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Abstract 

This article synthezises the most important results on the kinematics of cuspidal manipulators i.e. 

nonredundant manipulators that can change posture without meeting a singularity. The 

characteristic surfaces, the uniqueness domains and the regions of feasible paths in the workspace 

are defined. Then, several sufficient geometric conditions for a manipulator to be noncuspidal are 

enumerated and a general necessary and sufficient condition for a manipulator to be cuspidal is 

provided. An explicit DH-parameter-based condition for an orthogonal manipulator to be cuspidal 

is derived. The full classification of 3R orthogonal manipulators is provided and all types of 

cuspidal and noncuspidal orthogonal manipulators are enumerated. Finally, some facts about 

cuspidal and noncuspidal 6R manipulators are reported.  

Keywords: Cuspidal manipulator, Singularity, Posture, Workspace, Cusp Point, Classification. 

1 Introduction 

A cuspidal manipulator is a nonredundant manipulator that can change its posture (a posture is 

associated with an inverse kinematic solution) without meeting a singularity. Today, most industrial 

6R manipulators are of the PUMA type, which is noncuspidal. Indeed, a Puma robot cannot avoid 

the fully extended arm configuration when moving from the “elbow up” to the “elbow down” 

mailto:Damien.Chablat@irccyn.ec-nantes.fr
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posture. Modification in the link arrangement is very likely to result in a cuspidal manipulator. In 

1998, ABB-Robotics launched the IRB 6400C, a new manipulator specially designed for the car 

industry to minimize the swept volume. The only difference from the Puma was the permutation of 

the first two link axes, resulting in a manipulator with all its joint axes orthogonal. 

Commercialization of the IRB 6400C was finally stopped one year later. Informal interviews with 

robot customers at that time revealed difficulties in planning offline trajectories using Robotic-

CAD systems for this robot. In fact it turns out that the IRB 6400C robot is cuspidal. We will come 

back to this robot in section 5.   

It has long been believed that any manipulator always encounters a singularity during a change of 

posture
1
. The nonsingular change of posture was first pointed out in 1988 in two separate works. 

Parenti-Castelli and Innocenti exhibited a nonsingular posture changing trajectory for two different 

6R cuspidal manipulators using numerical experiments
2
 while Burdick provided several examples 

of cuspidal 3R manipulators and some general results about which manipulators should be 

cuspidal
3
. Maybe because of the scepticism of the research community at that time, this feature has 

been ignored for several years and no further research work was provided before 1992, when the 

nonsingular posture-changing ability was confirmed and more formally analyzed
4
. As few authors 

have investigated this phenomenon since then, it took a long time before the research community 

recognized the nonsingular posture-changing ability. The problem of planning non-singular 

changing posture trajectories for general 3R manipulators was addressed by Tsai and Kholi in 

1993
5
. At the very end of his work, Smith suggested that a non-singular posture changing trajectory 

should encircle a cusp point in the workspace
6
. Burdick provided a list of conditions on the DH-

parameters for a manipulator to be noncuspidal
7
. This list includes simplifying geometric 

conditions such as parallel and intersecting joint axes. Later, Wenger provided other conditions that 

are not intuitive
8
. A general, necessary and sufficient condition for a 3-DOF manipulator to be 

cuspidal was first established by El Omri and Wenger
9
 in 1995, namely, the existence of at least 
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one point in the workspace where the inverse kinematics admits three equal solutions. The word 

“cuspidal manipulator” was defined in accordance to this condition because a point with three equal 

inverse kinematic solution forms a cusp in a cross section of the workspace
7,10

. The different 

possible posture-changing motions for 3-DOF manipulators were analyzed by Wenger and El 

Omri
11

. The categorization of all generic 3R manipulators was established using homotopy classes, 

which made it possible to show that the space of 3R manipulators is mostly composed of cuspidal 

ones
12

. A procedure to take into account the cuspidality property in the design process of new 

manipulators was provided
13

. More recently, Corvez and Rouillier attempted the classification of 

3R manipulators with orthogonal joints
14

. Five surfaces were found to divide the manipulator 

parameter space into cells with constant number of cusp points. The equations of these surfaces 

were derived as polynomials in the DH-parameters using Groebner Bases. A physical interpretation 

of this theoretical work was conducted by Baili et al
15

 who pointed out the existence of extraneous 

surface equations and took into account additional features in the classification like genericity
16

 and 

the number of aspects. The complete classification of orthogonal 3R manipulators was established 

for the first time in 2004 on the basis of the number of cusps and nodes in the workspace cross 

section
17, 18

. A general formalism for the kinematic analysis of cuspidal manipulators was provided 

and the maximal sets of feasible paths in the workspace were defined
19

. 

The purpose of this work is to synthesize the most important results on the kinematics of cuspidal 

manipulators i.e. nonredundant manipulators that can change posture without meeting a singularity.  

The rest of this article is organized as follows. Section 2 introduces an illustrative cuspidal 

manipulator and recalls some facts about singularities and aspects. Section 3 defines the 

characteristic surfaces, the uniqueness domains and the regions of feasible paths in the workspace. 

Section 4 is devoted to the classification and enumeration of cuspidal and noncuspidal 

manipulators. The last section addresses the case of 6R manipulators. 
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2 Preliminaries 

2.1 Illustrative Manipulator 

A typical 3R cuspidal manipulator is used as illustrative example in this section. A 3R cuspidal 

manipulator should not have parallel or intersecting joint axes to be cuspidal
7, 8

. The geometric 

parameters of this manipulator, known as DH-parameters, are taken as 1=-/2, 2=/2, a1=1, 

a2=2, a3=1.5, d1=0, d2=1, d3=0. This manipulator with mutually orthogonal joint axes (henceforth 

referred to as an orthogonal manipulator) has a rather simple geometry and is a good representative 

example
11, 13

. The three joint variables are referred to as 1, 2 and 3, respectively. Fig. 1 shows the 

kinematic architecture of the manipulator in its zero configuration, i.e. 1 = 2 = 3 = 0. This 

manipulator can be regarded as the regional structure of a 6R robot with a spherical wrist. The 

position of the end-tip is defined by the three Cartesian coordinates px, py and pz of the operation 

point P with respect to a reference frame (O, X, Y, Z) attached to the manipulator base (Fig. 1).  

 z y 
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Fig. 1. A cuspidal 3R manipulator.     Fig. 2. Aspects of the cuspidal manipulator. 

2.2 Singularities and aspects 

The singularities of a manipulator play an important role in its global kinematic properties
3-7, 1-22

. 

The singularities of a 3R manipulator can be determined using a recursive appoach
23

 or with det(J), 
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the determinant of the Jacobian matrix (px,py,pz)/(1,2,3)
7,8,12,15

. This determinant can be 

derived automatically with symbolic softwares such as SYMORO
24

. For the illustrative 

manipulator, det(J) takes the following factored form, 

 2 3 3 2 3 2 3 2 3 1
det( ) ( )( ( - ) )a c a c s a c d s a  J  (1) 

where ci=cos(i) and  si=sin(i). A singularity occurs when det(J)=0. Since the singularities are 

independent of 1, the contour plot of det(J)=0 can be displayed in 
2 3

,           . For the 

illustrative manipulator a2>a3 and the first factor of det(J) cannot vanish (examples with a2<a3 will 

be shown in Fig. 11 in section 4.3). Fig. 2 shows that the singularities form two closed surfaces S1 

and S2 in the joint space. If the manipulator has no joint limits, S1 and S2 divide the joint space into 

two singularity-free open, connected sets A1 and A2 called c-sheets
3
 or aspects

1
. We use the term 

„aspect‟ because it is also used for manipulators with limited joints whereas c-sheets were defined 

for manipulators with unlimited joints only.  

2.3 Singularities and workspace 

The workspace of general 3R manipulators has been widely studied since the seventies
1,3-8, 17-22, 25-

36
. The determination of the workspace boundaries, the size and shape of the workspace, the 

existence of holes and voids, accessibility inside the workspace (i.e. the number of inverse 

kinematic solutions) are some of the main features that have been explored. The singularities can be 

displayed in Cartesian space where they define boundaries. Thanks to their symmetry about the 

first joint axis, a representation in a half cross-section of the workspace is sufficient (Fig. 3). As in 

the joint space, the singularities also form two disjoint curves in the workspace. These two curves 

define the internal boundary WS1 and the external boundary WS2, respectively. If f denotes the 

kinematic map, then WS1=f(S1) and WS2=f(S2). The separating and sorting of these boundary curves 

have been recently studied in detail
36

. The internal boundary WS1 is composed of four adjacent arcs 

BS1, BS2, BS3 and BS4 connected by four cusp points. It divides the workspace into one region with 
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two inverse kinematic solutions (the outer region) and one region with four inverse kinematic 

solutions (the inner region, Fig. 3). Each point on the internal boundary has three distinct inverse 

kinematic solutions, one of which is a double solution. At each cusp point, there are only two 

distinct inverse kinematic solutions, one of them being a triple solution
4
. The external boundary 

surface is composed of two adjacent arcs that meet on axis Z. There is only one inverse kinematic 

solution on the external boundary, which is a double solution. There are an infinite number of 

inverse kinematic solutions at the two connecting points on axis Z (because 1 can take on any 

value without altering the position of the end-tip). 

 

O uter region (2  IK S)  

In ternal boundary  

W S 1=BS 1BS 2BS 3BS 4 

(3  IK S)  

Inner 

 R egion : 

(4  IK S) 

 

External boundary 

W S 2  (1  IK S) 

C usp point  

(2  IK S) 

BS 2 

BS 1 
BS 3 

BS 4 

z [m ] 

2 2
x y  

  [m ] 

 

Fig. 3.  Singularity locus in workspace. Number of distinct inverse kinematic solutions (IKS) 

in each region and on each boundary is indicated. 
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2.4 A nonsingular posture changing trajectory 

For the illustrative manipulator, solving the inverse kinematics at px=2.5, py=0, pz=0.5 yields four 

solutions given (in radians) by q
(1)

=[-1.8 -2.8 1.9]t, q
(2)

=[-0.9 -0.7 2.5]t, q
(3)

=[-2.9 -3 -0.2]t and 

q
(4)

=[0.2 –0.3 –1.9]t. It is apparent from fig. 4 that q
(2)

 and q
(3)

 (resp. q
(1)

 and q
(4)

 ) lie in the same 

aspect A1 (resp. A2), which means that these two solutions are not separated by a singularity. It is 

then possible to link q
(2)

 and q
(3)

 by a nonsingular straight line trajectory. When projected in the 

workspace cross section, this trajectory traces a loop path that encompasses a cusp point (Fig. 4). In 

fact it has been shown that a nonsingular posture-changing trajectory always encompasses a cusp 

point in the workspace
4-6, 9, 11

.  

 

 S1  

Aspect A 2 Aspect A 1 

q (1) 

q (4) 

q (3) 

q (2) 

     


3[rad] 


2[rad] 

 

 

W A 1 =  W A 2 

P  

z  [m ] 

  [m ] 

 

Fig. 4.  A point with two inverse kinematic solutions in each aspect. A nonsingular posture 

changing trajectory and the resulting path in workspace section are displayed. 

On the other hand, there is only one inverse kinematic solution per aspect for any point in the outer 

region. The two aspects A1 and A2 map onto the same set WA1=WA2 in the workspace, with the 

same internal and external boundaries as in Fig. 4. In WA1 or in WA2, there are only two solutions 

in the inner region and one solution in the outer region. 
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3 Formalism for the kinematic analysis of cuspidal manipulators 

In this section, the notion of characteristic surfaces and uniqueness domains is introduced. Not 

every motion is feasible in the workspace of a cuspidal manipulator, even without joint limits. It is 

shown that the regions of feasible motions in the workspace are defined as the image of the 

uniqueness domains through the kinematic map. This holds for any nonredundant manipulator with 

or without joint limits. 

3.1 Characteristic surfaces 

Since the singular surfaces in the joint space do not separate all the inverse kinematic solutions, 

new separating surfaces should exist. The set obtained by calculating the nonsingular inverse 

kinematic solutions for all points on an internal boundary forms a set of nonsingular surfaces in 

each aspect. We call these surfaces the characteristic surfaces. A set of characteristic surfaces is 

associated with one aspect and it was proved that they separate the inverse kinematic solutions in 

each aspect
17

. A general definition of the characteristic surfaces can be set as follows, which stands 

for any nonredundant manipulator with or without joint limits. Let 
i

A *  be the boundary of aspect 

Ai. The characteristic surfaces {CSi} associated with Ai are : 

 1

ii
{ } f ( f( *))

 
A A

i
CS


   (2) 

where f( iA * ) is the image of iA *  under the forward kinematic map and f
-1

(f( iA * )) = {q / f(q)  

f( iA * )}. Note that since an aspect is defined as an open set, Ai does not contain its boundary i.e. 

ii
*A A   thus {CSi} might be empty (this is so for noncuspidal manipulators).  

Note that the characteristic surfaces are slightly different from the pseudo-singular surfaces defined 

by Tsai
5
 and Miko

35
 as f

-1
(f( iA * )). The pseudo-singular surfaces were defined for 3R manipulators 

with unlimited joints only. Moreover, they are not associated with an aspect. Thus, for a 



Final version Submitted to special issue “Geometry in Robotics and Sensing” of ROBOTICA 08/02/10  

 P. Wenger 9 

manipulator with more than two aspects, the pseudo-singular surfaces generate “spurious” surfaces 

that do not separate the inverse kinematics solutions. In fact, the pseudo-singular surfaces and the 

characteristic surfaces are equivalent for manipulators with unlimited joints and having only two 

aspects. Fig. 5 shows the two characteristic surfaces {CS1} and {CS2} for the illustrative 

manipulator. 

 

 Singular surfaces  

C haracteristic  

Surfaces {C S1}  

C haracteristic  

Surfaces {C S2}  

 3[rad] 

 2[rad] 
 

Fig. 5. Singular and characteristic surfaces. 

The characteristic surfaces are independent of 1 when 1 is unlimited. Because the general 

definition (2) is not algebraic in nature, it is difficult to derive an algebraic expression of {CSi} that 

would be easy to handle. A scanning process can be used to plot the characteristic surfaces
19

. 

The characteristic surfaces induce a partition of each aspect into open sets that we call reduced 

aspects. Also, the internal boundaries induce a partition of the workspace into regions and each 

such region is associated with several reduced aspects. For the illustrative manipulator of Fig. 1, the 

inner region is associated with the four reduced aspects Ra11, Ra12, Ra21 and Ra22 (in gray in Fig. 6). 
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The first two, Ra11 and Ra12, are in A1, whereas Ra21 and Ra22 are in A2. The outer region is 

associated with the two reduced aspects Ra13 and Ra23 that belong to A1 and A2, respectively.  

 

 

 A 1  

 A 2  

 R a22  

 R a13  

 R a23  

 R a11  

 R a21  

 R a12  

 3 [rad] 

 2 [rad] 

 R a22  

 

 

z[m ] 

  [m ] 

 

(a)      (b) 

Fig. 6.  Correspondence between the reduced aspects (a) and the regions (b). 

3.2 Uniqueness domains 

Fig. 6 shows that each aspect is made of three reduced aspects, two of them being associated with 

the same region in the workspace (Ra11 and Ra12 for aspect A1). If we remove one of these two 

reduced aspects and its boundary from the aspect, the remaining domain is a uniqueness domain. 

Thus, there is still a unique inverse kinematic solution in the domain defined by Qu1=A1
_.
C(Ra12) as 

well as in Qu2= A1
_.
C(Ra11) (

_.
 means the difference between sets, C(R) means the closure of R). In 

the same way, Qu3=A2
_.
C(Ra22) and Qu4=A2

_.
C(Ra21) are still uniqueness domains. Fig. 7 shows 

the four maximal uniqueness domains for the illustrative manipulator.  
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 A 2  

 C S2  
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 3 [rad] 
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Q u 4 
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 Fig. 7.  Four maximal uniqueness domains for the illustrative manipulator of Fig. 1. 

 

3.3 Regions of feasible paths in the workspace 

For a noncuspidal manipulator, the regions of feasible paths in the workspace are the image of the 

aspects
1
. This is not true for a cuspidal manipulator because the aspects are not the uniqueness 

domains. The regions of feasible paths in the workspace must be defined by the uniqueness 

domains. Figure 8 shows the four regions of feasible paths, which are the images of the uniqueness 

domains in the workspace. It is important to note that Wf1, Wf2, Wf3 and Wf4 define regions where 
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any arbitrary path is feasible but they do not include all feasible paths. In effect, it is possible to 

define a feasible path that undergoes a nonsingular change of posture in, say, aspect A1 like in Fig. 

4. In this case, the path will start in Wf1 and stop in Wf2.  

 

 

[m] 

z[m] 
 

 [m ] 

z[m ] 

 

Wf1 = f(Qu1)  Wf2 = f(Qu2) 
 

 

 [m ] 

z[m ]  

 [m ] 

z[m ] 

 
Wf3 = f(Qu3)  Wf4 = f(Qu4) 

 

Fig. 8. Regions of feasible paths. 

To get the full model of feasible paths in WA1, Wf1 and Wf2 must be properly “glued” together, 

which can be realized by plotting the surface (, z, cos((2)) for A1
19

. From a mathematical point of 

view, this method is referred to as the level set method
37

. Also, plotting (, z, cos((2)) for A2 
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provides the full model of feasible paths in WA2 (Fig. 9). This model helps better understand the 

nonsingular posture changing phenomenon and the loop path shown in Fig. 4. 

 

 

 

 

Fig. 9. Full model for the feasible paths in WA1 (above) and WA2 (below). 

The uniqueness domains and the regions of feasible paths of any 3R manipulators can be got quite 

simply when the singular curves and the characteristic surfaces are given
19

. The regions of feasible 

paths are useful to assess the global performances of a manipulator and to compare several 

manipulator designs. These regions can also be used to verify the feasibility of a path without 

analyzing the root equality of the inverse kinematic polynomial on the boundaries. In effect, since 

each region of feasible paths is associated with one inverse kinematic solution, these regions 

indicate which internal surfaces can be crossed, according to the inverse kinematic solution used to 

follow the path
19

. 
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The characteristic surfaces, the uniqueness domains and the regions of feasible paths can be 

calculated in the same way for 3R manipulators with joint limits on their last two axes
19

. When 

joint 1 is also limited, it is no longer possible to build 2D sections. Such manipulators were 

investigated by El Omri and their uniqueness domains and regions of feasible paths were built 

using octrees
38

. 

4 ENUMERATION OF CUSPIDAL MANIPULATORS AND 

CLASSIFICATION 

4.1 Simplifying geometric conditions 

Because of the more complex behavior of a cuspidal robot and because of the difficulty in 

modeling its kinematic properties, industrial robots should be designed noncuspidal rather than 

cuspidal. Thus, before designing an innovative kinematic architecture, robot manufacturers should 

have guidelines such as design rules to help them.  Why a manipulator with a given geometry is 

cuspidal has long been a very intriguing question. It is worth noting that this question remains not 

completely solved. One of the pioneer contributors to this problem was J. Burdick, who observed 

that under simplifying geometric conditions such as intersecting or parallel joint axes, a 3R 

manipulator was noncuspidal
7
. Other simplifying conditions were exhibited later

7
 as a direct 

consequence of the necessary and sufficient condition recalled in next section. Finally, six 

geometric conditions were found to define noncuspidal 3R manipulators: 

1/ first two joint axes are parallel (sin(1)=0), 

2/ last two joint axes are parallel (sin(2)=0), 

3/ first two joint axes intersect (a1=0), 

4/ last two joint axes intersect (a2=0), 



Final version Submitted to special issue “Geometry in Robotics and Sensing” of ROBOTICA 08/02/10  

 P. Wenger 15 

5/ first two joint axes are orthogonal, all joint offsets are zero (cos(1)=0, d2=0, d3=0), 

6/ joint axes are mutually orthogonal, first joint offset vanishes (cos(1)=cos(2)=0, d2=0). 

These conditions also hold for 6R manipulators with spherical wrist because the singularity 

analysis of the wrist can be decoupled from those of the regional structure. It is worth noting that 

conditions 2/ and 3/ are encountered in most industrial 6R manipulators. However, the last two 

conditions (5/ and 6/) are unusual. 

Analogous conditions exist also for manipulators with prismatic joints
39

.  

4.2 Necessary and sufficient condition for a manipulator to be cuspidal 

Burdick conjectured that, on the other hand, 3R manipulators with “general” geometry should be 

cuspidal
6
. But it was shown later that the correlation between cuspidal manipulators and general 

manipulators was not clear
8
. For example, the orthogonal manipulator shown in Fig. 1 is cuspidal 

but it is no longer cuspidal when a3 is set to 0.5m instead of 1.5m (with the same values for the 

remaining DH-parameters). In both cases the manipulators are not of “general geometry” in the 

sense that the last joint offset is equal to zero and the joint axes are mutually orthogonal. An 

important step towards the characterization of cuspidal manipulators was established in 1995 when 

a general necessary and sufficient condition for a manipulator to be cuspidal was provided. This 

condition states that a manipulator is cuspidal if and only if its inverse kinematics admits a triple 

solution
9
 (i.e. a point where three inverse kinematic solutions coincide). In the cross section of the 

workspace of a 3R manipulator, a point with three equal inverse kinematic solutions is a cusp point 

(see the four cusp points in Fig. 3). A direct consequence of this condition is that for a manipulator 

to be cuspidal, the degree of its inverse kinematics polynomial must be greater than 2. Hence, any 

quadratic manipulator (i.e. whose inverse kinematic polynomial can be reduced to a quadratics) is 

noncuspidal. All six noncuspidal manipulator types enumerated in the preceding section are 

quadratic
38

. Also, any 3-DOF manipulator (or 6-DOF with wrist) with at least two prismatic joints 
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are always quadratic
40

 and thus cannot be cuspidal. But it took eight years before this condition 

could be exploited to derive more general conditions on the DH-parameters
14

. The exploitation of 

the necessary and sufficient condition is recalled hereafter.  

4.3 Classification of 3R orthogonal manipulators 

For a 3R manipulator, the existence of cusps can be determined from its fourth-degree inverse 

kinematic polynomial P(t) in  3
tan / 2t   whose coefficients are function of the DH-parameters 

and of the variables 2 2
R x y   and 2

Z z  (see reference
30

 for more details on the derivation and 

properties of this polynomial). The condition for P(t) to have three equal roots can be set as 

follows: 

 

2 3 1 2 2

2 3 1 2 2

2

2 3 1 2 22

( , , , , , , , ) 0

( , , , , , , , ) 0

( , , , , , , , ) 0

P t a a d R Z

P
t a a d R Z

t

P
t a a d R Z

t

 

 

 





























 (3) 

The three variables t, R and Z must be eliminated to obtain a condition on the DH-parameters. 

Deriving a symbolic solution of (3) in the general case is not reasonable and has still not been 

attempted. On the other hand, the study of the particular case 1=/2, 2=/2 (orthogonal 

manipulators) is interesting because this case is more tractable (although still very complex) and the 

family of orthogonal manipulators is rich enough to define alternative designs with relatively 

simple geometries that could find potential applications in industry. 

Rather than simply distinguishing between cuspidal and noncuspidal orthogonal manipulators, it is 

more interesting to classify the family of orthogonal manipulators as function of their number of 

cusp points. Indeed, the number of cusps provides more information about the topology of the 

singular curves in the workspace and, as a result, about the global properties of the manipulator 

such as the existence of voids and of 4-solution regions
6,17,20,30

. To do this classification, it is 
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appropriate to search for the conditions under which the number of real solutions of system (3) 

changes
41

. By doing so, a set of bifurcating surfaces is defined in the parameter space of orthogonal 

manipulators where the number of cusps changes. These bifurcating surfaces divide the parameter 

space into domains where all manipulators have the same number of cusp points. The bifurcating 

surfaces can be regarded as sets of transition manipulators. The algebra involved in system (3) is 

too complex to be handled by commercial computer algebra tools. Corvez and Rouillier
14

 resorted 

to sophisticated computer algebra tools to solve system (3) by first considering the more particular 

case d3=0 (no offset along the last joint axis like the robot shown in fig. 1). They used Groebner 

Bases and Cylindrical Algebraic Decomposition
41,42

 to find the equations of the bifurcating surfaces 

and the number of domains generated by these surfaces. They obtained 5 distinct surface equations, 

which were shown to define 105 domains in the parameter space. A kinematic interpretation of this 

theoretical work was conducted by Baili et al
15

 : the authors analyzed global kinematic properties 

of one representative manipulator in each domain. Only 5 different cases were found to exist. In 

fact, several surface equations obtained by Corvez and Rouillier were extraneous solutions. Finally, 

the true bifurcating surfaces were shown to take on the following explicit form
15

: 
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( 1) and ( 1)A a d B a d       (8) 
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Note that the above equations assume d3=0. Moreover, a1 was set to 1 without loss of generality in 

order to handle only three independent parameters. These four surfaces divide the parameter space 

into 5 domains with 0, 2 or 4 cusps. Fig. 10 shows the plots of the surfaces in a section (a2, a3) of 

the parameter space for d2=1. Plotting sections for different values of d2 changes the size of each 

region but the general pattern does not change and the number of cells remains the same. There are 

two domains of noncuspidal manipulators (domains 1 and 5), two domains of manipulators with 

four cusps (domains 2 and 4) and one domain of manipulators with two cusps. 

 

a3 

a2 
 

Fig. 10. Plots of the bifurcating surfaces in a section (a2, a3) of the parameter space for d2=1. 

The partition of the parameter space and the equations of the bifurcating surfaces allow us to define 

an explicit necessary and sufficient condition for an orthogonal manipulator with no offset along its 

last joint axis to be cuspidal. In effect, figure 10 shows that a manipulator is cuspidal if and only if 

it belongs to domains 2, 3 or 4. Thus, an orthogonal manipulator with no offset along its last joint 

axis is cuspidal if and only if:  

 
2 2 2 22 2

2 2 2 2 1 2 2
3 2 2 2 22 2

2 1 2 2 1 2

( ) ( )1
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2 ( ) ( )

a d a a d
a a d
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Note that parameter a1 was no longer set equal to 1 in order to show better the influence of all 

parameters. Fig. 11 shows the cross sections of the workspace and the singular curves in the joint 

space, for one representative manipulator in each domain of the partition. The number of inverse 

kinematic solutions in each region of the workspace is indicated. Fig. 11 shows that manipulators in 

domain 1 have only two inverse kinematics solutions. Also, they have a void in their workspace 

and they are noncuspidal. In fact, it can be shown that all other manipulators have 4 inverse 

kinematic solutions and that Eq. (9) is a necessary and sufficient condition for an orthogonal 

manipulator with d3=0 to have four inverse kinematic solutions
20

. The other noncuspidal 

manipulators are in domain 5. They have a region with 4 inverse kinematic solutions and no void.  

  

 

4  

2   

 

Domain 1 (a2=0.7, a3=0.3, d2=0.2)   Domain 2 (a2=2, a3=1.5, d2=1) 

 
 

  

 

 

Domain 3 (a2=3, a3=4, d2=3)   Domain 4 (a2=2, a3=6, d2=1)  

 

 

Domain 5 (a2=0.5, a3=0.8, d2=0.2) 
 

Fig. 11. Workspace topologies in each domain.  
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Each domain of the parameter space can be further classified by taking into account the number of 

nodes, i.e., the number of intersection points on the workspace boundaries
17

. There is one node in 

the workspace of the illustrative manipulator of domain 3 (fig. 11) but two more nodes may arise 

when the internal boundary goes outside the external one (as displayed in Fig. 13, WT6). Two more 

surface equations E1=
1

( )
2

A B , E2=a2 and E3=
1

( )
2

A B (A and B are defined as in (8)) appear 

when the number of nodes is considered and the parameter space is divided into 9 cells, each one 

being associated with a particular workspace topology WTi. This new partition is shown in a section 

(a2, a3) of the parameter space for d2=1 (Fig. 12). 

 

7  

a3 

a 2 
 

WT1: 0 cusp, 0 node, WT2: 4 cusps, 2 nodes, WT3: 4 cusps, 0 node 

WT4: : 4 cusps, 2 nodes, WT5: 2 cusps, 1 node, WT6: 2 cusps, 3 nodes, 

WT7: 4 cusps, 4 nodes, WT8: 0 cusp, 0 node, WT9: 0 cusp, 2 nodes 

Fig. 12. Partition of the parameter space according to the number of cusps and nodes. 

Plots of the separating curves in sections for different values of d2 show that they deform smoothly 

with the same intersections when d2 varies. The areas of WT1, WT2, WT7 and WT9 increase when r2 

decreases, whereas those of WT3, WT4, WT5 and WT6 decrease. All manipulators in domain 1 have 
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no node (this domain is referred to as WT1), all manipulators in domains 4 have four nodes (WT7). 

Manipulators in domains 2 and 5 may have no nodes (WT3 and WT8, respectively) or two nodes 

(WT2 and WT9, respectively) and manipulators in domain 3 may have one or three nodes (WT5 and 

WT6, respectively). 

The classification with nodes makes it possible to identify all the orthogonal manipulators that have 

a void in their workspace. In effect, all such manipulators are in domains WT1 and WT2.  

Fig. 13 shows the cross sections of the workspace and the singular curves in the joint space, for one 

representative manipulator in WT2, WT4, WT6 and WT9. The other representative manipulators 

appear in fig. 11. The two horizontal singular lines that appear in the joint space of the 

manipulators in WT4 and WT6 generate isolated points in the workspace cross section as shown by 

arrows in Fig. 12. 

 

 

 

 

Domain 2, WT2,  (a2=1.5, a3=0.7, d2=0.5)  Domain 2, WT4,  (a2=3, a3=4, d2=9) 

 

 

 

 

 

Domain 3, WT6,  (a2=3, a3=4, d2=2)   Domain 5, WT9,  (a2=0.5, a3=1.3, d2=0.2) 

Fig. 13. Workspace topologies WT2, WT4, WT6 and WT9. 
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The preceding classification stands for orthogonal manipulators with no offset along their last joint 

axis (d3=0). For manipulators with nonzero offsets, it is possible to solve system (3) as above but 

the resulting separating surface equations get very complicated and the parameter space is four-

dimensional
18

. The complete classification for general 3R orthogonal manipulators was conducted 

in Baili‟s PhD thesis
43

. The classification shows that manipulators may have 0, 2, 4, 6 or 8 cusps. 

The equation of one of the bifurcating surfaces between domains with different number of cusps is 

a 12
th

-degree polynomial in the square of the DH-parameters and contains 536 monomials. It is 

interesting to remark that when d3 is set to zero, this equation simplifies considerably and factors. 

Equating the three factors to zero gives exactly the three equations (5), (6) and (7).  

For small values of d3, the partition sections look like those in Fig. 12 but the subspace WT4 does 

not exist any more. It is replaced by two adjacent subspaces with 6 and 8 cusps, located near a3=a2. 

For high values of d3, the partition gets very complicated with not less than 22 distinct topologies. 

Figure 14 shows an example of a workspace topology with 8 cusps and 4 nodes. The zoomed view 

shows the creation of a pair of cusps, a pattern known as a swallowtail
44

.  

 

a 1 = 1, a 2 = 0.7, a 3 = 0.7, 

d 2 = 0.3 , d 3 = 0.9  

void  

 

Fig. 14. Workspace topology when d30. 
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Note1: all results about the classification presented in this section assume that a1, a2, a3 and d2 are 

different from zero. In any other case, the manipulator is noncuspidal (this is because if one of 

these parameters is equal to zero, one of the simplifying conditions given in section 3.1 is satisfied). 

However the classification according to the number of nodes is still possible and was conducted 

recently by Zein et al
45

. The classification revealed interesting noncuspidal 3R orthogonal 

architectures with good workspace properties (workspace of regular shape, fully reachable with 

four inverse kinematic solutions and in which any path is feasible) that could find industrial 

applications.  

Note2: the classification of 3-DOF manipulators with one prismatic joint can be attempted with the 

same tools as for 3R manipulators. Because the kinematic equations are simpler when a prismatic 

joint is involved, the classification would be simpler. 

5 Some facts about cuspidal 6R robots 

The above classifications also hold for 6R manipulators with spherical wrist (i.e, with their last 

three joint axes intersecting at a common point) because the singularity analysis of the wrist can 

then be decoupled from that of the regional structure. In the introduction of this paper, we reported 

the story of the IRB 6400C robot. This robot, shown in Fig. 15, has a spherical wrist and its 

regional structure is an orthogonal 3R manipulator that can be shown to be cuspidal
43

.  Note that 

the main objective of this new robot design was to save space and this is why its first joint axis is 

horizontal instead of vertical
46

. This was a good idea but at the time the engineers of ABB designed 

their new robot, the classification results were not published. It would be interesting to attempt a 

new design, keeping the orthogonal architecture with its first axis horizontal but tuning the length 

parameters in order that the robot falls in one of the interesting classes of noncuspidal orthogonal 

manipulators described by Zein et al
45

. 
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Fig. 15. The ABB IRB 6400C robot. 

On the other hand, there is no general result about the enumeration of cuspidal 6–DOF 

manipulators with nonspherical wrist. One of the reasons is the difficulty in analyzing the 

singularities of general 6R robots, which depend on four joint variables instead of two in 3R robots. 

We think that 6R manipulators are very likely to be cuspidal, even if the simplifying geometric 

conditions listed in section 4.1 are satisfied. This is because the inverse kinematics of most 6-DOF 

manipulators with nonspherical wrist is a polynomial of degree higher than 4, which may admit 

triple roots. Further research work is required before stating more definitive results but several 

examples of simple 6R robots with nonspherical wrist exist. One of these robots is the GMF P150 

shown in Fig. 16 used in the automotive industry for car painting (a similar version exists by 

COMAU). This robot is close to a PUMA robot, the only difference being the presence of a wrist 

offset. El Omri showed that without taking account the joint limits, this robot has 16 inverse 

kinematic solutions and only two aspects
38

. Thus, it is cuspidal. Another example is the ROBOX 

painting robot studied by M. Zoppi
47

 (Fig. 17). The kinematic architecture is very close to the GFM 

P150 but the wrist offset is not along the same wrist axis. This cuspidal robot has also 16 inverse 

kinematic solutions and only two aspects.  

 



Final version Submitted to special issue “Geometry in Robotics and Sensing” of ROBOTICA 08/02/10  

 P. Wenger 25 

   

Fig. 16. The GMF P150 robot.   Fig. 17. The ROBOX robot. 

If the enumeration of 6-dof cuspidal and noncuspidal manipulators is far from being established, it 

is possible to enumerate a set of noncuspidal ones, namely, those whose inverse kinematics 

polynomial is a quadratics (because no cusp point exists in this case). Such manipulators were 

enumerated by Mavroidis and Roth in 1996
48

. 

6 Concluding remarks 

This synthesis article on cuspidal manipulators can be summarized as follows.  

Cuspidal manipulators, which were first discovered in 1988, have multiple inverse kinematic 

solutions (IKS) that are not separated by a singular surface.  In the joint space, additional surfaces, 

called the characteristic surfaces, divide the aspects and separate the IKS. These surfaces are used 

to define new uniqueness domains and regions of feasible paths in the workspace. The definitions 

are general and stand for any serial, nonredundant manipulator with or without joint limits. For 3-

DOF manipulators, it is possible to calculate and plot these characteristic surfaces, uniqueness 

domains and regions of feasible paths. If the first joint is revolute and unlimited, 2-dimensional 

plots are sufficient. Because there is no simple algebraic definition, these sets must be calculated 

numerically.  
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A 3R manipulator is noncuspidal as soon as its first two or last two joint axes are parallel or 

intersect, or if the three joint axes are mutually orthogonal and the first joint offset is equal to zero. 

But an orthogonal manipulator with its last joint offset equal to zero may be cuspidal.  

A manipulator is cuspidal if and only if there is at least one point where three inverse kinematic 

solutions coincide. For a 3-DOF manipulator, this point appears as a cusp point in a cross section of 

the workspace. This necessary and sufficient condition for a manipulator to be cuspidal makes it 

possible to classify orthogonal manipulators as function of the number of cusps and nodes in the 

workspace. For orthogonal manipulators with no joint offset along their last axis, this classification 

enables one to derive explicit DH-parameter based necessary and sufficient conditions for a 

manipulator to be cuspidal, to have four inverse kinematic solutions or to have a void in its 

workspace. For general 3R orthogonal manipulators, the classification is much more complex and 

does not lend itself to explicit conditions.  

Little research work has been conducted on 6R cuspidal manipulators. It appears that 6R robots 

with nonspherical wrist are very likely to be cuspidal, even if two joint axes intersect or are 

parallel. However, there is still much work to do before having definitive geometric conditions for 

general 6R robots. Resorting to some transversality theorems used by singularity theorists would 

help going further, providing that we remain in the generic case
16,49

. So the first step would be to 

enumerate all 6R generic manipulators.  

The case of parallel manipulators has not been considered in this article. As first observed in 1998, 

a parallel manipulator may be cuspidal in the sense that it may change its assembly-mode without 

crossing a parallel-type singularity
50, 51

. As shown by R. McAree
52

 and explained in details by 

Zein
53

,  to be cuspidal, a parallel manipulator should have 3 coincident assembly modes, which 

define a cusp point in a section of its joint space. Because the kinematic equations of a parallel 

manipulator are very complex, it seems very difficult to derive general geometric conditions for a 

parallel manipulator to be cuspidal. To the author‟s knowledge, the only available results pertain to 
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planar manipulators : to be cuspidal, a 3-DOF parallel planar manipulator with three RPR legs 

should not have similar platform and base triangles
52, 54 

but this is false if the legs are RRR instead 

of RPR
55

 (the underlined letter refers to the actuated joint). 
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