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ABSTRACT 

The paper presents the position analysis of a spatial 
structure composed of two platforms mutually connected by 
one RRP and three SS serial kinematic chains, where R, P, and 
S stand for revolute, prismatic, and spherical kinematic pair 
respectively. A set of three compatibility equations is laid down 
that, following algebraic elimination, results in a 28

th
-order 

univariate algebraic equation, which in turn provides the 
addressed problem with 28 solutions in the complex domain. 

Among the applications of the results presented in this 
paper is the solution to the forward kinematics of the Tricept, a 
well-known in-parallel-actuated spatial manipulator. 

Numerical examples show adoption of the proposed 
method in dealing with two case studies. 

 
 

INTRODUCTION 

Parallel kinematics machines have gained more and more 
interest in research as well as in industry. In effect, their high 
stiffness and low inertia make them attractive alternative 
designs for demanding tasks such as high speed machining [1]. 
Parallel kinematics machines may feature a fully-parallel 
kinematic architecture, like the Gough-Stewart platform, or a 
hybrid parallel-serial kinematic architecture, like the Tricept 
machine, in which a parallel positioning device carries a serial 
wrist [2]. 

With reference to Fig.1, a Tricept manipulator can be 
thought of as obtained by serially connecting two elemental 
manipulators, precisely a three-degree-of-freedom (3-dof) in-
parallel-actuated manipulator and – depending on the specific 
Tricept model – a 2-dof or 3-dof serial manipulator (Fig. 1 
shows a 6-dof Tricept). 

The in-parallel-actuated elemental manipulator of a Tricept 
consists of a fixed base connected to a movable platform by 
four serial kinematic sub-chains. One of these sub-chains is of 
type UP (U stands for universal – or Hooke – joint, P means 
prismatic kinematic pair), whereas the remaining three sub-
chains are of type UPS (S signifies spherical kinematic pair). 
The serial elemental manipulator connects the already-
mentioned movable platform to the end-effector of the Tricept 
via a universal joint (5-dof Tricept) or a spherical wrist realized 

by three revolute pairs having mutually-intersecting axes (6-dof 
Tricept, see Fig. 1). 

In any Tricept, the centers of the U-joints in the UPS sub-
chains, as well as the centers of the S-joints, are at the vertices 
of equilateral triangles fixed to the base and to the movable 
platform respectively. Moreover, the center of the U-joint in the 
UP sub-chain is equidistant from the centers of the remaining 
U-joints; in the U-joint of the UP sub-chain, the axis of the 
revolute kinematic pair next to the manipulator base is either 
orthogonal or parallel to a side of the aforementioned fixed 
equilateral triangle; the line through the center of the U-joint of 
the UP sub-chain and parallel to the sliding movement of this 
sub-chain’s P-joint intersects the movable triangle at its center; 
the UP sub-chain is so arranged as to make – for a subset of 
manipulator configurations – the sides of the movable 
equilateral triangles parallel to and equidistant from the sides of 
the fixed equilateral triangle. 

The Tricept end-effector is moved in space by actuating 
the P pairs in the three UPS sub-chains of the in-parallel-
actuated elemental manipulator, as well as the revolute pairs of 
the serial elemental manipulator (in Fig. 1 all actuated 
kinematic pairs are highlighted by asterisks). In the sequel, only 
the case of a 6-dof Tricept will be taken into account, the 
differences with respect to the case of a 5-dof Tricept being 
manifest and easily manageable. 

Position analysis is a necessary step for the control of a 
manipulator. The position analysis problem consists in 
determining the relationship between the parameters of motion 
of the actuated joints and the rigid-body position (location) of 
the manipulator’s end-effector. The position analysis problem 
comprises two dual problems, namely, the inverse kinematics 
and the forward kinematics. 

The inverse kinematics of a manipulator is the search for 
the parameters of motions of all actuated kinematic pairs in the 
UPS sub-chains once the location of the end-effector has been 
assigned. It is not difficult to recognize that the inverse 
kinematics of the in-parallel-actuated elemental manipulator of 
a Tricept is equivalent to the inverse kinematics of a serial UP 
regional manipulator endowed with a spherical wrist [3]. 
Addressing exhaustively this problem leads to eight real sets of 
parameters of motion that stem from solving first- and second-
order univariate algebraic equations only. 
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Conversely, the forward kinematics of a manipulator 
consists in finding the possible locations of the end-effector 
once the variables of motions of all actuated kinematic pairs 
have been prescribed. Solving the forward kinematics of a 
parallel manipulator is a difficult task: despite the copious 
literature on this topic, no general tool exists that is applicable 
to any parallel manipulator [4]. For a Tricept, a convenient way 
of tackling the problem consists in solving separately the 
forward kinematics of the two aforementioned elemental 
manipulators. The forward kinematics of the in-parallel-
actuated elemental manipulator is equivalent to searching for 
all possible locations of the platform that are compatible with 
the assigned parameters of motion of the three actuated 
prismatic pairs in the UPS sub-chains. For the serial elemental 
manipulator, on the other hand, the forward kinematics consists 
in finding the only location of the Tricept end-effector – 
relative to the movable platform – that results from a given 
choice of the parameters of motion of the three revolute pairs. 
As soon as the outcomes of both forward kinematics problems 
become available, answering the forward kinematics of the 
Tricept turns out to be a trivial task. 

Solving the forward kinematics of the in-parallel-actuated 
elemental manipulator of a Tricept is equivalent to finding the 
assembly configurations of the structure that results from the 
elemental manipulator itself by freezing the three actuated 
prismatic pairs. Such a UP-3(US) structure – shown in Fig. 2 – 
has three links each joined to base and platform by a universal 
joint and a spherical pair respectively. It can be easily 
recognized that the location of the platform does not change if 

at the extremities of these links the universal joint and the 
spherical pair swap places, or even if the universal joint is 
replaced by a spherical pair. Therefore the forward kinematics 
of the in-parallel-actuated elemental manipulator of a Tricept 
can even be solved by looking for the assembly configurations 
of the linkage represented in Fig. 3. 

Despite the freedom of any SS connecting rod to revolve 
about the line through the extremity spherical pair centers, the 
UP-3(SS) linkage in Fig. 3 will be conventionally termed a 
structure because what is relevant here is that the connectivity 
[5] of the platform relative to the base is still zero as in the 
original UP-3(US) structure. Should the axes of the revolute 
pairs in the universal joint of the UP-3(SS) structure become 
mutually skewed and inclined at a generic angle, the direction 
of sliding motion in the prismatic kinematic pair be free to form 
a generic angle with the direction of the axis of the adjacent 
revolute pair, and the centers of all spherical joints be 
generically placed on the base and the platform, then the 
UP-3(SS) structure of Fig. 3 would turn into the RRP-3(SS) 
general-geometry structure represented in Fig. 4 (character R in 
structure’s acronym means revolute kinematic pair). 

The scope of this paper is to present a method for solving 
in polynomial form the position analysis of the general-
geometry RRP-3(SS) spatial structure (see Fig. 4). Starting 
from a set of three compatibility equations in three unknowns, 
the method presented in this paper reduces the solution of the 
position analysis to finding the roots of a 28

th
-order univariate 

algebraic equation. Each root of this equation corresponds to an 
assembly configuration of the RRP-3(SS) structure, which 
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Figure 2 – The UP-3(US) structure associated with a Tricept 

manipulator (type-I). 
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Figure 1  A six-degree-of-freedom Tricept manipulator. 
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means that 28 assembly configurations exist in the complex 
domain. 

Contrary to the convictions expressed in [3], the literature 
available at the time did not provide any means to solve 
exhaustively the forward kinematics of any Tricept 
manipulator. It were Joshi and Tsai [6] who first presented the 
forward kinematics solution for a Tricept, precisely the Tricept 
with the U-joint of the UP sub-chain having the axis of the 
fixed-axis revolute pair going through the center of a U-joint of 
a UPS sub-chain. For such a manipulator, 24 assembly 
configurations were recognized as possible in the complex 
domain. Moreover, in [6] the number of solutions for the 
forward kinematics of a general-geometry Tricept manipulator 
was predicted as high as 32 in the complex domain. 
Considering that the forward kinematics of a general-geometry 
Tricept can be solved by finding the assembly configurations of 
a special-geometry RRP-3(SS) structure, the procedure 
presented in this paper lowers such an esteem to 28. 

The paper concludes with two numerical examples that 
show application of the presented results to as many case 
studies. 

 

COMPATIBILITY EQUATIONS 

The position analysis of the general-geometry RRP-3(SS) 
structure will be carried out by solving a set of three 
compatibility equations in a corresponding number of 
unknowns. The present section is devoted to showing the 
procedure conducive to finding the above-mentioned set of 
equations. Actual solution of these equations is deferred to the 
next section. 

In order to determine a set of compatibility equations, the 
three SS links of the RRP-3(SS) structure shown in Fig. 4 are 
thought of as temporarily removed so as to obtain a general-
geometry RRP open-loop mechanism. The generic 
configuration of this RRP mechanism can be expressed in terms 
of three parameters by referring to the mechanism’s reference 
(or home) configuration shown in Fig. 5 and specified in detail 
hereafter. The compatibility equations will be derived by 
writing the position of point Q, attached to link 3, as function of 
the abovementioned three parameters. For ease of subsequent 
reference, the four links of the RRP mechanism are sequentially 
labeled from 0 to 3 starting from the fixed link (base).  

As a first step, a Cartesian reference frame Obxbybzb fixed 
to the base of the RRP mechanism is set up with its origin, Ob, 
at the point where the axis of the revolute pair between links 0 
and 1 meets the common perpendicular to the axes of the two 
revolute pairs (see Fig. 5). Such a reference frame is chosen 
with axis xb superimposed on the axis of the revolute pair 
between links 0 and 1. Let n1 be a unit vector that has the same 
direction and orientation as axis xb. The orientation of reference 
frame Obxbybzb about n1 with respect to link 0 can be chosen 
arbitrarily.  

At the home configuration of the RRP mechanism, the 
position of link 1 is such as to make the shortest line segment 
between the axes of the two revolute pairs, ObQ, overlap axis zb 
of reference frame Obxbybzb (see Fig. 5). Now let n2 be a unit 
vector along the axis of the revolute pair between links 1 and 2. 

The magnitude  of the hypothetical rotation about axis zb  

positive if counterclockwise  that would make unit vector n1 
align with unit vector n2 is a geometric parameter of the RRP 
mechanism. A further geometric parameter is the z-coordinate, 
ζ, of point Q with respect to reference frame Obxbybzb.  
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Figure 3 – The UP-3(SS) structure associated with a Tricept 

manipulator (type-I). 
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Figure 4 – The general-geometry RRP-3(SS) structure. 
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A unit vector, m, is now introduced parallel to the direction 
of the sliding motion of link 3 relative to link 2. At the home 
configuration of the RRP mechanism, the location of links 2 
and 3 is so chosen as to make unit vector m become parallel to 
the plane defined by unit vector n2 and axis zb of reference 

frame Obxbybzb. The angle  between unit vectors n2 and m is 

the last geometric parameter of the RRP mechanism ( is 

conventionally restricted to the range ]–, ] and is considered 
as positive if m has a positive component along axis zb). The 
definition of the home configuration of the RRP mechanism is 
concluded with the arbitrary selection of a reference position 
for link 3 relative to link 2. 

With the RRP mechanism at the home configuration, a 
reference frame Opxpypzp fixed to link 3 is introduced parallel to 
Obxbybzb and with origin at point Q. Starting from the home 
configuration of the RRP mechanism, any location allowed to 
link 3 in space can be thought of as reached by the following 
elemental maneuvers, executed in any order (see also Fig. 5): 

 a translation of magnitude  of link 3 with respect to link 2 
along the direction defined by unit vector m (considered as 
fixed to link 2 or 3); 

 a rotation of magnitude 2 of links 2 and 3 about the axis 
through point Q and parallel to the direction defined by unit 
vector n2 (considered as fixed to link 1 or 2); 

 a rotation of magnitude 1 of links 1, 2, and 3 about the 
x-axis of reference frame Obxbybzb. 
The location of link 3 relative to link 0 can be expressed in 

terms of both the 33 orthogonal matrix R for transformation 
of components of vectors from Opxpypzp to Obxbybzb and the 
coordinates of point Q with respect to reference frame Obxbybzb. 
Matrix R is given by 

 

 
1 2

R R R  (1) 

 

where Ri (i=1, 2) is the 33 orthogonal matrix that represents a 

rotation i about an axis parallel to unit vector ni = 
(nix, niy, niz)

T
. The detailed expression of Ri is (see, for example, 

[7]) 
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where ci=cos i, si=sin i, and I is the 33 identity matrix. In 
using Eqs. (1) and (2), the following relations have to be taken 
into account 
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The position of point Q with respect to reference frame 
Obxbybzb is given by 

 

  
b
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1 1 2

R k R R m  (4) 

 
where k = (0, 0, 1)

T
 is the unit vector along the z-axis of 

reference frame Obxbybzb and m  an already-introduced unit 
vector – has the following expression 
 

 

cos cos

sin cos

sin

  
 

   

 
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 

m  (5) 

 
Equations (1) and (4) together express the rigid-body 

position of link 3 of the RRP mechanism in terms of parameters 

1, 2, and . 

Although a generic choice for parameters 1, 2, and  
certainly results into an admissible configuration of the RRP 
mechanism, the same choice does not necessarily correspond to 
an assembly configuration of the RRP-3(SS) structure. 

To solve the position analysis of the RRP-3(SS) structure, 
the formerly-removed SS-links are now ideally added to the 
RRP mechanism, thus re-obtaining the original RRP-3(SS) 
structure. Insertion of the three SS-links into the RRP 
mechanism is feasible if and only if the following set of 
compatibility equations is satisfied 

 

  
2

2
( 1, 2, 3)

j j j
B A L j    (6) 

 
In Eqs. (6), Aj and Bj (j=1,2,3) are the centers of the spherical 
pairs that connect the generic SS-link of the RRP-3(SS) 
structure to base and platform respectively, whereas Lj is the 
length of the considered SS-link (see fig. 5). 
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Figure 5 – The RRP mechanism at the home configuration. 
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In order to implement Eqs. (6), the components with 

respect to Obxbybzb of vector (BjAj) are expressed in terms of 

parameters 1, 2, and  by taking advantage of Eqs. (1) and 
(4) 
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j jj j
B A

j
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1 1 2
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 (7) 

 
where aj and bj are the vector of coordinates of points Aj and Bj 
with respect to reference frames Obxbybzb and Opxpypzp 
respectively. Algebraic manipulation of Eq. (6) leads to 
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Equations (8) is a set of three conditions in three 

unknowns, namely 1, 2, and  (matrices R1 and R2 depend 

on 1 and 2 respectively, see Eq. (2) ). The generic solution of 
equation set (8) represents an assembly configuration of the 
RRP-3(SS) structure because it directly provides the 
configuration of the corresponding RRP mechanism that is 
compatible with the presence of the three SS-links. 

A procedure to solve exhaustively Eqs. (8) is dealt with in 
the next section. 

 

ALGEBRAIC ELIMINATION AND 
BACK-SUBSTITUTION 

The determination of all solutions of equation set (8) is 
carried out by first making algebraic the dependence of all 
equations on the unknowns. After algebraic elimination, a 
univariate algebraic equation will be determined whose roots 
will provide the sought-for assembly configurations of the 
RRP-3(SS) structure. 

The left-hand sides of Eqs. (8) depend linearly on matrices 
Ri (i=1,2), which in turn depend at most linearly on either 

si=sini or ci=cosi (see Eq. (2)). In addition, almost any term 
on the left-hand side of Eqs. (8) depends at most linearly on 

unknown , the only exception being the first term within the 
last pair of parentheses on the left-hand side of Eqs. (8) (whose 
coefficient is constant). If the first of Eqs. (8) is subtracted from 
the remaining ones, a new equation set can be obtained as 
formed by the first of Eqs. (8) together with the two just-
obtained equations. Such an equation set can be synthetically 
written as 

  
1 1 2 2

, , , 0,1

1

1

0 ( 1, 2, 3)
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 

 
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p q u v
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p q u v

p q

u v

e s c s c j  (9) 

 

where quantities ejpquv() depend at most linearly on  for 

j=2,3. For the first of Eqs. (9)  j=1  the dependence of 

ejpquv() on  is at most linear as soon as at least one of indices 

p, q, u, and v is different from zero; at most quadratic if all of 
these indices vanish. 

By replacing the sine and cosine of i (i=1,2) with the 

following expressions in terms of ti = tan(i /2) 
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Eqs. (9) can be re-written – after rationalization – in the 
ensuing form 
 

 
1 2
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0, ( )
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u v w

juvw

u v

w d j

f t t j




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In Eqs. (11), the upper bound for index w, d(j), equals 2 for j=1, 
equals 1 for j=2,3. Coefficients fjuvw (j=1,2,3; u,v,w=0,1,2) 
appearing in Eqs. (11) are constant quantities that depend on 
the geometry of the RRP-3(SS) structure only. Their expression 
is here omitted for the sake of brevity. 

With the aim at eliminating unknowns t1 and t2 from 
Eqs. (11), these same equations can be re-written as 
 

  
1 2

, 0,2

0 ( 1, 2, 3)
p q

jpq

p q

f t t j



    (12) 

 

where quantities fjuv() (p,q=0,1,2) are second-order or first-

order polynomials in unknown  depending on whether j=1 or 
j=2, 3 respectively. 

The same process of algebraic elimination shown in [8] is 
now adopted. Starting from each of Eqs. (12), auxiliary 
equations are obtained through multiplication by factors t1

u 
t2

v
 

(u = 0,..,3; v = 0,1). As a consequence, the j-th equation of 
equation set (12) generates eight auxiliary equations and the 
whole set of auxiliary equation stemming from Eqs. (12) is 
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The left-hand sides of these equations can in turn be 

regarded as linearly dependent on the twenty-four power 
products t1

u 
t2

v
 (u = 0,..,5; v = 0,..,3) and arranged in matrix 

form as follows 
 

 M 0  (14) 

 

In this equation, M is a 2424 matrix whose elements depend 

on unknown , whereas  is the following 24-component vector 

 




0 0 1 0 2 0 3 0 4 0 5 0 0 1 1 1 2 1
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.....

T
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t t
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Equation (14) is now regarded as a linear, homogeneous 

set of 24 equations in the 24 power products. Since it must be 
satisfied at an assembly configuration of the RRP-3(SS) 
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structure and one of the power products is known a priori to be 
different from 0 (t1

0 
t2

0
 = 1), matrix M must be singular at an 

assembly configuration of the RRP-3(SS) structure, which 
leads to the ensuing condition 

 
 det 0M  (16) 
 
Equation (16) itself is the outcome of elimination of unknowns 
t1 and t2 from the set of compatibility equations. 

Owing to the dependence of the elements of matrix M on 

unknown   at most quadratic for the elements on the first 
eight rows of M, at most linear for the elements on the 

remaining rows  the degree of the left-hand side of Eq. (16) is 
expected not to exceed 32. Actually, direct verification by 
algebraic manipulation software – employed to carry out exact-
arithmetic computations for a number of RRP-3(SS) structures 
with randomly-chosen geometric parameters – has consistently 
shown that the left-hand side of Eq. (16) always reduces to a 

28
th

-order polynomial in . Consequently Eq. (16) itself can be 
re-written as 

 

 
28

0

0
w

w

w

h



   (17) 

 
where coefficients hw (w=0,..,28) depend on the geometry of 
the RRP-3(SS) only. 

In the complex domain, Eq. (17) admits twenty-eight roots 
that can be determined by resorting to well-known numerical 
algorithms. 

For the generic solution j (1  j  28) of Eq. (17), the 
corresponding values t1j and t2j of unknowns t1 and t2 can be 
found by back-substitution, which specifically consists in 

evaluating matrix M for the considered value j of , linearly 
solving Eq. (14) with the provision that the first component of 

vector  is unitary, and selecting the second and seventh 

components of vector  (see Eq. (15)). Once t1j and t2j have 
been determined, Eqs. (10) directly provide the sine and cosine 

of 1j and 2j which, together with j, allow determination of 
the j-th assembly configuration of the RRP-3(SS) structure 
through Eqs. (1) and (4). 

 

APPLICATION TO THE FORWARD KINEMATICS OF 
TRICEPT MANIPULATORS 

As already stated in the introductory section of this paper, 
the procedure that has been proposed for carrying out the 
position analysis of the RRP-3(SS) structure can be specialized 
to solve the forward kinematics of the 3-dof in-parallel-actuated 
elemental manipulator of a Tricept manipulator. Due to the 
geometric specificities of such an elemental manipulator, the 
corresponding UP-3(SS) structure is associated with an RRP 

mechanism (see Fig. 5) characterized by  = 0 (which means 

Op  Ob),  = /2, and  = /2. 
For a Tricept manipulator, the UP-3(SS) structure if further 

characterized by having: 

 points Aj (j=1,..,3) at the vertices of an equilateral triangle, 
TA; 

 unit vector n1 parallel to the plane that goes through the 
vertices of triangle TA; 

 point Ob at the center of triangle TA; 

 points Bj (j=1,..,3) at the vertices of an equilateral triangle, 
TB; 

 unit vector m orthogonal to triangle TB; 

 points Bj (j=1,..,3) equidistant from point Op; 

 the sides of triangle TB parallel to the sides of triangle TA at 
the home configuration of the underlying RRP mechanism. 

It has been already mentioned in the introductory section 
that there exist two different types of in-parallel-actuated 
elemental manipulators for Tricept manipulators. The 
corresponding UP-3(SS) structures – shown in Figs. 3 and 6 
and here dubbed as type-I and type-II structures respectively –
differ in the placement with respect to triangle TA of the 
revolute pair axis parallel to unit vector n1 (see Figs. 5, 3, and 
6): such an axis goes through a vertex of triangle TA for a type-I 
UP-3(SS) structure (as for the Tricept 805), whereas it is 
parallel to a side of triangle TA for a type-II UP-3(SS) structure 
(as for the Tricept 600). 

The procedure presented in this paper for the solution of 
the position analysis of the RRP-3(SS) structure can be 
specialized to tackle the forward kinematics of Tricept 
manipulators whose in-parallel-actuated elemental manipulator 
involves a type-II UP-3(SS) structure. Twenty-eight assembly 
configurations are possible for this structure in the complex 
domain. Due to geometric specificities of the type-II structure, 
all odd-index coefficients of Eq. (17) vanish, which means that 
Eq. (17) itself can be regarded as a 14

th
-order algebraic 
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Figure 6 – The UP-3(SS) structure associated with a Tricept 

manipulator (type-II). 
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equation in the unknown 
2
. This happens because a type-II 

UP-3(SS) structure can be assembled in either of two 
configurations that are symmetric with respect to the plane that 
contains the base points Ai (i=1,2,3) and the U-joint center. 

The forward kinematics of Tricept manipulators that 
involve a type-I UP-3(SS) cannot be solved by the procedure 
presented in this paper. The reason has to be sought in the 
algebraic elimination procedure here adopted, which does not 
profit from the simplified form taken in this case by the 
compatibility equations. The reader is therefore referred to the 
procedure explained in [6], where the 24 solutions that exist in 
the complex domain are determined by solving a 12

th
-order 

algebraic equation in the square of one of the unknowns, 
followed by extraction of square root and linear back-
substitution. 

 

NUMERICAL EXAMPLES 

This section shows application of the presented method to 
the position analysis of two structures: the first one is an RRP-
3(SS) structure, whereas the other is a type-II UP-3(SS) 
structure. 

With reference to Fig. 5, the coordinates of points Ai 
(i=1,..,3) of an RRP-3(SS) structure with respect to the base 

reference frame Obxbybzb are: A1=(1, 2, 1)
T
, A2=(1, 1, 1)

T
, 

A3=(2, 0, 2)
T
 (throughout this section, all linear dimensions can 

be regarded as expressed in the same arbitrary length unit; the 
input data are to be considered as exactly defined by the 
reported digits; the numerical results are provided with a 
relatively high number of decimal digits – all meaningful – in 
order to enable the reader to verify their correctness with 
confidence). The coordinates of points Bi (i=1,..,3) with respect 

to the platform reference frame Opxpypzp are: B1=(1, 1, 0)
T
, 

B2=(0, 1, 1)
T
, B3=(1, 1, 1)

T
. The remaining geometric 

parameters of the considered RRP-3(SS) structure are: =80°, 

=115°, =1, L1=3, L2=4, L3=5. By following the procedure 
previously outlined, a polynomial equation of 28

th
-order in the 

unknown  is found that has all coefficients different from 

zero. Its twenty-eight roots, i (i=1,..,28), are listed in Table 1; 
eight of them are real, whereas the remaining are complex. 
Therefore the considered RRP-3(SS) structure can actually be 

assembled in eight different ways. For any real value of i 

reported in Table 1, Table 2 lists the corresponding values of , 

1, 2, and the coordinates of points Bi (i=1,..,3) with respect to 
reference frame Obxbybzb. It can be easily checked that the 
positions of points Bi (i=1,..,3) are compatible – for each 
assembly configuration – with the lengths Li (i=1,..,3) of the 
three SS links. 

As a second example, a type-II UP-3(SS) structure is now 
considered. By referring again to Fig. 5, the coordinates of 
points Ai and Bi (i=1,..,3) with respect to Obxbybzb and, 
respectively, Opxpypzp are Ai=4 ui and Bi=3 ui, where ui 
(i=1,..,3) is given by 

 

           cos 120 150 , sin 120 150 , 0
T

i i
i

u  (18) 

 

Parameters , , and  are now mandatorily set to =90°, 

=90°, =0. The lengths of the three SS links are chosen as 
L1=6, L2=7, L3=7. The 28

th
-order polynomial equation in 

unknown   which is now deprived of the odd-power terms – 

is satisfied by the fourteen values for 
2
 listed in Table 3, six of 

which are real and positive. Consequently, Eq. (17) has twelve 
real solutions, as many as are the square roots (with both plus 
and minus signs) of the aforementioned positive real values for 


2
. The corresponding twelve real assembly configurations of 

the considered type-II UP-3(SS) structure are listed in Table 4 

in terms of the values of parameters , 1, 2 and the 
coordinates of points Bi (i=1,..,3) with respect to reference 
frame Obxbybzb. (In Table 4, pairs of assembly configurations 
that are symmetric with respect to the x-y plane of reference 
frame Obxbybzb are listed together; the selection of a single 
configuration is made by choosing the upper or lower signs 
wherever such an alternative exists.) Once more, it is easy to 
verify that the computed positions of points Bi (i=1,..,3) are 
congruent with the lengths Li (i=1,..,3) of the three SS links. 

 

CONCLUSIONS 

A procedure to exhaustively solve the position analysis of a 
general-geometry RRP-3(SS) multi-loop spatial structure has 
been presented. The twenty-eight solutions that exist in the 
complex domain can be determined by finding the roots of a 
univariate algebraic equation of 28

th
 order, followed by linear 

back-substitutions. 
If suitably specialized, the proposed procedure can find 

application to some types of Tricept manipulators, specifically 
those whose forward kinematics falls outside the reach of an 
already-known solving method. 

Numerical examples have shown application of the 
presented results to two case studies. 

 

Table 1 – The roots i (i=1,..,28) of Eq. (17) (real and imaginary 
parts) for the considered RRP-3(SS) structure. 

 
Root # Root value 
____________________________________________________________________________ 
 

 1 ( 5.0742351861635417, 0. ) 

 2 ( 4.9208457694073359, 0. ) 

 3 ( 3.2485304798567102, 0. ) 

 4 ( 2.9472972942348737, 0. ) 
 5 ( 0.4336937265758375, 0. ) 
 6 ( 1.8716859056627936, 0. ) 
 7 ( 2.8533551381339947, 0. ) 
 8 ( 3.0202234858973762, 0. ) 

 9-10 ( 2.6539388259158195, 0.3470682923497006 ) 

 11-12 ( 0.6288934148939096, 0.0920713380338177 ) 

 13-14 ( 5.3978372439452376, 1.6353960015160476 ) 

 15-16 ( 1.0796669034069113, 0.3665477831699458 ) 

 17-18 ( 1.1754717456325313, 0.5718777661241322 ) 

 19-20 ( 0.5607303198355512, 0.2771024466996316 ) 

 21-22 ( 1.7925839699411944, 0.9012404143420023 ) 

 23-24 ( 5.1649516067821035, 2.7634387909159706 ) 

 25-26 ( 2.2577581202525811, 1.5176837470894034 ) 

 27-28 ( 0.1539845408833452, 1.5772504431994877 ) 
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Table 2 – Values of , 1 and 2, together with (x,y,z)-cooordinates of points Bi (i=1,2,3) relative to reference 
frame Obxbybzb, for the real assembly configurations of the considered RRP-3(SS) structure. 

 
 

 1 (, 1, 2) ( 5.0742351861635417, 35.9079893748161347°, 28.9649324307956022° ) 

  B1 ( 2.6781700217812648, 4.2576192315137761, 0.0425453388192841 ) 

  B2 ( 1.3653461635426380, 2.4582409822157228, 0.9766364080701107 ) 

  B3 ( 0.4866581591368590, 2.7552713092491167, 1.3503747868002389 ) 
 

 2 (, 1, 2) ( 4.9208457694073359, 16.7397063715162090°, 9.9331724537507540° ) 

  B1 ( 1.3793980152669597, 2.1242250978426177, 3.9733188983150603 ) 

  B2 ( 0.2291846275909712, 0.4011369623340533, 2.6664231717628057 ) 

  B3 ( 0.7562770072030819, 0.3546626347909773, 2.8298413568844473 ) 
 

 3 (, 1, 2) ( 3.2485304798567102, 79.0280445391782827°, 163.9997204883860072° ) 

  B1 ( 0.6767083869286662, 4.4729707002083387, 1.2703051999391603 ) 

  B2 ( 0.6247488516958736, 2.8653898224331031, 0.0419039211399423 ) 

  B3 ( 1.5268699670835949, 2.6627327388291424, 0.3390259931970009 ) 
 

 4 (, 1, 2) ( 2.9472972942348737, 96.1096693511796809°, 174.4317612902740866° ) 

  B1 ( 1.2373743598687456, 3.5504833066462911, 2.2610144684392421 ) 

  B2 ( 0.2846112277092414, 2.5978678155458440, 0.5948561334301278 ) 

  B3 ( 1.2197274745538063, 2.4665375488648706, 0.9239609282004854 ) 
 

 5 (, 1, 2) ( 0.4336937265758375, 170.8277016071986500°, 12.7989139878393903° ) 

  B1 ( 1.0892329362024957, 0.9986059923310343, 0.9800103563539957 ) 

  B2 ( 0.3399926313342539, 0.7296870316619115, 2.5457824306924873 ) 

  B3 ( 0.6359101341710010, 0.6907160998793561, 2.7604800290842598 ) 
 

 6 (, 1, 2) ( 1.8716859056627936, 80.9195928499276312°, 169.0366603163963822° ) 

  B1 ( 1.4412409995520388, 0.4025929011426914, 0.3009771515705376 ) 

  B2 ( 0.0287424686051592, 1.3736985290103308, 2.0507776429399693 ) 

  B3 ( 0.8932495553923580, 1.6121281380216517, 1.7456841667205158 ) 
 

 7 (, 1, 2) ( 2.8533551381339947, 42.5300309414956836°, 45.9066707230024256° ) 

  B1 ( 2.6914641610939969, 1.3842880246672619, 1.3999682821167531 ) 

  B2 ( 2.7977917841657982, 1.1712865124310922, 3.8378617975019116 ) 

  B3 ( 2.0927907285236484, 1.6877341071135708, 4.3239228980748094 ) 
 

 8 (, 1, 2) ( 3.0202234858973762, 155.8002697774543024°, 167.5798330690447930° ) 

  B1 ( 0.4535864782038204, 1.2918626159811463, 1.5269799753337874 ) 

  B2 ( 1.3512558881446214, 2.9478794426552221, 1.5393210614318953 ) 

  B3 ( 2.2682508421575309, 2.5527403119887298, 1.4846829636338322 ) 
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Table 3 – The values of 
2
 (real and imaginary parts) that 

satisfy Eq. (17) for the considered type-II UP-3(SS) 
structure. 

 
Value # Value 
_____________________________________________________________________________ 

 

 1 ( 5.8696327988584050, 0. ) 

 2 ( 4.0239570540158663, 0. ) 

 3 ( 3.3666899614601473, 0. ) 

 4 ( 3.0563577788337002, 0. ) 
 5 ( 0.4733932871332810, 0. ) 
 6 ( 2.0748284313315206, 0. ) 
 7 ( 2.1224196727429542, 0. ) 
 8 ( 15.5595408347198758, 0. ) 
 9 ( 21.0556791945148852, 0. ) 
 10 ( 43.4967317928178336, 0. ) 

 11-12 ( 2.9629094839493732, 14.2663109067628893 ) 

 13-14 ( 23.3534016594300759, 29.6740259421679502 ) 
 

Table 4 – Values of , 1 and 2, together with (x,y,z)-cooordinates of points Bi (i=1,2,3) relative to reference 
frame Obxbybzb, for the real assembly configurations of the considered type-II UP-3(SS) structure. 

 
 

 1-2 (, 1, 2) (  0.6880358182051869, m 156.7136782148684357°,  132.9139078387645247° ) 

  B1 ( 1.2651245735830280, 0.4403916388669646,  2.7710843193352510 ) 

  B2 ( 0.5039020492352966, 2.9408258391083399, m 0.7556582534072386 ) 

  B3 ( 2.2729286720536212, 1.9448237362397493, m 0.7244647499004386 ) 
 

 3-4 (, 1, 2) (  1.4404264755035297,  166.0952410961427079°,  119.6888747109510109° ) 

  B1 ( 0.0354627690969302, 2.1698695743141532,  2.5229421027453670 ) 

  B2 ( 1.2513383830026394, 2.7406464460835599,  1.4134488813273061 ) 

  B3 ( 2.5381395351022091, 1.0851062606708437, m 1.8588223515805918 ) 
 

 5-6 (, 1, 2) (  1.4568526599292580, m 121.5113162764218017°,  159.9432882232469948° ) 

  B1 ( 1.9408845599906445, 1.1423155877154994,  2.4597767979219313 ) 

  B2 ( 0.4996277511034456, 2.7346975409071307, m 1.8423412123780870 ) 

  B3 ( 2.9401400621975357, 0.3769231127194106,  1.5283733361001609 ) 
 

 7-8 (, 1, 2) (  3.9445583827242151, m 50.1598159353873538°,  169.3917522904197658° ) 

  B1 ( 1.8275071621977196, 4.3052204648024363, m 1.6385466597818347 ) 

  B2 ( 0.7261649628862395, 1.0550573956600155, m 4.7873875102460014 ) 

  B3 ( 3.2798370879701985, 3.5707296855931061, m 1.0257187838385341 ) 
 

 9-10 (, 1, 2) (  4.5886467715999763, m 150.30166338368242480°,  10.1346512335003609° ) 

  B1 ( 3.3649661993974588, 3.31437262447962296, m 2.7834539294781876 ) 

  B2 ( 0.8074279219136203, 0.36804010068563934, m 5.4100171746230568 ) 

  B3 ( 1.7501103555702182, 3.76736025607133018, m 3.5776793650095212 ) 
 

 11-12 (, 1, 2) (  6.5952052123355368,  4.85386761100620255°,  8.3399034085793430° ) 

  B1 ( 3.5272052199421251, 2.01488429854254115,  5.9996496891666592 ) 

  B2 ( 0.9566036312166227, 2.43709147410222920,  6.7559030804489217 ) 

  B3 ( 1.6139979575088798, 2.07865648248668464,  6.7506243869579265 ) 

 


