ0|<·µ, |t|<· (Tµ)k−2

and recalling that

µ=·T−1ε
1

2d <· ε 1

2d

this gives

|Ĩ(t)− Ĩ0|<· ε
1

2d , |t|<· εk−2

2d .

Now since
|ΠIΦ− Id|C0(B(I∗,µ))<·Tµ<· ε 1

2d

standard arguments gives the conclusion

|I(t)− I0|<· ε
1

2d , |t|<· εk−2

2d .

This ends the proof.

Acknowledgements. The author thanks Laurent Niederman and Jean-
Pierre Marco.
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[Pös82] J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,
Comm. Pure Appl. Math. 35 (1982), no. 5, 653–696.

[Pös01] , A lecture on the classical KAM theory, Katok, Anatole
(ed.) et al., Smooth ergodic theory and its applications (Seattle,
WA, 1999). Providence, RI: Amer. Math. Soc. (AMS). Proc. Symp.
Pure Math. 69, 707-732 (2001), 2001.

[Sal04] D.A. Salamon, The Kolmogorov-Arnold-Moser theorem, Mathe-
matical Physics Electronic Journal 10 (2004), 1–37.

[SZ89] D.A. Salamon and E. Zehnder, KAM theory in configuration space,
Comment. Math. Helv. 64 (1989), no. 1, 84–132.

18


