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Denys Dutykh1, Raphaël Poncet2, and Frédéric Dias3 ∗
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Abstract

A novel tool for tsunami wave modelling is presented. This tool has the poten-
tial of being used for operational purposes: indeed, the numerical VOLNA code is
able to handle the complete life-cycle of a tsunami (generation, propagation and
run-up along the coast). The algorithm works on unstructured triangular meshes
and, thus, can be run in arbitrary complex domains. It is often the case since nat-
ural coasts tend to be of fractal shape [SBG04]. This paper contains the detailed
description of the finite volume scheme implemented in the code. We explain the
numerical treatment of the wet/dry transition. This point is crucial for accurate
run-up computation. Most existing tsunami codes use semi-empirical techniques at
this stage, which are not always sufficient. The main reason is that people evacua-
tion is decided on the base of inundation maps which are produced with this type
of numerical tools. Finally we present several realistic test cases that partially val-
idate our algorithm. Comparisons with analytical solutions and experimental data
are performed. Finally the main conclusions are outlined and the perspectives for
future research presented.
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1 Introduction

After the Boxing Day tsunami [SB06] there is no need to explain the im-
portance of research on tsunami waves. One of the primary objectives in this
field consists in establishing and developing Tsunami Warning Systems (TWS)
[Tat97, TGB+05]. This task is non trivial as explained by Synolakis [Syn05]:

For reference, the United States and Japan took more than 20 years to
develop validated numerical models to predict tsunami evolution. And it
took the US National Oceanic and Atmospheric Administration 30 years
to fully develop its bottom-pressure recorders, which have been reliably
detecting tsunamis for the past ten years.

After the Boxing Day tsunami, while developing their own national and re-
gional capabilities, countries in the Indian Ocean and the Caribbean Sea have
asked the PTWC (Pacific Tsunami Warning Center) to act as their interim
warning center. India and Australia now have fully working national centers,
while the National Oceanic and Atmospheric Administration of the U.S. has
assisted both with instrumentation and the sophisticated forecast technology
used in the Pacific. Europe however is trying to reinvent the early warning
wheel. As a result, the Mediterranean remains the only world ocean or sea
unprotected by any warning system.

The mathematical modelling and computation of propagating tsunami waves
play an important rôle in TWS. Precision and robustness of the algorithm will
affect performance and reliability of the whole system.

The importance of tsunami generation modelling is often underestimated by
the scientific community. During several years the research of our group was
focused on this topic and many interesting results were obtained [DD07c,
Dut07, DDK06, KDD07, DD09b, DD10]. We tried to incorporate some recent
developments [DD07c] from this field into the VOLNA code.

It is difficult to find a topic in numerical analysis of hyperbolic PDEs which
has been studied more than the numerical solution to the Nonlinear Shallow
Water Equations (NSWE). The numerical scheme presented in this paper is
not completely novel. The discretization methods used in VOLNA can be
found in the modern literature on finite volumes methods [Kro97, BO04]. The
main purpose here is to present a tool for tsunami wave modelling which covers
the whole spectrum from generation to inundation. The emphasis is on the
technical work which is typical of a numerical analyst and software developer.
Tsunami practicioners can then concentrate on the physical aspects of tsunami
propagation.
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Nowadays, one is facing a somewhat strange situation. On one hand, there
are only a few truly operational codes for tsunami wave modelling: MOST,
NAMI, ComCot [Ima96, TG97, GOSI97, LWC98]. The numerical schemes
used in these codes essentially correspond to the state of the art of the eight-
ies. On the other hand, there is a plethora of NSWE codes developed in aca-
demic environments [Gla88, Cas90, Tor92, BDDV98, AC99, VC99, AGN05,
BQ06, GNVC00, GHS03, ABB+04, KCY07, Geo06, GL06, ZCIM02, CIM+00,
NPPN06, CFGR+05, WMC06, Geo08, DKK07]. These codes use modern nu-
merical methods but most of them run have been developed for rectangular
domains and Cartesian meshes. They can be successfully used to test new
numerical ideas, but these tools have little interest for tsunami operational
research. This is why we had the idea to develop VOLNA . We tried to
combine modern numerical techniques for hyperbolic systems with real world
application-oriented design. The VOLNA code can be run efficiently in re-
alistic environments. It was shown that natural coasts tend to have fractal
forms [SBG04]. Hence, unstructured meshes are a natural choice in this type
of situations.

The present article is organised as follows. In Section 2 the physical context of
the study and some motivation for the choice of the mathematical model are
presented. Section 3 contains a detailed description of the numerical method
implemented in the VOLNA code. Then, we show in Section 4 some com-
putations, which validate and illustrate the capabilities of VOLNA . Finally
the main conclusions are outlined and the perspectives for future research
presented in Section 5.

2 Physical context and mathematical model

In this study we focus on long wave propagation over realistic bathymetry. A
sketch of the physical problem under investigation is given on Fig. 1. Let us
explain the main assumptions and the domain of applicability of the VOLNA

code.

Introduce some characteristic lengths. We denote by a0 the typical wave am-
plitude, by h0 the average depth and by ℓ the characteristic wave length.
Several dimensionless numbers can be built from these three quantities, but
traditionally one introduces the following two:

ε =
a0
h0

, µ2 =

(

h0

ℓ

)2

.

The first parameter ε measures the wave nonlinearity (ε ≪ 1 means than
nonlinearity is weak) while the second parameter µ2 quantifies the importance
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Fig. 1. Sketch of the fluid domain.

of dispersive effects (µ≪ 1 means than dispersion is weak). Taking a typical
megatsunami offshore with roughly

a0 ≃ 0.5 m, h0 ≃ 4 km, ℓ ≃ 100 km

yields ε = 1.25 × 10−4 for the nonlinearity parameter and µ2 = 1.6 × 10−3

for the dispersion parameter. Both are weak. Using asymptotic expansions in
the small parameters ε≪ 1 and µ2 ≪ 1, one can derive Serre-type equations
[Ser53, Per67, MBS03, DD07a, DM10]. Note that no operational codes based
on the Serre equations exist. For example FUNWAVE is not a truly operational
code. Neglecting the dispersive effects yields the classical Nonlinear Shallow
Water Equations (NSWE):

Ht +∇ · (H~u) = 0, (1)

(H~u)t +∇ ·
(

H~u⊗ ~u+
g

2
H2
)

= gH∇h, (2)

where H = h + η is the total water depth and ~u = (u, v)(~x, t) is the depth-
averaged horizontal velocity. Traditionally, g denotes the acceleration due to
the gravity and h(~x, t) describes the bathymetry.

Remark 1 The bathymetry h(~x, t) is allowed to be time-dependent. It is im-
portant for the problem of tsunami generation by underwater earthquakes, sub-
marine landslides, etc. The coupling with seismology is done through this func-
tion. Namely, various simplified earthquake models [DD07c, KDD07, DD09b,
DD10] provide the seabed displacements which are then transmitted to the
ocean layer.

In this study, the NSWE (1) and (2) are chosen to model tsunami generation,
propagation and run-up. It is computationally advantageous to have a uni-
form model for all stages of tsunami life since many technical problems are
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thus avoided. The validity of the NSWE for tsunami generation was already
examined in our previous study [KDD07], where an excellent performance of
this model was shown for nondispersive long waves. In the present paper we
show in Section 4 the ability of the NSWE to model the run-up process. For
this purpose, comparisons with a laboratory experiment are performed. Thus,
the chosen complete approach to tsunami wave modelling is very attractive
from both the operational and research viewpoints.

The governing equations (1) and (2) have several nice mathematical properties.
In particular, this system is strictly hyperbolic provided that H > 0. This
property will be used extensively in the construction of the numerical scheme
(see Section 3).

Let us discuss the eigensystem of the advective flux. First, we introduce con-
servative variables and rewrite the governing equations as a system of conser-
vation laws:

∂w

∂t
+∇ · F(w) = S(w), (3)

where the following notation was introduced:

w(x, t) : R2 × R
+ 7→ R

3, w = (w1, w2, w3) = (H,Hu,Hv),

F(w) =















Hu Hv

Hu2 + g
2
H2 Huv

Huv Hv2 + g
2
H2















=















w2 w3

w2
2

w1
+ g

2
w2

1
w2w3

w1

w2w3

w1

w2
3

w1
+ g

2
w2

1















,S(w) =















0

gH ∂h
∂x

gH ∂h
∂y















.

After projecting the flux F(w) on a normal direction 1 ~n = (nx, ny), one can
compute the Jacobian matrix An. Its expression in physical variables has the
following form:

An =
∂
(

F(w) · ~n
)

∂w
=















0 nx ny

−uun + gHnx un + unx uny

−vun + gHny vnx un + vny















,

where un = unx + vny is the velocity vector projected on ~n. The Jacobian
matrix An has three distinct eigenvalues:

λ1 = un − c, λ2 = un, λ3 = un + c, (4)

where c =
√
gH is the speed of gravity waves in the limit of infinite wave-

length. This quantity plays the same rôle as the sound speed in compressible
fluid mechanics. It is now obvious that the system (1), (2) is strictly hyper-
bolic provided that H > 0. The eigenstructure of the Jacobian matrix An is

1 In the finite volume method one often projects onto the face normal.
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fundamental for constructing the numerical flux function (see Section 3.1) and
thus, upwinding the discrete solution.

3 Discretization procedure

In this study we selected the most natural numerical method for this type of
equations. Finite volume methods are a class of discretization schemes that
have proven highly successful in solving numerically of a wide class of systems
of conservation laws. These systems often come from compressible fluid dy-
namics. In electromagnetism, for example, Discontinuous Galerkin methods
have proven to be more efficient [CLS04]. When compared to other discretiza-
tion methods such as finite elements or finite differences, the primary advan-
tages of finite volume methods are robustness, applicability on very general
unstructured meshes, and the intrinsic local conservation properties. Hence,
with this type of discretization, mass, momentum and total energy are con-
served exactly 2 .

In order to solve numerically the system of balance laws (1), (2) one uses
again the conservative form of governing equations (3). System (3) should be
provided with an initial condition

w(~x, 0) = w0(~x), ~x = (x, y) ∈ Ω (5)

and appropriate boundary conditions. The implementation of different bound-
ary conditions will be discussed below (see Section 3.7).

3.1 First order scheme

The computational domain Ω ⊂ R2 is triangulated into a set of non over-
lapping control volumes that completely cover the domain. Let T denote a
tesselation of the domain Ω with control volume K such that

∪K∈T K̄ = Ω̄, K̄ := K ∪ ∂K.

For two distinct control volumes K and L in T , the intersection is an edge
with oriented normal ~nKL or else a vertex. We need to introduce the following
notation for the neighbourhood of K:

N (K) := {L ∈ T : area(K ∩ L) 6= 0} ,
2 This statement is true in the absence of source terms and appropriate boundary
conditions.
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Fig. 2. An example of control volume K with barycenter O. The normal pointing
from K to L is denoted by ~nKL.

a set of all control volumes L which share an edge in 2D or a face in 3D with
the given volume K. In this study, we denote by vol(·) and area(·) the area
and length respectively.

The choice of control volume tesselation is flexible in the finite volume method.
In the present study we selected the cell-centered approach (see Fig. 3), which
means that degrees of freedom are associated to cell barycenters. There exists
an alternative vertex-centered method [BJ89, BO04] (see Fig. 4) which requires
the construction of dual mesh even for first-order schemes. In the cell-centered
finite volume scheme, the triangles themselves serve as control volumes with
solution unknowns attributed to triangles barycenters. In the vertex-centered
finite volume scheme, control volumes are formed as a geometric dual to the
triangle complex and solution unknowns stored on vertex basis.

Remark 2 Except for the construction of dual mesh in the vertex-centered
approach, these two methods are almost equivalent in the interior of the com-
putational domain Ω. However, the boundary conditions treatment is different
and it is harder (or less natural in the authors’ opinion) when data is stored
at vertices. This is one more reason why we selected cell centers to store the
solution’s information.

Storage location

Control volume

Fig. 3. Illustration for cell-centered finite volume method
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Storage location

Control volume

Fig. 4. Illustration for vertex-centered finite volume method

The first steps in Finite Volume (FV) methods are classical. One starts by
integrating equation (3) on the control volume K (see Fig. 2 for illustra-
tion) and one applies Gauss-Ostrogradsky theorem for advective and diffusive
fluxes. Then, in each control volume, an integral conservation law statement
is imposed:

d

dt

∫

K
w dΩ+

∫

∂K
F(w) · ~nKL dσ =

∫

K
S(w) dΩ (6)

Physically an integral conservation law states that the rate of change of the
total amount of a quantity (for example: mass, momentum, total energy) with
density w in a fixed control volume K is balanced by the flux F of the quantity
through the boundary ∂K and the production of this quantity S inside the
control volume.

The next step consists in introducing the control volume cell average for each
K ∈ T

wK(t) :=
1

vol(K)

∫

K
w(~x, t) dΩ .

After the averaging step, the finite volume method can be interpreted as pro-
ducing a system of evolution equations for cell averages, since

d

dt

∫

K
w(~x, t) dΩ = vol(K)

dwK

dt
.

Godunov was first [God59] to pursue and apply these ideas to the discretiza-
tion of the gas dynamics equations.

However, the averaging process implies piecewise constant solution represen-
tation in each control volume with value equal to the cell average. The use
of such a representation makes the numerical solution multivalued at control
volume interfaces. Thereby the calculation of the fluxes

∫

∂K(F(w) · ~nKL) dσ
at these interfaces is ambiguous. A fundamental aspect of finite volume meth-
ods is the idea of substituting the true flux at interfaces by a numerical flux
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function

(

F(w) · ~n
)∣

∣

∣

∂K∩∂L
←− Φ(wK , wL;~nKL) : R

3 × R
3 7→ R

3 ,

a Lipschitz continuous function of the two interface states wK and wL. The
key ingredient is the choice of the numerical flux function Φ. In general this
function is calculated as an exact or even better approximate local solution
of the Riemann problem posed at these interfaces. In the present study we
implemented several numerical fluxes (HLL, HLLC, FVCF) described below.

Any numerical flux is assumed to satisfy the following properties:

Conservation. This property ensures that fluxes from adjacent control vol-
umes sharing an interface exactly cancel when summed. This is achieved if
the numerical flux function satisfies the identity

Φ(wK , wL;~nKL) = −Φ(wL, wK ;~nLK).

Consistency. Consistency is obtained when the numerical flux with identical
state arguments (in other words it means that the solution is continuous
through an interface) reduces to the true flux of the same state, i.e.

Φ(w,w;~n) = (F(w) · ~n)(w).

In the following paragraphs 3.1.1 – 3.1.3 we give several examples of numerical
flux functions Φ(w;~n) which were implemented in the VOLNA code. These
choices are justified by efficiency, clarity and personal preferences of the au-
thors. However, we do not impose them and a final user can easily implement
his favourite numerical flux function.

3.1.1 FVCF approach

First we describe the scheme called Finite Volumes with Characteristic Flux
(FVCF) and proposed by Ghidaglia et al. in [Ghi95, GKC96, GKC01].

Consider a general system of conservation laws in 1D that can be written as
follows:

∂w

∂t
+

∂f(w)

∂x
= 0 , (7)

where w ∈ Rm and f : Rm 7→ Rm. We denote by A(w) the Jacobian matrix
∂f(w)
∂w

and we deal with the case where (7) is smoothly hyperbolic, that is to say:
for every w there exists a smooth basis (r1(w), . . . , rm(w)) of R

m consisting of
eigenvectors of A(w). That is ∃λk(w) ∈ R such that A(w)rk(w) = λk(w)rk(w).
It is then possible to construct (l1(w), . . . , lm(w)) such that tA(w)lk(w) =
λk(w)lk(w) and lk(w) · rp(w) = δk,p.
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Let R = ∪j∈Z[xj−1/2, xj+1/2] be a one dimensional mesh. The goal is to dis-
cretize (7) by a finite volume method. We set ∆xj ≡ xj+1/2 − xj−1/2, ∆tn ≡
tn+1 − tn (we also have R+ = ∪n∈N[tn, tn+1]) and

w̃n
j ≡

1

∆xj

∫ xj+1/2

xj−1/2

w(x, tn) dx , f̃n
j+1/2 ≡

1

∆tn

∫ tn+1

tn
f(w(xj+1/2, t)) dt .

With these notations, we deduce from (7) the exact relation:

w̃n+1
j = w̃n

j −
∆tn
∆xj

(

f̃n
j+1/2 − f̃n

j−1/2

)

. (8)

Since the (f̃n
j+1/2)j∈Z cannot be expressed in terms of the (w̃n

j )j∈Z, one has to
make an approximation. In order to keep a compact stencil, it is more efficient
to use a three point scheme: the physical flux f̃n

j+1/2 is approximated by a
numerical flux gnj (w

n
j , w

n
j+1). Let us show how this flux is constructed here.

Since A(w)∂w
∂t

= ∂f(w)
∂t

we observe that according to (7)

∂f(w)

∂t
+ A(w)

∂f(w)

∂x
= 0 . (9)

This shows that the flux f(w) is advected by A(w) like w. The numerical flux
gnj (w

n
j , w

n
j+1) represents the flux at an interface. Using a mean value µn

j+1/2 of
w at this interface, we replace (9) by the linearization:

∂f(w)

∂t
+ A(µn

j+1/2)
∂f(w)

∂x
= 0 . (10)

It follows that, defining the k-th characteristic flux component to be fk(w) ≡
lk(µ

n
j+1/2) · f(w), one has

∂fk(w)

∂t
+ λk(µ

n
j+1/2)

∂fk(w)

∂x
= 0 . (11)

This linear equation can be solved explicitly now:

fk(w)(x, t) = fk(w)(x− λk(µ
n
j+1/2)(t− tn), tn) . (12)

From this equation it is then natural to introduce the following definition.

Definition 1 For the conservative system (7), at the interface between the two
cells [xj−1/2, xj+1/2] and [xj+1/2, xj+3/2], the characteristic flux gCF is defined
by the following formula for k ∈ {1, . . . , m} :
(

we take µn
j+1/2 ≡

(

∆xjw
n
j +∆xj+1w

n
j+1

)

/
(

∆xj +∆xj+1

))

lk(µ
n
j+1/2) · gCF,n

j (wn
j , w

n
j+1) = lk(µ

n
j+1/2) · f(wn

j ) , when λk(µ
n
j+1/2) > 0 ,
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lk(µ
n
j+1/2)·gCF,n

j (wn
j , w

n
j+1) = lk(µ

n
j+1/2)·f(wn

j+1) , when λk(µ
n
j+1/2) < 0 , (13)

lk(µ
n
j+1/2) · gCF,n

j (wn
j , w

n
j+1) = lk(µ

n
j+1/2) ·

(

f(wn
j+1) + f(wn

j )

2

)

,

when λk(µ
n
j+1/2) = 0.

Remark 3 At first glance, the derivation of (9) from (7) is only valid for

continuous solutions since A(w)∂f(w)
∂x

is a non conservative product. In fact,
equation (9) can be justified even in the case of shocks as proved in [Ghi98].
Let us briefly recall here the key point. Assuming that the solution undergoes
a discontinuity along a family of disjoint curves, we can focus on one of these
curves that we parameterize by the time variable t. Hence, locally, on each
side of this curve, w(x, t) is smooth and jumps across the curve x = Σ(t).
The Rankine-Hugoniot condition implies that f(w(x, t)) − σ(t)w(x, t), where

σ(t) ≡ dΣ(t)
dt

, is smooth across the discontinuity curve and therefore A(w)∂f(w)
∂x

can be defined as A(w)∂f(w)
∂x
≡ A(w)∂(f(w)−σw)

∂x
+ σ ∂f(w)

∂x
.

Proposition 1 Formula (13) can be written as follows: gCF,n
j (wn

j , w
n
j+1) =

gCF (µn
j ;w

n
j , w

n
j+1) where

gCF (µ; v, w) ≡
∑

λk(µ)<0

(lk(µ)·f(w))rk(µ)+
∑

λk(µ)=0

(

lk(µ) ·
f(v) + f(w)

2

)

rk(µ)+

+
∑

λk(µ)>0

(lk(µ) · f(v))rk(µ) . (14)

Proof. This comes from the useful identity valid for all vectors Φ and µ in Rm:

Φ =
k=m
∑

k=1

(lk(µ) · Φ)rk(µ). We also observe that (14) can be written under the

following condensed form:

gCF (µ; v, w) =
f(v) + f(w)

2
− U(µ; v, w)

f(w)− f(v)

2
, (15)

where U(µ; v, w) is the sign of the matrix A(µ) which is defined by

sign(A(µ))Φ =
m
∑

k=1

sign(λk)(lk(µ) · Φ)rk(µ).

The form (15) refers to what we have called a numerical flux leading to a flux
scheme [Ghi98].

Remark 4 Let us discuss the relation, in the conservative case, between the
characteristic numerical flux gCF and the numerical flux leading to Roe’s
scheme [Roe81]. The latter scheme relies on an algebraic property of the con-
tinuous flux f(w) which is as follows. It is assumed that for all admissible
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states v and w, there exists a m×m matrix AROE(v, w) such that f(v)−f(w) =
AROE(v, w)(v− w) (Roe’s identity). Then the numerical flux leading to Roe’s
scheme is given by:

gROE(v, w) =
f(v) + f(w)

2
− |AROE(v, w)|w − v

2
. (16)

But using Roe’s identity, we obtain that

gROE(v, w) =
f(v) + f(w)

2
− sign(AROE(v, w))

f(w)− f(v)

2
, (17)

which is of the form (15): Roe’s scheme is also a flux scheme. The characteris-
tic flux proposed in this paper is more versatile than Roe’s scheme in the sense
that it does not rely on an algebraic property of the flux. Hence for complex
systems (like those encountered in the context of two phase flows) this scheme
appears like an efficient generalization of Roe’s scheme. Moreover, as we shall
see below, this scheme has a natural generalization to arbitrary non conserva-
tive systems. Finally, the fact that the numerical flux is a linear combination
of the two fluxes induces a quite weak dependence on the state µ which appears
in formula (14), see [CG00].

3.1.2 HLL numerical flux

Now we present another approximate Riemann solver which was proposed by
Harten, Lax and van Leer [HLvL83]. Nowadays this method is known as the
HLL scheme. While the exact solution to the Riemann problem contains a
large amount of detail, the HLL solver assumes fewer intermediate waves. The
simplified Riemann fan is illustrated on Figure 5. It consists of two waves
separating three constant states.

0

t

x

wL wR

w∗

sL
sR

Fig. 5. Approximate Riemann fan corresponding to the HLL scheme.

Consider the following Riemann problem:

R(wL, wR) :



























∂w
∂t

+ ∂F (w)
∂x

= 0,

w(x, 0) =











wL, x < 0,

wR, x > 0.

(18)
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wL

wR
w∗

R.-H.

R.-H.

Fig. 6. Two states wL and wR connected by Rankine-Hugoniot curves represented
in the phase space.

The intermediate state in the approximate Riemann fan will be denoted by w∗

and two shock wave speeds are denoted by sL and sR respectively (see Figures
5 and 6 for illustration). In order to determine the unknown intermediate
state, we write the Rankine-Hugoniot conditions twice:











sL(w
∗ − wL) = F ∗ − FL,

sR(wR − w∗) = FR − F ∗,

where FL,R := F (wL,R). It is straightforward to find the solution to this system:

w∗ =
sRwR − sLwL − (FR − FL)

sR − sL
,

F ∗ = FL + sL(w
∗ − wL) =

sRFL − sLFR + sLsR(wR − wL)

sR − sL
. (19)

Now we have all the elements to define the numerical flux of the HLL scheme:

ΦHLL(wL, wR) :=



























FL, sL ≥ 0,

F ∗, sL < 0 ≤ sR,

FR, sR < 0.

During the presentation of the HLL scheme we missed one important point:
how to estimate the wave speeds sL and sR? The answer is crucial for the
overall performance of the scheme. With appropriate choices for the wave
speeds sL and sR, the HLL scheme possesses very nice numerical properties.
Namely, it satisfies an entropy inequality [Dav88], resolves isolated shocks
exactly [HLvL83] and preserves positivity [EMRS91]. In our code we imple-
mented the following choice for sL and sR which is motivated by analytical
expressions for the Jacobian eigenvalues (4):

sL = min(uL − cL, u
∗ − c∗), sR = min(u∗ + c∗, uR + cR),

where cL,R :=
√

gHL,R is the gravity wave speed for the left and right states

13



and

u∗ =
1

2
(uL + uR) + cL − cR, c∗ =

1

2
(cL + cR)−

1

4
(uR − uL).

Numerical experiments show that this approximate Riemann solver is very
robust with the above choice for the wave speeds [CIM+00, ZCIM02].

However, the HLL scheme has one important shortcoming: it cannot resolve
isolated contact discontinuities. In the next section 3.1.3 we present another
scheme which was designed to remedy this problem.

Remark 5 Does the HLL scheme belong to the class of flux schemes or not?
Recall that a finite volume scheme is called a flux scheme if its numerical flux
can be written in the following form:

Φ =
F (wL) + F (wR)

2
− U(wL, wR)

F (wR)− F (wL)

2
,

where U(wL, wR) is some matrix. From the formula (19) for the flux F ∗ it
follows that the answer depends on the existence of a matrix M such that

wR − wL = M(FR − FL) or FR − FL = M−1(wR − wL).

Fortunately, the answer is positive for NSWE and the matrix M can be ef-
fectively constructed. It allows us to rewrite the HLL numerical flux in the
shorthand form ΦHLL = URFR + ULFL, where

UR =



























0, sL ≥ 0,

sLsR
sR−sL

M − sL
sR−sL

I, sL < 0 ≤ sR,

I, sR < 0,

UL =



























I, sL ≥ 0,

− sLsR
sR−sL

M + sR
sR−sL

I, sL < 0 ≤ sR,

0, sR < 0,

with I := (δij). In part, the robustness of the HLL scheme can be explained by
this nice property.

3.1.3 HLLC flux

The HLL scheme presented briefly in the previous section was later improved
by Toro, Spruce and Speares [TSS94]. Their modification concerns essentially
the structure of the Riemann fan which is depicted on Figure 7. Namely,
they introduced a contact discontinuity between two shock waves of the HLL
scheme. That is why the novel scheme was called the HLLC scheme [FT95].

Here we do not provide details on the derivation of the HLLC scheme and refer
to the original articles and others which can feel this gap [BCCC97, KCY07].
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0

t

x

wL wR

sL

sRw∗
L w∗

R

s∗

Fig. 7. Approximate Riemann fan corresponding to the HLLC scheme.

We consider the same Riemann problem (18). In the HLLC approximation, the
solution to this Riemann problem consists of three waves with speeds sL, s

∗

and sR separating four constant states wL, w
∗
L, w

∗
R and wR. Wave speeds sL,R

are estimated as in previous section 3.1.2, while s∗ is given by this formula:

s∗ =
sLHR(uR − sR)− sRHL(uL − sL)

HR(uR − sR)−HL(uL − sL)
.

The intermediate states w∗
L,R = (H∗

L,R, (Hu)∗L,R, (Hv)∗L,R) are computed in this
way:

H∗
L,R =

sL,R−uL,R

sL,R−s∗
HL,R,

(Hu)∗L,R =
sL,R−uL,R

sL,R−s∗
(Hu)L,R + g

2
H2

L,R
(2sL,R−s∗−uL,R)(s∗−uL,R)

(sL,R−s∗)3
,

(Hv)∗L,R =
sL,R−uL,R

sL,R−s∗
(Hv)L,R + g

2
H2

L,R
(2sL,R−s∗−uL,R)(s∗−uL,R)

(sL,R−s∗)3
.

Finally, the numerical flux of the HLLC scheme is defined as

ΦHLLC(wL, wR) :=







































FL, sL ≥ 0,

F ∗
L := FL + sL(w

∗
L − wL), sL < 0 ≤ s∗,

F ∗
R := FR + sR(w

∗
R − wR), s∗ < 0 ≤ sR,

FR, sR < 0.

Remark 6 As in the previous scheme, one can check whether the HLLC
scheme is a flux scheme or not. It turns out that it is.

3.2 Semidiscrete scheme

After introducing the cell averages wK and numerical fluxes into (6), the in-
tegral conservation law statement becomes

dwK

dt
+

∑

L∈N (K)

area(L ∩K)

vol(K)
Φ(wK , wL;~nKL) =

1

vol(K)

∫

K
S(w) dΩ .

We denote by SK the approximation of the quantity 1
vol(K)

∫

K S(w) dΩ. The
source term discretization is discussed in Section 3.4. Thus, the following sys-
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tem of ordinary differential equations (ODE) is called a semi-discrete finite
volume method:

dwK

dt
+

∑

L∈N (K)

area(L ∩K)

vol(K)
Φ(wK , wL;~nKL) = SK , ∀K ∈ T . (20)

The initial condition for this system is given by projecting (5) onto the space
of piecewise constant functions

wK(0) =
1

volK

∫

K
w0(x) dΩ .

This system of ODE should also be discretized. There is a variety of explicit
and implicit time integration methods. Let wn

K denote a numerical approxi-
mation of the cell average solution in the control volume K at time tn = n∆t.
The simplest time integration method is the forward Euler scheme

dwK

dt
∼= wn+1

K − wn
K

∆t
.

When applied to (20) it produces the fully-discrete finite volume scheme:

wn+1
K − wn

K

∆t
+

∑

L∈N (K)

area(L ∩K)

vol(K)
Φ(wn

K , w
n
L;~nKL) = Sn

K , ∀K ∈ T . (21)

The time discretization used in this study is detailed in Section 3.5.

3.3 Run-up algorithm

As already pointed out above, the NSWE are strictly hyperbolic if H > 0, i.e.
when some water is present. The shoreline position is given by the following
implicit relation H(~x, t) = 0. In these locations the system loses its strict
hyperbolicity. Finally, in dry regions, H < 0, the system is non-hyperbolic, i.e.
ill-posed. All these facts mean that there are some major theoretical difficulties
in considering the inundation problem.

Very often some ad-hoc artificial techniques are implemented to circumvent
run-up and run-down problems (“slot technique” of Madsen et al. [MSS97],
algorithm of Hibberd-Peregrine [HP79], use of coordinate transformations
[OHK97] and so on).

Analytically, shoreline boundary conditions have a very simple form:

H(~xs(t), t) = 0,
d~xs

dt
= ~u(~xs(t), t),

where ~xs(t) is the shoreline position.
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(HL, uL)
(HR, uR) ≡ 0

xxs

xs−1

us

Fig. 8. Shoreline left Riemann problem.

(HL, uL) (HR, uR) ≡ 0

xxs

xs−1

us

Fig. 9. Shoreline right Riemann problem.

The algorithm proposed by Brocchini et al. [BBMA01] was chosen for the
VOLNA code. It is based on the shoreline Riemann problem (see Figures 8
and 9 for illustration) [Sto57]:

Rleft(wL) :



























∂w
∂t

+ ∂F (w)
∂x

= 0,

w(x, 0) =











wL, x < 0,

0, x > 0.

Rright(wR) :



























∂w
∂t

+ ∂F (w)
∂x

= 0,

w(x, 0) =











0, x < 0,

wR, x > 0.

The main idea to solve the shoreline Riemann problem is to pass to the limit
wL → 0 or wR → 0 in the solution to the classical Riemann problem (18).
Technical details can be found in [BBMA01]. However, we do not need to
know the complete solution. It is sufficient to extract the wave propagation
speeds at the shoreline (see Figure 10). These analytically determined speeds
are imposed in an approximate Riemann solver when a wet/dry transition is
detected.

Consider two control volumes K and L which share a common face. We must
find the numerical flux Φ(wK , wL, ~nKL) across this face. Let us summarize the
key points of the method:

Wet/wet interface: If HL > 0 and HR > 0, we apply in the usual way an
approximate Riemann solver which gives the numerical flux Φ.

Dry/dry interface: If HL = HR = 0, we just return the zero flux Φ = 0
since there is no flow between two dry cells.

Wet/dry interface: If HR = 0 and HL > 0, we have a situation correspond-
ing to the left shoreline Riemann problem. Its solution yields the following
choice of the wave speeds:

sL := (~uL · ~nKL)− cL, sR := (~uL · ~nKL) + 2cL.

Then we apply the HLL or the HLLC scheme with the above values of sL
and sR (see Figure 10 for illustration).
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xs

(HR, uR) ≡ 0
(HL, uL)

sR = uL + 2cL

sL = uL − cL

x
xs−1

(H∗, u∗)

us

Fig. 10. Shoreline Riemann problem (left) and wave propagation speeds.

Dry/wet interface: If HR > 0 and HL = 0, we have a situation symmetric
to the previous case. One must solve the right shoreline Riemann problem.
It provides the following speeds:

sL := (~uR · ~nKL)− 2cR, sR := (~uR · ~nKL) + cR.

Here again, the HLL or the HLLC scheme is applied.

We would like to underline the simplicity of this approach. In fact, there is
no special treatment for the interface. This algorithm is run uniformly in the
whole computational domain leading to an easy and robust implementation.
We validate this method in sections 4.2 – 4.4.

3.4 Source terms discretization

In this section we discuss some issues related to the source term discretization
and we explain a technique to remedy them.

Source terms of the form gH∇h arise in the horizontal momentum conserva-
tion equation (2). Obviously, this term is equal to zero when the bottom is
even h = const. However, it is not the case in the real world applications. The
magnitude of this term is proportional to the bed slope and may take large
values when abrupt changes are present in the bathymetry.

Another profound property of NSWE is that the system (1), (2) admits non-
trivial steady states. They can be determined from the following steady equa-
tions:











∇ · (H~u) = 0,

∇ ·
(

H~u⊗ ~u+ g
2
H2
)

= gH∇h
It is not so trivial to find analytical solutions to these equations. However,
an ideal numerical scheme should preserve them. Recall that for 1D flows it
is possible to describe the whole family of steady states and this information
can be used to design efficient source term discretizations [LR98, VC99]. Since
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realistic applications require a 2D solver, we will address this problem directly
in 2D.

As explained above, it seems to be extremely difficult to construct a scheme
which preserves exactly all steady state solutions. Thus, we have to simplify
the problem. We will focus our attention on a simple class of steady solutions
which are called in the literature “lake at rest”:

~u = 0, η := H − h = const. (22)

The last relations can be expressed in discrete variables:

~uK = ~uL = 0, HK − hK = HL − hL = const. (23)

We briefly present the method chosen for our code and developed in [ABB+04,
AB05]. It is mainly based on the idea of the interface hydrostatic reconstruc-
tion.

The well-balanced algorithm takes as input the vector of conservative variables
{wK}K∈T , bathymetry data {hK}K∈T and is composed of the following steps:

• Assume that the control volumes K and L share a common face f = K ∩L.
In this case, the interface bathymetry is defined as h∗

KL := min(hK , hL).
This step is done only once at the initialization stage.
• The hydrostatic reconstructed interface water depth is given by

H∗
KL = (HK − hK + h∗

KL)+, where z+ = max(z, 0).

From the dicrete interpretation (23) of the well-balanced condition (22), we
define a new vector of the interface conservative variables:

w∗
KL :=







H∗
KL

H∗
KL~uK





 . (24)

• From the balance of hydrostatic forces ∇
(

g
2
H2
)

= gH∇h, the adapted
discretization of the source terms is introduced:

S∗
K(wK , w

∗
KL, ~nKL) :=







0

g
2
(H∗2

KL −H2
K)~nKL







• The well-balanced scheme is obtained by replacing cell-centered values wK

by new interface values (24):

wn+1
K − wn

K

∆t
+

∑

L∈N (K)

area(L ∩K)

vol(K)
Φ(w∗, n

KL , w
∗, n
LK ;~nKL) =

S∗
K(w

n
K , w

∗, n
KL , ~nKL), ∀K ∈ T .
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It can be proven [AB05] that the hydrostatic reconstruction strategy preserves
the “lake at rest” solutions and ensures the positivity property. We describe
here only the first-order algorithm for the sake of simplicity. The extension to
the second order can be found in the original papers and in [Aud04].

3.5 Time discretization

In the previous sections we considered the spatial discretization procedure with
a finite-volume scheme. It is a common practice in solving time-dependent
PDEs to first discretize the spatial variables. This approach is called method
of lines:

wt + ∂xf(w) = S(w)
FV
=⇒ wt = L(w) (25)

In order to obtain a fully discrete scheme, we must discretize the time evo-
lution operator. In the present work we chose the so-called Strong Stability-
Preserving (SSP) time discretization methods described in [Shu88, GST01,
SR02]. Historically these methods were initially called Total Variation Dimin-
ishing (TVD) time discretizations.

The main idea behind SSP methods is to assume that the first order forward
Euler method is strongly stable (see the definition below) under a certain norm
for the method of lines ODE (25). Then, we try to find a higher order scheme.
Usually the relevant norm is the total variation 3 norm:

TV(wn) :=
∑

j

∣

∣

∣wn
j − wn

j−1

∣

∣

∣

and TVD discretizations have the property TV(wn+1) ≤ TV(wn).

Remark 7 Special approaches are needed for hyperbolic PDEs since they con-
tain discontinuous solutions and the usual linear stability analysis is inade-
quate. Thus a stronger measure of stability is usually required:

Definition 2 A sequence {wn} is said to be strongly stable in a given norm
||·|| provided that ||wn+1|| ≤ ||wn|| for all n ≥ 0.

A general m-stage Runge-Kutta method for (25) can be written in the form

w(0)=wn, (26)

w(i)=
i−1
∑

k=0

(

αi,kw
(k) +∆tβi,kL(w(k))

)

, αi,k ≥ 0, i = 1, . . . , m, (27)

wn+1=w(m). (28)

3 The notion of total variation is used essentially for 1D discrete solutions.
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In [SO88] the following result is proved

Theorem 1 If the forward Euler method is strongly stable under the CFL
restriction ∆t ≤ ∆tFE

||wn +∆tL(wn)|| ≤ ||wn|| ,

then the Runge-Kutta method (26) – (28) with βi,k ≥ 0 is SSP, ||wn+1|| ≤
||wn||, provided the following CFL restriction is fulfilled:

∆t ≤ c∆tFE, c = min
i,k

αi,k

βi,k

.

Here we give a few examples of SSP schemes which are commonly used in
applications:

• Optimal 4 second order two-stage SSP-RK(2,2) scheme with CFL = 1:

w(1) =w(n) +∆tL(w(n)),

w(n+1)=
1

2
w(n) +

1

2
w(1) +

1

2
∆tL(w(1));

• Optimal third order three-stage SSP-RK(3,3) scheme with CFL = 1:

w(1)=w(n) +∆tL(w(n)),

w(2)=
3

4
w(n) +

1

4
w(1) +

1

4
∆tL(w(1)),

W (n+1)=
1

3
w(n) +

2

3
w(2) +

2

3
∆tL(w(2));

• Third order four-stage SSP-RK(3,4) scheme with CFL = 2:

w(1) =w(n) +
1

2
∆tL(w(n)),

w(2) =w(1) +
1

2
∆tL(w(1)),

w(3) =
2

3
w(n) +

1

3
w(2) +

1

6
∆tL(w(n)),

w(n+1)=w(3) +
1

2
∆tL(w(3)).

The linear absolute stability region for the RK and SSP-RK schemes is the
same. However the nonlinear absolute stability regions are quite different
[CP92].

4 Optimality in the sense of CFL condition.
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We tested these different schemes in our numerical code and we decided to
adopt SSP-RK(3,4) due to its accuracy and wide stability region. In our opin-
ion this scheme represents a very good trade-off between precision and robust-
ness.

3.6 Second order extension

If we analyze the above scheme, we understand that in fact, we have only
one degree of freedom per data storage location. Hence, it seems that we can
expect to be first order accurate at most. In the numerical community first
order schemes are generally considered to be too inaccurate for most quantita-
tive calculations. Of course, we can always make the mesh spacing extremely
small but it cannot be a solution since it makes the scheme inefficient. From
the theoretical point of view the situation is even worse since an O(h 1

2 ) L1-
norm error bound for the monotone and E-flux schemes [Osh84] is known to
be sharp [Pet91], although an O(h) solution error is routinely observed in nu-
merical experiments. On the other hand, Godunov has shown [God59] that
all linear schemes that preserve solution monotonicity are at most first order
accurate. This rather negative result suggests that a higher order accurate
scheme has to be essentially nonlinear in order to attain simultaneously a
monotone resolution of discontinuities and high order accuracy in continuous
regions.

A significant breakthrough in the generalization of finite volume methods to
higher order accuracy is due to N.E. Kolgan [Kol72, Kol75] and van Leer
[vL79]. They proposed a kind of post-treatment procedure currently known as
solution reconstruction or MUSCL 5 scheme. In the above papers the authors
used linear reconstruction (it will be chosen in this study as well) but this
method has already been extended to quadratic approximations in each cell
[BF90].

3.6.1 Historical remark

In general, when we read numerical articles which use the MUSCL scheme,
the authors often cite the paper by van Leer [vL79]. It is commonly believed
in the scientific community that B. van Leer was first to propose the gradient
reconstruction and slope limiting ideas. Unfortunately, because of political
reasons, the works of N.E. Kolgan [Kol72, Kol75] remained unknown for a
long time. We would like to underline the fact that the first publication of
Kolgan came out seven years before van Leer’s paper. Van Leer seems to be

5 MUSCL stands for Monotone Upstream-centered Scheme for Conservation Laws.
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aware of this situation since in his recent review paper [vL06] one can find “A
historical injustice” section:

“It has been pointed out to me by Dr. Vladimir Sabelnikov, formerly of
TsAGI, the Central Aerodynamical National Laboratory near Moscow, that
a scheme closely resembling MUSCL (including limiting) was developed
in this laboratory by V. P. Kolgan (1972). Kolgan died young; his work
apparently received little notice outside TsAGI.”

3.6.2 TVD and MUSCL schemes

There is a property of scalar nonlinear conservation laws, which was probably
observed for the first time by Peter Lax [Lax73]:

The total increasing and decreasing variations of a differentiable solution
between any pair of characteristics are conserved.

In the presence of shock waves, information is lost and the total variation
decreases. For compactly supported or periodic solutions, one can establish
the following inequality

+∞
∫

−∞

|dw(x, t2)| ≤
+∞
∫

−∞

|dw(x, t1)| , t2 ≥ t1. (29)

This motivated Harten [Har83] to introduce the notion of discrete total vari-
ation of numerical solution uh := {uj}

TV (wh) :=
∑

j

|wj+1 − wj | ,

and the discrete counterpart to (29)

TV (wn+1
h ) ≤ TV (wn

h).

If this property is fulfilled, then a finite volume scheme is said to be total
variation diminishing (TVD). The following theorem was proved in [Har83]:

Theorem 2 (i): Monotone schemes are TVD
(ii): TVD schemes are monotonicity preserving, i.e. the number of solution

extrema is preserved in time.

Remark 8 From the mathematical point of view it would be more correct to
say “the total variation non-increasing (TVNI) scheme” but the “wrong” term
TVD is generally accepted in the scientific literature.
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In one space dimension the construction of TVD schemes is not a problem
anymore. Let us recall that in this study we are rather interested in two space
dimensions (or even three in future work). In these cases the situation is con-
siderably more complicated. Even if we consider the simplest case of structured
cartesian meshes and apply a 1D TVD scheme on a dimension-by-dimension
basis, a result of Goodman and Leveque shows [GV85] that TVD schemes in
two or more space dimensions are only first order accurate. Motivated by this
negative result, weaker conditions yielding solution monotonicity preservation
should be developed.

In this article we will describe the construction and practical implementation
of a second-order nonlinear scheme on unstructured (possibly highly distorted)
meshes. The main idea is to find our solution as a piecewise affine function
on each cell. This kind of linear reconstruction operators on simplicial control
volumes often exploit the fact that the cell average is also a pointwise value of
any valid (conservative) linear reconstruction evaluated at the gravity center
of a simplex. This reduces the reconstruction problem to that of gradient
estimation given cell averaged data. In this case, we express the reconstruction
in the form

wK(~x) = w̄K + (∇w)K · (~x− ~x0), K ∈ T , (30)

where w̄K is the cell averaged value given by the finite volume method, (∇w)K
is the solution gradient estimate (to be determined) on the cell K, ~x ∈ K and
the point ~x0 is chosen to be the gravity center for the simplex K.

It is very important to note that with this type of representation (30) we
remain absolutely conservative, i.e.

1

vol(K)

∫

K
wK(~x) dΩ ≡ w̄K

due to the choice of the point ~x0. This point is crucial for finite volumes
because of intrinsic conservative properties of this method.

In next sections we describe briefly two common techniques: Green-Gauss in-
tegration and least squares methods for solution gradient estimation on each
cell. There are other available techniques. We can mention here an implicit gra-
dient reconstruction method proposed in [MG96] and reused later in [AMS04],
for example. We decided not to implement this approach in our research code
since this procedure is computationally expensive 6 .
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Fig. 11. Illustration for Green-Gauss gradient reconstruction. Control volume K

with barycenter O and exterior normal ~n.

3.6.3 Green-Gauss gradient reconstruction

This gradient reconstruction technique can be easily implemented on simplicial
meshes. It is based on two very simple ideas: the mean value approximation
and Green-Gauss-Ostrogradsky formula.

Consider a control volume K with barycenter O. The exterior normal to an
edge e ∈ ∂K is denoted by ~ne. This configuration is depicted on Fig. 11. In
order to estimate the solution gradient on K (or in other words, to estimate its
value at gravity center O) we make the following mean value approximation

(∇w)K = (∇w)|O ∼=
1

vol(K)

∫

K
∇w dΩ,

and apply Green-Gauss-Ostrogradsky formula

(∇w)K ∼=
1

vol(K)

∫

∂K
w ⊗ ~n dσ =

1

vol(K)

∑

e∈∂K

∫

e
w ⊗ ~ne dσ ∼=

∑

e∈∂K

area(e)

vol(K)
w|e/2 ⊗ ~ne,

where w|e/2 denote the solution value at the face (or edge in 2D) centroid. The
face value needed to compute the reconstruction gradient can be obtained from
a weighted average of the values at the vertices on the face [HC89]. In 2D it
simply becomes

w|e/2 =
wN1 + wN2

2
.

This approximation yields the following formula for gradient estimation:

(∇w)K ∼=
∑

e∈∂K

area(e)

vol(K)

(wN1 + wN2)

2
⊗ ~ne.

6 In order to reconstruct the solution gradient we have to solve a linear system of
equations. Recall that the gradient is estimated at each time step on each control
volume. This factor slows down considerably explicit time discretizations.
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The gradient calculation is exact whenever the numerical solution varies lin-
early over the support of the reconstruction.

This procedure requires the knowledge of the solution values at the mesh nodes
{Ni}. Recall that a cell centered finite volume scheme provides us with data
located at cell gravity centers. Thus, an interpolation technique is needed. The
quality of Green-Gauss gradient reconstruction greatly depends on the chosen
interpolation method. The method chosen here is explained in Section 3.6.6.

3.6.4 Least-squares gradient reconstruction method

K T1

T2

T3

O O1

O2

O3

Fig. 12. Illustration for least-squares gradient reconstruction. A triangle control
volume with three adjacent neighbors is depicted.

In this section we consider a triangle 7 control volume K with three adjacent
neighbors T1, T2 and T3. Their barycenters are denoted by O(~x0), O1(~x1),
O2(~x2) and O3(~x3) respectively. In the following we denote by wi the solution
value at gravity centers Oi:

wi := w(~xi), w0 := w(~x0).

Our purpose here is to estimate ∇w = (∂xw, ∂yw) on the cell K. Using Taylor
formula, we can write down the three following relations:

w1 − w0=(∇w)K · (~x1 − ~x0) +O(h2), (31)

w2 − w0=(∇w)K · (~x2 − ~x0) +O(h2), (32)

w3 − w0=(∇w)K · (~x3 − ~x0) +O(h2). (33)

If we drop higher order terms O(h2), these relations can be viewed as a linear
system of three equations for two unknowns 8 (∂xw, ∂yw). This situation is

7 Generalization to other simplicial control volumes is straightforward.
8 This simple estimation is done for the scalar case only w = (w). For more general
vector problems the numbers of equations and unknowns must be changed depend-
ing on the dimension of vector w.
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due to the fact that the number of edges incident to a simplex mesh in Rd

is greater or equal (in this case see Remark 9) to d thereby producing linear
constraint equations (31) – (33) which will be solved analytically here in a
least squares sense.

First of all, each constraint (31) – (33) is multiplied by a weight ωi ∈ (0, 1)
which will be chosen below to account for distorted meshes. In matrix form
our non-square system becomes















ω1∆x1 ω1∆y1

ω2∆x2 ω2∆y2

ω3∆x3 ω3∆y3















(∇w)K =















ω1(w1 − w0)

ω2(w2 − w0)

ω3(w3 − w0)















,

where ∆xi = xi− x0, ∆yi = yi− y0. For further developments it is convenient
to rewrite our constraints in abstract form

[ ~L1, ~L2] · (∇w)K = ~f. (34)

We use a normal equation technique in order to solve symbolically this abstract
form in a least squares sense. Multiplying on the left both sides of (34) by

[ ~L1
~L2]

t yields

G(∇w)K = ~b, G = (lij)1≤i,j≤2 =







( ~L1 · ~L1) ( ~L1 · ~L2)

( ~L2 · ~L1) ( ~L2 · ~L2)





 (35)

where G is the Gram matrix of vectors
{

~L1, ~L2

}

and ~b =







( ~L1 · ~f)
( ~L2 · ~f)





 . The

so-called normal equation (35) is easily solved by Cramer’s rule to give the
following result

(∇w)K =
1

l11l22 − l212







l22( ~L1 · ~f)− l12( ~L2 · ~f)
l11( ~L2 · ~f)− l12( ~L1 · ~f)





 .

The form of this solution suggests that the least squares linear reconstruction
can be efficiently computed without the need for storing a non-square matrix.

Now we discuss the choice of weight coefficients {ωi}3i=1. The basic idea is
to attribute bigger weights to cells barycenters closer to the node N under
consideration. One of the possible choices consists in taking a harmonic mean
of respective distances ri = ||~xi−~xN ||. This purely metric argument takes the

27



following mathematical form:

ωi =
||~xi − ~xN ||−k

∑3
j=1 ||~xj − ~xN ||−k

,

where k in practice is taken to be one or two (in our numerical code we choose
k = 1).

Remark 9 When a triangle shares an edge with the boundary ∂Ω (see Fig. 14
for illustration), the gradient reconstruction procedure becomes even simpler,
since the number of constraints is equal to d and the linear system (31) – (33)
becomes completely determined:

w1 − w0=(∇w)K · (~x1 − ~x0) +O(h2),

w2 − w0=(∇w)K · (~x2 − ~x0) +O(h2),

or in componentwise form it reads







x1 − x0 y1 − y0

x2 − x0 y2 − y0





 (∇w)K =







w1 − w0

w2 − w0





 .

The unique solution to this linear system is given again by Cramer’s rule

(∇w)K =







(y2 − y0)(w1 − w0)− (y1 − y0)(w2 − w0)

(x1 − x0)(w2 − w0)− (x2 − x0)(w1 − w0)







(x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)
.

3.6.5 Slope limiter

The idea of incorporating limiter functions to obtain non-oscillatory resolution
of discontinuities and steep gradients dates back to Boris and Book [BB73].
When the limiter is identically equal to 1, we have the unlimited form of the
linear interpolation. In the 1D case one can easily find in the literature about
15 different limiter functions such as CHARM, minmod, superbee, van Albada
and many others. On unstructured meshes the situation is quite different. In
the present study we decided to choose the Barth-Jespersen limiter proposed
in [BJ89]. Here we do not discuss its construction and properties but just give
the final formula. We need to introduce the following notation

wmin
K := min

L∈N (K)
wL, wmax

K := max
L∈N (K)

wL .

The limited version of (30) is given by the following modified reconstruction
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operator

wK(~x) = w̄K + αK(∇w)K · (~x− ~x0), K ∈ T ,

where it is assumed that αK ∈ [0, 1]. Obviously, the choice αK = 0 corresponds
to the first order scheme while αK = 1 is the unlimited form. Barth and
Jespersen [BJ89] propose the following choice of αK :

αBJ
K := min

∀f∈∂K



























wmax
K −w̄K

wK(~xf )−w̄K
if wK(~xf ) > wmax

K ,

wmin
K −w̄K

wK(~xf )−w̄K
if wK(~xf) < wmin

K ,

1 otherwise.

where ~xf denotes the face f centroid.

Although this limiter function does not fulfill all the requirements of finite
volume maximum principle on unstructured meshes [BO04], it can be shown
that it yields finite volume schemes possessing a global extremum diminishing
property. Also this limiter produces the least amount of slope reduction which
can be advantageous for accuracy. Note that in practical implementation minor
modifications are required to prevent near zero division for almost constant
solution data.

3.6.6 Solution interpolation to mesh nodes

We have seen above that several gradient reconstruction procedures (in par-
ticular gradient estimation on the faces) require the knowledge of the solution
at mesh nodes (or vertices). This information is not directly given by the finite
volume method since we chose the cell-centered approach.

Oi+1

Oi

Oi−1

N

Fig. 13. Triangles with their barycenters Oi sharing the same vertex N .

Let us consider a node N(xn, yn) of the tesselation T and a control volume
Ki with barycenter Oi(xi, yi) having this node as a vertex (see Fig. 13 for
illustration). The MUSCL procedure provides a solution gradient on each cell.
Thus, using the Taylor formula or, equivalently, the representation (30) we
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can estimate the solution value at the node N

wN = w̄Ki
+ (∇w)Ki

· (~xN − ~xi). (36)

The problem is that we will have d(N) different values of the solution in the
same point depending on the control volume under consideration. Here d(N) is
the degree of vertex N in the sense of graph theory. One of the possible ways
to overcome this contradiction is averaging. One interesting technique was
proposed in [HC89] and further improved in [KMC03]. In our turn, we slightly
modified this method. The algorithm implemented in our code is briefly de-
scribed here.

First of all, let us look for the vertex value w̄N as a weighted sum of the values
wNi

computed by formula (36) from each surrounding cell

w̄N =

∑d(N)
i=1 ωiwNi

∑d(N)
i=1 ωi

.

The weighting factors {ωi}d(N)
i=1 are made to satisfy the condition of zero

pseudo-Laplacian

L(xn) ≡
d(N)
∑

i=1

ωi(xi − xn), L(yn) ≡
d(N)
∑

i=1

ωi(yi − yn) . (37)

These conditions have a very simple interpretation. They are imposed so that
the method be exact for affine data over the stencil.

As in the original formulation by Holmes and Connell [HC89], the weighting
factor ωi is written as

ωi = 1 +∆ωi .

The weights {ωi} are determined by solving an optimization problem in which
the cost-function to be minimized is defined as

1

2

d(N)
∑

i=1

(

ri∆ωi

)2 → min (38)

with two constraints given by (37). It should be noted that the cost function
is slightly different from the original formulation. The difference lies in the
factor of

r2i ≡ || ~ON − ~OOi||2

which was introduced in [KMC03]. This modification effectively allows larger
values of weight ∆ωi for those cells closer to the node in question.
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Employing the method of Lagrange multipliers, the original optimization prob-
lem, which was to minimize the cost function given by (38) with the constraints
(37) is equivalent to minimizing the function L defined by

L =
1

2

d(N)
∑

i=1

(

ri∆ωi

)2 − λ
d(N)
∑

i=1

ωi(xi − xn)− µ
d(N)
∑

i=1

ωi(yi − yn)→ min

which leads to

∆ωi =
λ(xi − xn) + µ(yi − yn)

r2i
.

The two Lagrangian multipliers, λ and µ, are obtained from

λ =
ryIxy − rxIyy
IxxIyy − I2xy

, µ =
rxIxy − ryIxx
IxxIyy − I2xy

,

where

rx =
d(N)
∑

i=1

(xi − xn), ry =
d(N)
∑

i=1

(yi − yn).

Ixx =
d(N)
∑

i=1

(xi − xn)
2

r2i
, Iyy =

d(N)
∑

i=1

(yi − yn)
2

r2i
, Ixy =

d(N)
∑

i=1

(xi − xn)(yi − yn)

r2i
.

The last step consists in renormalizing the weights {ωi}d(N)
i=1 to the range [0, 1].

Remark 10 The above algorithm is not computationally expensive since the
weights {ωi}d(N)

i=1 depend only on the tesselation T geometry. It means that they
can be computed and stored before the main loop in time and reused during
the computations later.

Remark 11 Even if we suggest to use the above method (since it gives slightly
better results), we would like to give another idea (based on a purely metrics

argument) of how to construct the weights {ωi}d(N)
i=1 . This approach is consid-

erably simpler than solving an optimization problem and it was already used in
the least squares gradient reconstruction method (see Section 3.6.4). In fact,
in order to calculate ωi one can simply take the harmonic mean of distances
between the node N under the question and respective cell barycenter Oi (see
Fig. 13):

ωi :=
||~xN − ~xi||−k

∑d(N)
j=1 ||~xN − ~xi||−k

,

where k in practice is equal to 1 or 2.

This choice does not guarantee exact interpolation of globally linear functions.
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K

∂Ω

Fig. 14. Control volume sharing a face with boundary ∂Ω.

3.7 Boundary conditions implementation

So far we have not discussed the implementation of boundary conditions. The
flavor of boundary conditions treatment for hyperbolic systems is given here
and we refer to [GP05] for a general discussion. This is a very important topic
since they actually determine the solution. Let us consider the space discretiza-
tion of the system (7) by a cell centered finite volume method. For instance
for the time explicit discretization we have the scheme (21). Of course this
formula is not valid when K meets the boundary of Ω (see Fig.14 for illus-
tration). When this occurs, we have to find the numerical flux Φ(vnK , K, ∂Ω).
In practice, this flux is not given by the physical boundary conditions and
moreover, in general, (7) is an ill-posed problem if we try to impose either v or
F (v) ·~n on ∂Ω. This can be understood in a simple way by using the following
linearization of this system:

∂w

∂t
+ An

∂w

∂n
= 0 , (39)

where ~n represents the direction of the external normal on K ∩ ∂Ω, An is the
advection matrix:

An ≡
(

∂F (w) · ~n
)

∂w
|w=w, (40)

and w is the state around which the linearization is performed. When (7) is hy-
perbolic, the matrix An is diagonalizable on R and by a change of coordinates,
this system becomes an uncoupled set of m advection equations:

∂ξk
∂t

+ λk
∂ξk
∂n

= 0 , k = 1, . . . , m . (41)

Here the λk are the eigenvalues of An and according to their sign, waves are
going either into the domain Ω (λk < 0) or out of the domain Ω (λk > 0).
Hence we expect that it is only possible to impose p conditions on K ∩ ∂Ω
where p ≡ ♯{k ∈ {1, . . . , m} such that λk < 0}.
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Let us consider now a control volume K which meets the boundary ∂Ω. We
take w = wn

K and write the previous linearization. We denote by x the coor-
dinate along the outer normal so that (39) reads:

∂w

∂t
+ An

∂w

∂x
= 0 , (42)

which happens to be the linearization of the 1D (i.e. when nd = 1) system.
First we label the eigenvalues λk(w) of An by increasing order:

λ1(w) ≤ λ2(w) ≤ . . . ≤ λp(w) < 0 ≤ λp+1(w) . . . ≤ λm(w) . (43)

(i) The case p = 0. In this case information comes from inside Ω and therefore
we take:

Φ(wn
K , K, ∂Ω) = F (wn

K) · ~nK . (44)

In the Computational Fluid Dynamics literature this is known as the “su-
personic outflow” case.

(ii) The case p = m. In this case information comes from outside Ω and therefore
we take:

Φ(wn
K , K, ∂Ω) = Φgiven , (45)

where Φgiven are the given physical boundary conditions. In the Computa-
tional Fluid Dynamics literature this is known as the “supersonic inflow”
case.

(iii) The case 1 ≤ p ≤ m−1. As already discussed, we need p scalar information
coming from outside of Ω. Hence we assume that we have on physical ground
p relations on the boundary:

gl(w) = 0 , l = 1, . . . , p. (46)

Remark 12 The notation gl(w) = 0 means that we have a relation between
the components of w. However, in general, the function gl is not given explicitly
in terms of w. For example gl(w) could be the pressure which is not, in general,
one of the components of w.

Since we have to determine the m components of Φ(wn
K , K, ∂Ω), we need

m− p supplementary scalar conditions. Let us write them as

hl(w) = 0 , l = p+ 1, . . . , m. (47)

In general (46) are referred to as “physical boundary conditions” while (47)
are referred to as “numerical boundary conditions”.
Then we take:

Φ(wn
K , K, ∂Ω) = F (w) · ~nK , (48)

where w is solution to (46)-(47) (see however Remark 15 and (54)).
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Remark 13 The system (46)-(47) for the m unknowns w ∈ G is a m ×
m nonlinear system of equations. We are going to study its solvability, see
Theorem 3.

Let us first discuss the numerical boundary conditions (47). By analogy with
what we did on an interface between two control volumes K and L, we take
(recall that w = wn

K):

l̃k(w) · (F (w) · ~nK) = l̃k(w) · (F (wn
K) · ~nK) , k = p+ 1, . . . , m. (49)

In other words, we set hk(w) ≡ l̃k(w
n
K) ·(F (w) ·~nK)− l̃k(wn

K) ·(F (wn
K) ·~nK). We

have denoted by (l̃1(w), . . . , l̃m(w)) a set of left eigenvectors of Ãn:
tÃnlk(w) =

λklk(w) and by (r1(w), . . . , rm(w)) a set of right eigenvectors of Ãn: Ãnrk(w) =
λkrk(w). Moreover the following normalization is taken: l̃k(w) · r̃p(w) = δk,p.

According to [GP05] we have the following result on the solvability of (46)-
(47).

Theorem 3 In the case 1 ≤ p ≤ m− 1, assume that λp+1(w) > 0, and

det
1≤k,l≤p

(

m
∑

i=1

rik(w)
∂gl
∂wi

(w)

)

6= 0 . (50)

With the choice (49) the nonlinear system (46)-(47) has one and only one
solution v, for v − w and gl(w) sufficiently small.

Remark 14 In this result we exclude the case where the boundary is char-
acteristic i.e. the case where one of the λk is equal to 0. This case cannot be
dealt with at this level of generality. On the other hand, wall boundary condi-
tions belong to this category. They can be discussed and handled directly on the
physical system under consideration. In this section we will show how to do
it for the NSWE equations (see Paragraph 3.7.1). Moreover, the treatment of
wall boundaries of compressible Euler equations and some two-phase systems
[DDG08b, DDG10, DDG08a, Dut07] can be done in a similar way.

Remark 15 In practice, (46)-(47) are written in a parametric way. We have
a set of m physical variables w (e.g. pressure, densities, velocities,. . . ) and we
look for w satisfying:

gl(w) = 0 , l = 1, . . . , p , (51)

l̃k(w) · Φ = l̃k(w) · (F (wn
K) · ~nK) , (52)

Φ = F (w) · ~nK , (53)

and then we take:

Φ(wn
K , K, ∂Ω) = Φ . (54)

The system (51)-(52)-(53) is then solved by Newton’s method.
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3.7.1 Impermeable boundary

Consider the case of a rigid wall boundary

~u(~x, t) · ~n = 0, ~x ∈ ∂Ω, (55)

and the hyperbolic system (1), (2). The flux Φ that we have to determine on
the boundary ∂Ω has the following form if we take into account (55):

Φ =
(

F · ~n
)∣

∣

∣

∂Ω
=















0

g
2
H2nx

g
2
H2ny















. (56)

Thus, we have to determine g
2
H2 on the boundary ∂Ω. For this purpose we

employ a complementary numerical boundary condition as it was explained
above:

l3(wK) · Φ = l3(wK) · Fn(wK), (57)

where l3 is the left eigenvector corresponding to the positive eigenvalue λ3 =
un + c = c > 0. Solving equation (57) leads to the following value of the
unknown component:

g

2
H2
∣

∣

∣

∣

∂Ω
=
(

cHun +
g

2
H2
)

∣

∣

∣

∣

K
,

which determines completely the boundary flux (56).

3.7.2 Generating boundary

Now let us consider a boundary where the total water depth is prescribed:

H|∂Ω = H0(~xs, t) > 0, ~xs ∈ ∂Ω.

Taking into account this information, the flux Φ to be determined has the
following form:

Φ =
(

F · ~n
)∣

∣

∣

∂Ω
=















H0un

H0uun +
g
2
H2

0nx

H0vun +
g
2
H2

0ny















. (58)

Hence, we have to find u and v on the generating boundary ∂Ω. The normal
velocity will be immediately deduced from this information un := unx + vny.

Throughout this section we will assume that the flow is “subsonic”, i.e. |~u · ~n| ≤
c. We could also consider the “supersonic” case, but physically this situation
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is rather exotic. Henceforth, we have one negative eigenvalue λ1 = un− c, one
positive λ3 = un+c and λ2 = un can be in principle of any sign. Thus we have
to consider two cases: un < 0 and un ≥ 0. In the first case we need a supple-
mentary physical condition (on the tangential velocity to the boundary), in
the second one we use a supplementary numerical condition:

l2(wK) · Φ = l2(wK) · Fn(wK).

Both lead to the same conclusion: uτ |∂Ω = uτ |K , where uτ := uny−vnx is the
tangential velocity. Computations very similar to the previous section 3.7.1
lead to the following solution:

un|∂Ω =
Hcun +

g
2
(H2 −H2

0 )

H0c
, u|∂Ω = un|∂Ω nx+uτny, v|∂Ω = un|∂Ω ny−uτnx.

Substituting these expressions into (58) gives the boundary flux Φ.

4 Numerical results

The numerical tests presented here are of two kinds. The first one is a compar-
ison with analytical solutions (or approximate analytical solutions) : sections
4.1, 4.2, 4.4. This allows us to test the correctness and precision of the nu-
merical scheme. The second one is a comparison with results from laboratory
experiments : sections 4.3. This allows us to test the capacity of the code to
reproduce actual events, and in particular assess the validity of the nonlinear
shallow-water equations for tsunami modeling.

4.1 Convergence test

We begin the presentation of numerical tests by the simplest one – convergence
test. We would like to show the accuracy of the MUSCL scheme implemen-
tation. To do it, we solve numerically the following scalar linear advection
equation

∂w

∂t
+ ~u0 · ∇w = 0, ~u0 ∈ R

2

with smooth 9 initial conditions. Moreover, it has almost compact support in
order to reduce the influence of boundary conditions. It is obvious that this
equation will just translate the initial form in the direction ~u0. So, we have
an analytical solution which can be used to quantify the numerical method

9 We intentionally choose a smooth initial condition since the discontinuities can
decrease the overall accuracy of the scheme.
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Fig. 15. Numerical method error in L∞ norm.

error. On the other hand, to measure the convergence rate, we constructed a
sequence of refined meshes.

Fig. 15 shows the error of the numerical method in L∞ norm as a function of
the mesh characteristic size. The slope of these curves represents an approxi-
mation to the theoretical convergence rate. On this plot, the blue curve corre-
sponds to the first order upwind scheme while the other two (red and black)
correspond to the MUSCL scheme with least-squares (see Section 3.6.4) and
Green-Gauss (see Section 3.6.3) gradient reconstruction procedures respec-
tively. One can see that the blue curve slope is equal approximatively to 0.97
which means first order convergence. The other two curves have almost the
same slope equal to 1.90 indicating a second order convergence rate for the
MUSCL scheme. We remark that in our implementation of the second-order
scheme the least-squares reconstruction seems to give slightly more accurate
results than the Green-Gauss procedure.

The next figure represents the measured CPU time in seconds again as a
function of the mesh size. Obviously, this kind of data is extremely computer
dependent but the qualitative behaviour is the same on all systems. On Fig. 16
one can see that the “fastest” curve is the blue one (first order upwind scheme).
Then we have two almost superimposed (black and red) curves referring to
the second-order gradient reconstruction on variables. Here again one can
notice that the least-squares method is slightly faster than the Green-Gauss
procedure. On this figure we represented one more curve (the highest one)
which corresponds to Green-Gauss gradient reconstruction on fluxes (it seems
to be very natural in the context of the FVCF scheme explained in Section
3.1.1). Our numerical tests show that this method is quite expensive from the
computational point of view and we decided not to choose it.

The next three sections deal with the validation of VOLNA again a set of
benchmarks for tsunami modelling proposed at the Catalina 2004 workshop
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on long waves ; they are among the 6 benchmarks currently recommended by
the United States National Oceanic and Atmospheric Administration (NOAA)
for the evaluation of operational tsunami forecasting models [SBT+07]. In
order to help the reproductibility and comparison of numerical results, all the
following test cases make use of publicly available data 10 . Although, for each
benchmark, we present results for one mesh only, we have checked that the
simulations converge as the mesh resolution increases.

4.2 Tsunami run-up onto a plane beach

In this test case, we look at the runup of a tsunami wave over a plane slop-
ing beach (of slope 1

10
). The initial depression wave propagates leftwards (see

figure 26). The result of the simulation is compared to an analytical solu-
tion, obtained using the initial value problem technique of Carrier, Wu and
Yeh [CWY03]. Note that the computational domain is approximately 50 km
long, whereas the shoreline motion scale is 1 km ; hence, we choose to refine
the mesh by a factor 10 near the initial shoreline. The results presented here
correspond to a resolution of 8 meters in the direction of propagation. More-
over, the initial free surface amplitude is a few meters high. Thus, due to the
difference of spatial scales between the bathymetry, the initial free surface and
the computational domain dimensions, the source term gH∇h is very steep
(see figure 26), which renders the use of a well-balanced scheme mandatory.
This test case is one-dimensional. Since our code is two-dimensional, we im-
plement it using a two dimensional computational domain, with translation
invariance in the transverse direction.

We can see on Figures 17 and 18 that the numerical results match pretty well

10 http://www.cee.cornell.edu/longwave/index.cfm?page=benchmark

38



−80
−60
−40
−20

0

20

−200−100 0 100 200 300 400 500 600 700

distance from initial shoreline (km)

to
ta
l
w
at
er

h
ei
gh

t
(m

)

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
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ical (dashed) values for free surface at time 160 seconds. The gray line represents
the beach, and the gray point the initial shoreline location.
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Fig. 18. Catalina 1 benchmark — comparison between analytical (solid) and numer-
ical (dashed) values for free surface at time 220 seconds. The gray line represents
the beach, and the gray point the initial shoreline location.

the approximate analytical solution, especially near the shoreline location.
This ensures the accuracy of the runup algorithm presented in section 3.3.

4.3 Tsunami run-up onto a complex 3-dimensional beach

This experiment reproduces at 1
400

scale the Monai valley tsunami, which
struck the Island of Okushiri (Hokkaido, Japan) in 1993, in a 205 meters
long wave tank. The computational domain reproduces the last 5 meters of
the wave tank. The initial incident wave offshore is given by experimental
data, and fed as a time dependent boundary condition.

We compare the numerical results with the recorded data at three of the wave
gages installed in the wave tank : gages number 5, 7 and 9, of respective
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Fig. 19. Catalina 2 benchmarks — comparison between numerical results and ex-
perimental data at gage 5.
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Fig. 20. Catalina 2 benchmarks — comparison between numerical results and ex-
perimental data at gage 7.

coordinates (4.521, 1.196), (4.521, 1.696) and (4.521, 2.196). This can be seen
in Figures 19 – 21. The main wave (between times 15 and 25 seconds) is very
accurately described, at all gages considered. Moreover, the maximal runup is
adequately captured by the code. This value is extremely high, and occured in
Monai Valley (the corresponding canyon in the experimental setup, along with
the free surface at the moment of maximum elevation are shown in figure 28).
We obtain a maximal runup value of 8.05 centimeters, which corresponds to
32.2 meters put back at field scale. This is remarkably close to the measured
value of 31.7 meters.

Hence the numerical model is able to reproduce the laboratory scenario ac-
curately, even without bottom friction modelling (and thus without any free
parameter). In this realistic test case, the ability to refine the mesh near the
zones of interest is a very nice asset.

We performed another computation using the set-up described above. Namely,
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Fig. 21. Catalina 2 benchmarks — comparison between numerical results and ex-
perimental data at gage 9.
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Fig. 22. Computed and reconstructed wave energy profiles for Catalina 2 benchmark
problem.

we solved equations (1), (2) completed by a conservation law for the wave en-
ergy. This system was recently proposed by Dutykh & Dias and we refer to
[DD09a] for technical details and discussions. The total energy evolution is
depicted on Figure 22. We represented two curves. The blue solid line cor-
responds to the solution of the augmented system of equations. The black
broken line refers to the total energy, estimated from conservative variables:

E ≈ 1

2
ρH|~u|2 + 1

2
ρgη2,

where ρ is the constant fluid density and η = H − h is the free surface el-
evation with respect to the undisturbed water level. In complete accordance
with results reported in [DD09a], the computed wave energy is not prone to
numerical diffusion and has excellent monotonicity properties. Just at the end
of the simulation one can notice a little decrease in both curves. In fact, it is
induced by energy losses due to the wave run-up on the beach.
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4.4 Tsunami generation and runup due to a 2-dimensional landslide

In this test case, a translating Gaussian shaped mass, initially at the shoreline,
translates rightwards and creates a wave (see figure 29). The seafloor can be
described by the following equation :

h(x, t) = H(x)− h0(x, t),

H(x) = x tan(β), and h0(x, t) = δ exp



−
(

2

√

√

√

√

xµ2

δ tan(β)
−
√

g

δ
µt

)



 ,

x being the direction of propagation. Here, δ represent the maximum thick-
ness of the sliding mass, µ the ratio between δ and the horizontal length of the
mass, and β the beach slope. Notice that, at initial time, the submarine mass
is partially underwater. Hence, this test case corresponds to a subaerial land-
slide. A sketch of this experiment can be seen in figure 29. This benchmark is
one-dimensional, but is implemented using a two-dimensional computational
domain, as in section 4.2. The numerical results we present are obtained as a
one dimensional slice (which does not depend on the transverse variable).

The result of the numerical simulation is compared to an analytical solution,
computed as an approximate solution of the linear shallow water equations
with a forcing term [LLS03]. In figure 23, we can see the comparison between
the analytical and numerical wave surface profiles at times 16, 32 and 48
seconds, for β = 5.7o, δ = 1 m, and µ = 0.01 (fig. 23). These values ensure
that we are in the linear regime of the shallow water equations (and thus that
the analytical solution is a good approximation of the nonlinear equations
solution). Hence, the comparison is meaningful. Good agreement is reached.

We also performed wave energy computation for this test-case. To our knowl-
edge, the energy evolution has not been shown yet for a landslide generated
wave. Computation results are presented on Figures 24 and 25 for two cases
µ = 0.01 and µ = 0.1. In the latter case the linear shallow water equations
(LSWE) are not valid even on small time scales. For more information, please
refer to [LLS03].

Figure 24 shows the wave energy evolution with time. On Figure 25 we rep-
resented two trajectories in the energy phase-space (Ek, Ep), where Ek is the
kinetic energy and Ep is the potential one. We would like to point out the
approximate energy repartition on the black curve (µ = 0.1).
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Fig. 24. Energy evolution with time for the 2-dimensional landslide test-case.

0 2 4 6 8 10

x 10
6

0

1

2

3

4

5

6

7

8
x 10

6

kinetic energy E
K
, J

po
te

nt
ia

l e
ne

rg
y 

E
P
, J

 

 
µ = 0.01
µ = 0.1

Fig. 25. Trajectories in the energy phase-space (Ek, Ep) for the 2-dimensional land-
slide test-case.

4.5 Summary

Using different analytical benchmarks, we have validated all components of our
code : accuracy and order of convergence of the numerical scheme (section 4.1),
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run up algorithm and treatment of steep depth fields (section 4.2), and time
varying bathymetry in a conservative shallow-water framework (section 4.4).
Moreover, we have shown the capability of the code to model realistic events,
using an experimental benchmark (section 4.3).

5 Conclusions and perspectives

In the present article we provided a detailed description of the VOLNA code,
designed for complete tsunami wave modelling. Namely, we are able to simu-
late the whole life-cycle of a tsunami from generation to inundation. Special
attention was payed to the run-up algorithm described in Section 3.3. The
overall performance test and validation were done in Section 4.

The VOLNA code is operational and is able to run in complex and rapidly
varying conditions. The use of unstructured meshes allows for taking into
account the geometry of real coasts. Owing to the implementation of various
types of boundary conditions, the code VOLNA can be coupled to other solvers
and treat exclusively the zones where the NSWE are physically relevant.

Some new results were presented concerning the energy of tsunami waves
[DD09a]. In particular, we show the wave energy evolution for the Catalina 2
test case (run-up on a complex 3D beach) and a landslide generated tsunami
(Catalina 3 benchmark problem).

In the future we would like to add more physics to the VOLNA code: dissipa-
tive effects [DD07b, Dut09] (one could for example implement the dissipative
terms from Bresch and Desjardins [BD03]) and dispersive effects.
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sis, École Normale Supérieure de Cachan, 2007.

[Dut09] D. Dutykh. Visco-potential free-surface flows and long wave mod-
elling. Eur. J. Mech. B/Fluids, 28:430–443, 2009.

[EMRS91] B. Einfeldt, C.D. Munz, P.L. Roe, and B. Sjogreen. On Godunov-
type methods near low densities. J. Comput. Phys., 92:273–295,
1991.

[FT95] L. Fraccarollo and E.F. Toro. Experimental and numerical assess-
ment of the shallow water model for two-dimensional dam break
type problems. Journal of Hydraulic Research, 33:843–864, 1995.

[Geo06] D.L. George. Finite Volume Methods and Adaptive Refinement
for Tsunami Propagation and Inundation. PhD thesis, Depart-
ment of Applied Mathematics, University of Washington, Seattle,
2006.

[Geo08] D.L. George. Augmented Riemann solvers for the shallow wa-

47



ter equations over variable topography with steady states and
inundation. J. Comput. Phys., 227:3089–3113, 2008.

[Ghi95] J.-M. Ghidaglia. Une approche volumes finis pour la
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Fig. 26. Catalina 1 benchmark — initial free surface profile (left) ; bathymetry and
initial free surface, at the same vertical scale (right).
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Fig. 27. Catalina 2 benchmark : initial free surface profile (left) ; bathymetry (right).
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Fig. 28. Maximal runup in Monai valley. The vertical scale is magnified by a factor
3.
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Fig. 29. Sketch of the analytical landslide test case. The submarine mass displace-
ment (in gray) and free surface (dashed line) have been magnified by a factor 1000.
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