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Introduction

A cuspidal manipulator is a nonredundant manipulator that can change its posture (a posture is associated with an inverse kinematic solution) without meeting a singularity. Today, most industrial 6R manipulators are of the PUMA type, which is noncuspidal. Indeed, a Puma robot cannot avoid the fully extended arm configuration when moving from the "elbow up" to the "elbow down" of this theoretical work was conducted by Baili et al [START_REF] Baili | Classification of one family of 3R positioning manipulators[END_REF] who pointed out the existence of extraneous surface equations and took into account additional features in the classification like genericity [START_REF] Pai | Genericity and Singularities of Robot Manipulators[END_REF] and the number of aspects. The complete classification of orthogonal 3R manipulators was established for the first time in 2004 on the basis of the number of cusps and nodes in the workspace cross section [START_REF] Baili | A Classification of 3R orthogonal manipulators by the Topology of their Workspace[END_REF][START_REF] Wenger | Workspace Classification of 3R orthogonal manipulators[END_REF] . A general formalism for the kinematic analysis of cuspidal manipulators was provided and the maximal sets of feasible paths in the workspace were defined [START_REF] Wenger | Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators[END_REF] .

The purpose of this work is to synthesize the most important results on the kinematics of cuspidal manipulators i.e. nonredundant manipulators that can change posture without meeting a singularity.

The rest of this article is organized as follows. Section 2 introduces an illustrative cuspidal manipulator and recalls some facts about singularities and aspects. Section 3 defines the characteristic surfaces, the uniqueness domains and the regions of feasible paths in the workspace. Section 4 is devoted to the classification and enumeration of cuspidal and noncuspidal manipulators. The last section addresses the case of 6R manipulators.
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Illustrative Manipulator

A typical 3R cuspidal manipulator is used as illustrative example in this section. A 3R cuspidal manipulator should not have parallel or intersecting joint axes to be cuspidal [START_REF] Burdick | A classification of 3R regional manipulator singularities and geometries[END_REF][START_REF] Wenger | Design of cuspidal and noncuspidal manipulators[END_REF] . The geometric parameters of this manipulator, known as DH-parameters, are taken as

 1 =-/2,  2 =/2, a 1 =1, a 2 =2, a 3 =1.5, d 1 =0, d 2 =1, d 3 =0
. This manipulator with mutually orthogonal joint axes (henceforth referred to as an orthogonal manipulator) has a rather simple geometry and is a good representative example 11, 13 . The three joint variables are referred to as  1 ,  2 and  3 , respectively. Fig. 1 shows the kinematic architecture of the manipulator in its zero configuration, i.e.  1 =  2 =  3 = 0. This manipulator can be regarded as the regional structure of a 6R robot with a spherical wrist. The position of the end-tip is defined by the three Cartesian coordinates px, py and pz of the operation point P with respect to a reference frame (O, X, Y, Z) attached to the manipulator base (Fig. 1). 

Singularities and aspects

The singularities of a manipulator play an important role in its global kinematic properties [START_REF] Burdick | Kinematic analysis and design of redundant manipulators[END_REF][START_REF] Wenger | A new General Formalism for the Kinematic Analysis of all Non-Redundant Manipulators[END_REF][START_REF] Tsai | Trajectory planning in task space for general manipulators[END_REF][START_REF] Smith | Higher Order Singularities of Regional Manipulators[END_REF][START_REF] Burdick | A classification of 3R regional manipulator singularities and geometries[END_REF] .

The singularities of a 3R manipulator can be determined using a recursive appoach [START_REF] Burdick | A Recursive Method for Finding Revolute-Jointed Manipulator Singularities[END_REF] or with det(J), illustrative manipulator a 2 >a 3 and the first factor of det(J) cannot vanish (examples with a 2 <a 3 will be shown in Fig. 11 in section 4.3). Fig. 2 shows that the singularities form two closed surfaces S 1 and S 2 in the joint space. If the manipulator has no joint limits, S 1 and S 2 divide the joint space into two singularity-free open, connected sets A 1 and A 2 called c-sheets 3 or aspects 1 . We use the term "aspect" because it is also used for manipulators with limited joints whereas c-sheets were defined for manipulators with unlimited joints only.

Singularities and workspace

The workspace of general 3R manipulators has been widely studied since the seventies 1,3-8, 17-22, 25- 36 . The determination of the workspace boundaries, the size and shape of the workspace, the existence of holes and voids, accessibility inside the workspace (i.e. the number of inverse kinematic solutions) are some of the main features that have been explored. The singularities can be displayed in Cartesian space where they define boundaries. Thanks to their symmetry about the first joint axis, a representation in a half cross-section of the workspace is sufficient (Fig. 3). As in the joint space, the singularities also form two disjoint curves in the workspace. These two curves define the internal boundary WS 1 and the external boundary WS 2 , respectively. If f denotes the kinematic map, then WS 1 =f(S 1 ) and WS 2 =f(S 2 ). The separating and sorting of these boundary curves have been recently studied in detail [START_REF] Bergamaschi | Design and optimization of 3R manipulators using the workspace features[END_REF] P. Wenger 6 two inverse kinematic solutions (the outer region) and one region with four inverse kinematic solutions (the inner region, Fig. 3). Each point on the internal boundary has three distinct inverse kinematic solutions, one of which is a double solution. At each cusp point, there are only two distinct inverse kinematic solutions, one of them being a triple solution [START_REF] Wenger | A new General Formalism for the Kinematic Analysis of all Non-Redundant Manipulators[END_REF] . The external boundary surface is composed of two adjacent arcs that meet on axis Z. There is only one inverse kinematic solution on the external boundary, which is a double solution. There are an infinite number of inverse kinematic solutions at the two connecting points on axis Z (because  1 can take on any value without altering the position of the end-tip).

O u ter regio n (2 IK S )

In tern al b o u n d ary

WS 1 = BS 1  BS 2  BS 3  BS 4 (3 IK S )
In n er R egio n :

(4 IK S ) E xtern al b o u n d ary WS 2 (1 IK S ) C u sp p o in t (2 IK S ) BS 2 BS 1 BS 3 BS 4 z [m ] 2 2
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A nonsingular posture changing trajectory

For the illustrative manipulator, solving the inverse kinematics at px=2.5, py=0, pz=0.5 yields four solutions given (in radians) by q [START_REF] Borrel | A study of manipulator inverse kinematic solutions with application to trajectory planning and workspace determination[END_REF] =[-1.8 -2.8 1.9] t , q [START_REF] Parenti | Position Analysis of Robot Manipulators : Regions and Subregions[END_REF] =[-0.9 -0.7 2.5] t , q (3) =[-2.9 -3 -0.2] t and q (4) =[0.2 -0.3 -1.9] t . It is apparent from fig. 4 that q [START_REF] Parenti | Position Analysis of Robot Manipulators : Regions and Subregions[END_REF] and q [START_REF] Burdick | Kinematic analysis and design of redundant manipulators[END_REF] (resp. q [START_REF] Borrel | A study of manipulator inverse kinematic solutions with application to trajectory planning and workspace determination[END_REF] and q [START_REF] Wenger | A new General Formalism for the Kinematic Analysis of all Non-Redundant Manipulators[END_REF] ) lie in the same aspect A 1 (resp. A 2 ), which means that these two solutions are not separated by a singularity. It is then possible to link q [START_REF] Parenti | Position Analysis of Robot Manipulators : Regions and Subregions[END_REF] and q [START_REF] Burdick | Kinematic analysis and design of redundant manipulators[END_REF] by a nonsingular straight line trajectory. When projected in the workspace cross section, this trajectory traces a loop path that encompasses a cusp point (Fig. 4). In fact it has been shown that a nonsingular posture-changing trajectory always encompasses a cusp point in the workspace 4-6, 9, 11 . On the other hand, there is only one inverse kinematic solution per aspect for any point in the outer region. The two aspects A 1 and A 2 map onto the same set WA 1 =WA 2 in the workspace, with the same internal and external boundaries as in Fig. 4. In WA 1 or in WA 2 , there are only two solutions in the inner region and one solution in the outer region.

S1 A spect A 2 A spect A 1 q (1) q (4) q (3) q (2)  3 [rad]  2 [rad] WA 1 = W A 2 P z [m ]  [m ]

Formalism for the kinematic analysis of cuspidal manipulators

In this section, the notion of characteristic surfaces and uniqueness domains is introduced. Not every motion is feasible in the workspace of a cuspidal manipulator, even without joint limits. It is shown that the regions of feasible motions in the workspace are defined as the image of the uniqueness domains through the kinematic map. This holds for any nonredundant manipulator with or without joint limits.

Characteristic surfaces

Since the singular surfaces in the joint space do not separate all the inverse kinematic solutions, new separating surfaces should exist. The set obtained by calculating the nonsingular inverse kinematic solutions for all points on an internal boundary forms a set of nonsingular surfaces in each aspect. We call these surfaces the characteristic surfaces. A set of characteristic surfaces is associated with one aspect and it was proved that they separate the inverse kinematic solutions in each aspect [START_REF] Baili | A Classification of 3R orthogonal manipulators by the Topology of their Workspace[END_REF] . A general definition of the characteristic surfaces can be set as follows, which stands for any nonredundant manipulator with or without joint limits. Let i A* be the boundary of aspect A i . The characteristic surfaces {CS i } associated with A i are :

1 i i { } f ( f( *)) AA i CS   (2) 
where f( i A*) is the image of i A* under the forward kinematic map and f -1 (f

( i A*)) = {q / f(q)  f( i A*)}.
Note that since an aspect is defined as an open set, A i does not contain its boundary i.e. thus {CS i } might be empty (this is so for noncuspidal manipulators).

Note that the characteristic surfaces are slightly different from the pseudo-singular surfaces defined by Tsai [START_REF] Tsai | Trajectory planning in task space for general manipulators[END_REF] and Miko [START_REF] Miko | The closed form solution of the inverse kinematic problem of 3R positioning manipulators[END_REF] as f -1 (f( i A*)). The pseudo-singular surfaces were defined for 3R manipulators with unlimited joints only. Moreover, they are not associated with an aspect. Thus, for a

Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 9 manipulator with more than two aspects, the pseudo-singular surfaces generate "spurious" surfaces that do not separate the inverse kinematics solutions. In fact, the pseudo-singular surfaces and the characteristic surfaces are equivalent for manipulators with unlimited joints and having only two aspects. Fig. 5 shows the two characteristic surfaces {CS 1 } and {CS 2 } for the illustrative manipulator.

S in gu lar su rfaces The characteristic surfaces are independent of  1 when  1 is unlimited. Because the general definition ( 2) is not algebraic in nature, it is difficult to derive an algebraic expression of {CS i } that would be easy to handle. A scanning process can be used to plot the characteristic surfaces [START_REF] Wenger | Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators[END_REF] .

C h aracteristic S u rfaces { CS 1 } C h aracteristic S u rfaces { CS 2 }  3 [rad ]  2 [rad ]
The characteristic surfaces induce a partition of each aspect into open sets that we call reduced aspects. Also, the internal boundaries induce a partition of the workspace into regions and each such region is associated with several reduced aspects. For the illustrative manipulator of Fig. 1, the inner region is associated with the four reduced aspects Ra 11 , Ra 12 , Ra 21 and Ra 22 (in gray in Fig. 6).

08/02/10 P. Wenger 10 The first two, Ra 11 and Ra 12 , are in A 1 , whereas Ra 21 and Ra 22 are in A 2 . The outer region is associated with the two reduced aspects Ra 13 and Ra 23 that belong to A 1 and A 2 , respectively. 

Uniqueness domains

Fig. 6 shows that each aspect is made of three reduced aspects, two of them being associated with the same region in the workspace (Ra 11 and Ra 12 for aspect A 1 ). If we remove one of these two reduced aspects and its boundary from the aspect, the remaining domain is a uniqueness domain.

Thus, there is still a unique inverse kinematic solution in the domain defined by Qu ) are still uniqueness domains. Fig. 7 shows the four maximal uniqueness domains for the illustrative manipulator. 

A 1 Qu 1  3 [rad]  2 [rad] Qu 2  3 [rad ]  2 [rad ] A 2 C S 2 Qu 3  3 [rad ]  2 [rad ] Qu 4  3 [rad ]  2 [rad ]

Regions of feasible paths in the workspace

For a noncuspidal manipulator, the regions of feasible paths in the workspace are the image of the aspects 1 . This is not true for a cuspidal manipulator because the aspects are not the uniqueness domains. The regions of feasible paths in the workspace must be defined by the uniqueness domains. Figure 8 shows the four regions of feasible paths, which are the images of the uniqueness domains in the workspace. It is important to note that Wf 1 , Wf 2 , Wf 3 and Wf 4 define regions where
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[m] z[m]  [ m ] z [ m ] Wf 1 = f(Qu 1 ) Wf 2 = f(Qu 2 )  [ m ] z [ m ]  [ m ] z [ m ] Wf 3 = f(Qu 3 ) Wf 4 = f(Qu 4 )

Fig. 8. Regions of feasible paths.

To get the full model of feasible paths in WA 1 , Wf 1 and Wf 2 must be properly "glued" together, which can be realized by plotting the surface (, z, cos(( 2 )) for A 1 [START_REF] Wenger | Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators[END_REF] . From a mathematical point of view, this method is referred to as the level set method [START_REF] Ottaviano | Level-set Method for Workspace Analysis of Serial Manipulators[END_REF] . Also, plotting (, z, cos(( 2 )) for A 2

Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 13 provides the full model of feasible paths in WA 2 (Fig. 9). This model helps better understand the nonsingular posture changing phenomenon and the loop path shown in Fig. 4. The uniqueness domains and the regions of feasible paths of any 3R manipulators can be got quite simply when the singular curves and the characteristic surfaces are given [START_REF] Wenger | Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators[END_REF] . The regions of feasible paths are useful to assess the global performances of a manipulator and to compare several manipulator designs. These regions can also be used to verify the feasibility of a path without analyzing the root equality of the inverse kinematic polynomial on the boundaries. In effect, since each region of feasible paths is associated with one inverse kinematic solution, these regions indicate which internal surfaces can be crossed, according to the inverse kinematic solution used to follow the path [START_REF] Wenger | Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators[END_REF] .

Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 14 The characteristic surfaces, the uniqueness domains and the regions of feasible paths can be calculated in the same way for 3R manipulators with joint limits on their last two axes [START_REF] Wenger | Uniqueness domains and regions of feasible continuous paths for cuspidal manipulators[END_REF] . When joint 1 is also limited, it is no longer possible to build 2D sections. Such manipulators were investigated by El Omri and their uniqueness domains and regions of feasible paths were built using octrees [START_REF] El Omri | Kinematic Analysis of Robot Manipulator[END_REF] .

ENUMERATION OF CUSPIDAL MANIPULATORS AND CLASSIFICATION

Simplifying geometric conditions

Because of the more complex behavior of a cuspidal robot and because of the difficulty in modeling its kinematic properties, industrial robots should be designed noncuspidal rather than cuspidal. Thus, before designing an innovative kinematic architecture, robot manufacturers should have guidelines such as design rules to help them. Why a manipulator with a given geometry is cuspidal has long been a very intriguing question. It is worth noting that this question remains not completely solved. One of the pioneer contributors to this problem was J. Burdick, who observed that under simplifying geometric conditions such as intersecting or parallel joint axes, a 3R manipulator was noncuspidal [START_REF] Burdick | A classification of 3R regional manipulator singularities and geometries[END_REF] . Other simplifying conditions were exhibited later 7 as a direct consequence of the necessary and sufficient condition recalled in next section. Finally, six geometric conditions were found to define noncuspidal 3R manipulators: ).

These conditions also hold for 6R manipulators with spherical wrist because the singularity analysis of the wrist can be decoupled from those of the regional structure. It is worth noting that conditions 2/ and 3/ are encountered in most industrial 6R manipulators. However, the last two conditions (5/ and 6/) are unusual.

Analogous conditions exist also for manipulators with prismatic joints [START_REF] Wenger | On the kinematics of singular and nonsingular posture changing manipulators[END_REF] .

Necessary and sufficient condition for a manipulator to be cuspidal

Burdick conjectured that, on the other hand, 3R manipulators with "general" geometry should be cuspidal [START_REF] Smith | Higher Order Singularities of Regional Manipulators[END_REF] . But it was shown later that the correlation between cuspidal manipulators and general manipulators was not clear [START_REF] Wenger | Design of cuspidal and noncuspidal manipulators[END_REF] . For example, the orthogonal manipulator shown in Fig. 1 is cuspidal but it is no longer cuspidal when a 3 is set to 0.5m instead of 1.5m (with the same values for the remaining DH-parameters). In both cases the manipulators are not of "general geometry" in the sense that the last joint offset is equal to zero and the joint axes are mutually orthogonal. An important step towards the characterization of cuspidal manipulators was established in 1995 when a general necessary and sufficient condition for a manipulator to be cuspidal was provided. This condition states that a manipulator is cuspidal if and only if its inverse kinematics admits a triple solution [START_REF] Omri | How to recognize simply a nonsingular posture changing 3-DOF manipulator[END_REF] (i.e. a point where three inverse kinematic solutions coincide). In the cross section of the workspace of a 3R manipulator, a point with three equal inverse kinematic solutions is a cusp point (see the four cusp points in Fig. 3). A direct consequence of this condition is that for a manipulator to be cuspidal, the degree of its inverse kinematics polynomial must be greater than 2. Hence, any quadratic manipulator (i.e. whose inverse kinematic polynomial can be reduced to a quadratics) is noncuspidal. All six noncuspidal manipulator types enumerated in the preceding section are quadratic [START_REF] El Omri | Kinematic Analysis of Robot Manipulator[END_REF] . Also, any 3-DOF manipulator (or 6-DOF with wrist) with at least two prismatic joints

Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 16 are always quadratic [START_REF] Pieper | The Kinematics of Manipulators under Computer Control[END_REF] and thus cannot be cuspidal. But it took eight years before this condition could be exploited to derive more general conditions on the DH-parameters [START_REF] Corvez | Using computer algebra tools to classify serial manipulators[END_REF] . The exploitation of the necessary and sufficient condition is recalled hereafter.

Classification of 3R orthogonal manipulators

For a 3R manipulator, the existence of cusps can be determined from its fourth-degree inverse kinematic polynomial P(t) in   (see reference [START_REF] Kholi | Workspace analysis of mechanical manipulators using polynomial discriminant[END_REF] for more details on the derivation and properties of this polynomial). The condition for P(t) to have three equal roots can be set as follows:

2 3 1 2 2 2 3 1 2 2 2 2 3 1 2 2 2
( , , , , , , , ) 0 ( , , , , , , , ) 0 ( , , , , , , , ) 0

P t a a d R Z P t a a d R Z t P t a a d R Z t                    (3) 
The three variables t, R and Z must be eliminated to obtain a condition on the DH-parameters.

Deriving a symbolic solution of (3) in the general case is not reasonable and has still not been attempted. On the other hand, the study of the particular case  1 =/2,  2 =/2 (orthogonal manipulators) is interesting because this case is more tractable (although still very complex) and the family of orthogonal manipulators is rich enough to define alternative designs with relatively simple geometries that could find potential applications in industry.

Rather than simply distinguishing between cuspidal and noncuspidal orthogonal manipulators, it is more interesting to classify the family of orthogonal manipulators as function of their number of cusp points. Indeed, the number of cusps provides more information about the topology of the singular curves in the workspace and, as a result, about the global properties of the manipulator such as the existence of voids and of 4-solution regions [START_REF] Smith | Higher Order Singularities of Regional Manipulators[END_REF][START_REF] Baili | A Classification of 3R orthogonal manipulators by the Topology of their Workspace[END_REF][START_REF] Wenger | A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions[END_REF][START_REF] Kholi | Workspace analysis of mechanical manipulators using polynomial discriminant[END_REF] . To do this classification, it is Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 17 appropriate to search for the conditions under which the number of real solutions of system (3) changes [START_REF] Lazard | Solving parametric polynomial systems[END_REF] . By doing so, a set of bifurcating surfaces is defined in the parameter space of orthogonal manipulators where the number of cusps changes. These bifurcating surfaces divide the parameter space into domains where all manipulators have the same number of cusp points. The bifurcating surfaces can be regarded as sets of transition manipulators. The algebra involved in system (3) is too complex to be handled by commercial computer algebra tools. Corvez and Rouillier 14 resorted to sophisticated computer algebra tools to solve system (3) by first considering the more particular case d 3 =0 (no offset along the last joint axis like the robot shown in fig. 1). They used Groebner

Bases and Cylindrical Algebraic Decomposition [START_REF] Lazard | Solving parametric polynomial systems[END_REF][START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF] to find the equations of the bifurcating surfaces and the number of domains generated by these surfaces. They obtained 5 distinct surface equations, which were shown to define 105 domains in the parameter space. A kinematic interpretation of this theoretical work was conducted by Baili et al [START_REF] Baili | Classification of one family of 3R positioning manipulators[END_REF] : the authors analyzed global kinematic properties of one representative manipulator in each domain. Only 5 different cases were found to exist. In fact, several surface equations obtained by Corvez and Rouillier were extraneous solutions. Finally, the true bifurcating surfaces were shown to take on the following explicit form [START_REF] Baili | Classification of one family of 3R positioning manipulators[END_REF] : ( 1) and ( 1)

C 1 : 2 2 2 2 2 22 2 2 2 2 3 2 2 ( ) ( ) 1 () 2 a d a d a a d AB       (4) C 2 : 2 3 2 1 a aA a   (5 
A a d B a d       (8) 
Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 18 Note that the above equations assume d 3 =0. Moreover, a 1 was set to 1 without loss of generality in order to handle only three independent parameters. These four surfaces divide the parameter space into 5 domains with 0, 2 or 4 cusps. Fig. 10 shows the plots of the surfaces in a section (a 2 , a 3 ) of The partition of the parameter space and the equations of the bifurcating surfaces allow us to define an explicit necessary and sufficient condition for an orthogonal manipulator with no offset along its last joint axis to be cuspidal. In effect, figure 10 shows that a manipulator is cuspidal if and only if it belongs to domains 2, 3 or 4. Thus, an orthogonal manipulator with no offset along its last joint axis is cuspidal if and only if: (10) Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 19 Note that parameter a 1 was no longer set equal to 1 in order to show better the influence of all parameters. Fig. 11 shows the cross sections of the workspace and the singular curves in the joint space, for one representative manipulator in each domain of the partition. The number of inverse kinematic solutions in each region of the workspace is indicated. Fig. 11 shows that manipulators in domain 1 have only two inverse kinematics solutions. Also, they have a void in their workspace and they are noncuspidal. In fact, it can be shown that all other manipulators have 4 inverse kinematic solutions and that Eq. ( 9) is a necessary and sufficient condition for an orthogonal manipulator with d 3 =0 to have four inverse kinematic solutions [START_REF] Wenger | A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions[END_REF] . The other noncuspidal manipulators are in domain 5. They have a region with 4 inverse kinematic solutions and no void.

Fig. 11. Workspace topologies in each domain.

Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 20 Each domain of the parameter space can be further classified by taking into account the number of nodes, i.e., the number of intersection points on the workspace boundaries [START_REF] Baili | A Classification of 3R orthogonal manipulators by the Topology of their Workspace[END_REF] . There is one node in the workspace of the illustrative manipulator of domain 3 (fig. 11) but two more nodes may arise when the internal boundary goes outside the external one (as displayed in Fig. 13, WT 6 ). Two more

surface equations E 1 = 1 () 2 AB  , E 2 =a 2 and E 3 = 1 () 2 AB 
(A and B are defined as in ( 8)) appear when the number of nodes is considered and the parameter space is divided into 9 cells, each one being associated with a particular workspace topology WT i . This new partition is shown in a section (a 2 , a 3 ) of the parameter space for d 2 =1 (Fig. 12). P. Wenger 21 no node (this domain is referred to as WT 1 ), all manipulators in domains 4 have four nodes (WT 7 ).

Manipulators in domains 2 and 5 may have no nodes (WT 3 and WT 8 , respectively) or two nodes (WT 2 and WT 9 , respectively) and manipulators in domain 3 may have one or three nodes (WT 5 and WT 6 , respectively).

The classification with nodes makes it possible to identify all the orthogonal manipulators that have a void in their workspace. In effect, all such manipulators are in domains WT 1 and WT 2 . Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 22 The preceding classification stands for orthogonal manipulators with no offset along their last joint axis (d 3 =0). For manipulators with nonzero offsets, it is possible to solve system (3) as above but the resulting separating surface equations get very complicated and the parameter space is fourdimensional [START_REF] Wenger | Workspace Classification of 3R orthogonal manipulators[END_REF] . The complete classification for general 3R orthogonal manipulators was conducted in Baili"s PhD thesis [START_REF] Baili | Analysis and Classification of 3R orthogonal Manipulators[END_REF] . The classification shows that manipulators may have 0, 2, 4, 6 or 8 cusps.

The equation of one of the bifurcating surfaces between domains with different number of cusps is a 12 th -degree polynomial in the square of the DH-parameters and contains 536 monomials. It is interesting to remark that when d 3 is set to zero, this equation simplifies considerably and factors.

Equating the three factors to zero gives exactly the three equations ( 5), ( 6) and (7).

For small values of d 3 , the partition sections look like those in Fig. 12 but the subspace WT 4 does not exist any more. It is replaced by two adjacent subspaces with 6 and 8 cusps, located near a 3 =a 2 .

For high values of d 3 , the partition gets very complicated with not less than 22 distinct topologies.

Figure 14 shows an example of a workspace topology with 8 cusps and 4 nodes. The zoomed view shows the creation of a pair of cusps, a pattern known as a swallowtail [START_REF] Gibson | Kinematics from the singular viewpoint[END_REF] . Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 23 Note1: all results about the classification presented in this section assume that a 1 , a 2 , a 3 and d 2 are different from zero. In any other case, the manipulator is noncuspidal (this is because if one of these parameters is equal to zero, one of the simplifying conditions given in section 3.1 is satisfied).

However the classification according to the number of nodes is still possible and was conducted recently by Zein et al [START_REF] Zein | An Exhaustive Study of the Workspace Topologies of all 3R Orthogonal Manipulators with Geometric Simplifications[END_REF] . The classification revealed interesting noncuspidal 3R orthogonal architectures with good workspace properties (workspace of regular shape, fully reachable with four inverse kinematic solutions and in which any path is feasible) that could find industrial applications.

Note2: the classification of 3-DOF manipulators with one prismatic joint can be attempted with the same tools as for 3R manipulators. Because the kinematic equations are simpler when a prismatic joint is involved, the classification would be simpler.

Some facts about cuspidal 6R robots

The above classifications also hold for 6R manipulators with spherical wrist (i.e, with their last three joint axes intersecting at a common point) because the singularity analysis of the wrist can then be decoupled from that of the regional structure. In the introduction of this paper, we reported the story of the IRB 6400C robot. This robot, shown in Fig. 15, has a spherical wrist and its regional structure is an orthogonal 3R manipulator that can be shown to be cuspidal [START_REF] Baili | Analysis and Classification of 3R orthogonal Manipulators[END_REF] . Note that the main objective of this new robot design was to save space and this is why its first joint axis is horizontal instead of vertical [START_REF] Hemmingson | New Robot Improves Cost-Efficiency of Spot Welding[END_REF] . This was a good idea but at the time the engineers of ABB designed their new robot, the classification results were not published. It would be interesting to attempt a new design, keeping the orthogonal architecture with its first axis horizontal but tuning the length parameters in order that the robot falls in one of the interesting classes of noncuspidal orthogonal manipulators described by Zein et al [START_REF] Zein | An Exhaustive Study of the Workspace Topologies of all 3R Orthogonal Manipulators with Geometric Simplifications[END_REF] . On the other hand, there is no general result about the enumeration of cuspidal 6-DOF manipulators with nonspherical wrist. One of the reasons is the difficulty in analyzing the singularities of general 6R robots, which depend on four joint variables instead of two in 3R robots.

We think that 6R manipulators are very likely to be cuspidal, even if the simplifying geometric conditions listed in section 4.1 are satisfied. This is because the inverse kinematics of most 6-DOF manipulators with nonspherical wrist is a polynomial of degree higher than 4, which may admit triple roots. Further research work is required before stating more definitive results but several examples of simple 6R robots with nonspherical wrist exist. One of these robots is the GMF P150

shown in Fig. 16 used in the automotive industry for car painting (a similar version exists by COMAU). This robot is close to a PUMA robot, the only difference being the presence of a wrist offset. El Omri showed that without taking account the joint limits, this robot has 16 inverse kinematic solutions and only two aspects [START_REF] El Omri | Kinematic Analysis of Robot Manipulator[END_REF] . Thus, it is cuspidal. Another example is the ROBOX painting robot studied by M. Zoppi [START_REF] Zoppi | Effective Backward Kinematics for an Industrial 6R Robot[END_REF] (Fig. 17). The kinematic architecture is very close to the GFM P150 but the wrist offset is not along the same wrist axis. This cuspidal robot has also 16 inverse kinematic solutions and only two aspects. If the enumeration of 6-dof cuspidal and noncuspidal manipulators is far from being established, it is possible to enumerate a set of noncuspidal ones, namely, those whose inverse kinematics polynomial is a quadratics (because no cusp point exists in this case). Such manipulators were enumerated by Mavroidis and Roth in 1996 [START_REF] Mavroidis | Structural Parameters Which Reduce the Number of Manipulator Configurations[END_REF] .

Concluding remarks

This synthesis article on cuspidal manipulators can be summarized as follows.

Cuspidal manipulators, which were first discovered in 1988, have multiple inverse kinematic solutions (IKS) that are not separated by a singular surface. In the joint space, additional surfaces, called the characteristic surfaces, divide the aspects and separate the IKS. These surfaces are used to define new uniqueness domains and regions of feasible paths in the workspace. The definitions are general and stand for any serial, nonredundant manipulator with or without joint limits. For 3-DOF manipulators, it is possible to calculate and plot these characteristic surfaces, uniqueness domains and regions of feasible paths. If the first joint is revolute and unlimited, 2-dimensional plots are sufficient. Because there is no simple algebraic definition, these sets must be calculated numerically.
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But an orthogonal manipulator with its last joint offset equal to zero may be cuspidal.

A manipulator is cuspidal if and only if there is at least one point where three inverse kinematic solutions coincide. For a 3-DOF manipulator, this point appears as a cusp point in a cross section of the workspace. This necessary and sufficient condition for a manipulator to be cuspidal makes it possible to classify orthogonal manipulators as function of the number of cusps and nodes in the workspace. For orthogonal manipulators with no joint offset along their last axis, this classification enables one to derive explicit DH-parameter based necessary and sufficient conditions for a manipulator to be cuspidal, to have four inverse kinematic solutions or to have a void in its workspace. For general 3R orthogonal manipulators, the classification is much more complex and does not lend itself to explicit conditions.

Little research work has been conducted on 6R cuspidal manipulators. It appears that 6R robots with nonspherical wrist are very likely to be cuspidal, even if two joint axes intersect or are parallel. However, there is still much work to do before having definitive geometric conditions for general 6R robots. Resorting to some transversality theorems used by singularity theorists would help going further, providing that we remain in the generic case [START_REF] Pai | Genericity and Singularities of Robot Manipulators[END_REF][START_REF] Donelan | Singular phenomena in kinematics[END_REF] . So the first step would be to enumerate all 6R generic manipulators.

The case of parallel manipulators has not been considered in this article. As first observed in 1998, a parallel manipulator may be cuspidal in the sense that it may change its assembly-mode without crossing a parallel-type singularity [START_REF] Innocenti | Singularity-free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators[END_REF][START_REF] Wenger | Workspace and assembly-modes in fully parallel manipulators: A descriptive study[END_REF] . As shown by R. McAree [START_REF] Mcaree | An explanation of never-special assembly changing motions for 3-3 parallel manipulators[END_REF] and explained in details by

Zein [START_REF] Zein | Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators[END_REF] , to be cuspidal, a parallel manipulator should have 3 coincident assembly modes, which define a cusp point in a section of its joint space. Because the kinematic equations of a parallel manipulator are very complex, it seems very difficult to derive general geometric conditions for a parallel manipulator to be cuspidal. To the author"s knowledge, the only available results pertain to

Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA 08/02/10 P. Wenger 27 planar manipulators : to be cuspidal, a 3-DOF parallel planar manipulator with three RPR legs should not have similar platform and base triangles [START_REF] Mcaree | An explanation of never-special assembly changing motions for 3-3 parallel manipulators[END_REF][START_REF] Kong | Determination of the uniqueness domains of 3-RPR planar parallel manipulators with similar platforms[END_REF] but this is false if the legs are RRR instead of RPR [START_REF] Wenger | The Kinematic Analysis of a Symmetrical Three-Degree-of-Freedom Planar Parallel Manipulator[END_REF] (the underlined letter refers to the actuated joint).

2 A sp ect A 1 A sp ect A 2  3

 2123 [rad ] 

1 2 3 Fig. 1 .Fig. 2 .

 312 Fig. 1. A cuspidal 3R manipulator. Fig. 2. Aspects of the cuspidal manipulator.

Fig. 3 .

 3 Fig. 3. Singularity locus in workspace. Number of distinct inverse kinematic solutions (IKS)

Fig. 4 .

 4 Fig. 4. A point with two inverse kinematic solutions in each aspect. A nonsingular posture

Fig. 5 .

 5 Fig. 5. Singular and characteristic surfaces.

Fig. 6 .

 6 Fig. 6. Correspondence between the reduced aspects (a) and the regions (b).

Fig. 7 .

 7 Fig. 7. Four maximal uniqueness domains for the illustrative manipulator of Fig. 1.

Fig. 9 .

 9 Fig. 9. Full model for the feasible paths in WA 1 (above) and WA 2 (below).

3 a 2 Fig. 10 .

 3210 Fig. 10. Plots of the bifurcating surfaces in a section (a 2 , a 3 ) of the parameter space for d 2 =1.

7 a 3 a 2 WT 1 :Fig. 12 .

 732112 Fig. 12. Partition of the parameter space according to the number of cusps and nodes.

Fig. 13 showsFig. 13 .

 1313 Fig.13shows the cross sections of the workspace and the singular curves in the joint space, for one

a 1 = 1 , 9 voidFig. 14 .

 11914 Fig. 14. Workspace topology when d 3 0.

Fig. 15 .

 15 Fig. 15. The ABB IRB 6400C robot.

Fig. 16 .

 16 Fig. 16. The GMF P150 robot. Fig. 17. The ROBOX robot.

  two joint axes are orthogonal, all joint offsets are zero (cos( 1 )=0, d 2 =0, d 3 =0), 6/ joint axes are mutually orthogonal, first joint offset vanishes (cos( 1 )=cos( 2 )=0, d 2 =0

	Final version Submitted to special issue "Geometry in Robotics and Sensing" of ROBOTICA	08/02/10
	5/ first	
	1/ first two joint axes are parallel (sin( 1 )=0),	
	2/ last two joint axes are parallel (sin( 2 )=0),	
	3/ first two joint axes intersect (a 1 =0),	
	4/ last two joint axes intersect (a 2 =0),	
	P. Wenger	15

  )

		C 3 :	a	2 32 2 an d 1 a B a a  	1	(6)
		C 4 :	a	2 32 2 an d 1 a B a a  	1	(7)
	where	2	22 22 2 2 2

P. Wenger

2 Domain 1 (a 2 =0.7, a 3 =0.3, d 2 =0.2) Domain 2 (a 2 =2, a 3 =1.5, d 2 =1) Domain 3 (a 2 =3, a 3 =4, d 2 =3) Domain 4 (a 2 =2, a 3 =6, d 2 =1) Domain

(a 2 =0.5, a 3 =0.8, d 2 =0.2)

Acknowledgment

Most of the classification work summarized in this article has been conducted in collaboration with IRMAR (Institute of Applied Mathematics of Rennes), INRIA (Research Institute of Informatics and Automatics), and LIP6 (Informatics Laboratory of Paris VI), in the frame of the national program MATHSTIC entitled "Cuspidal robots and triple roots" funded by C.N.R.S. (French Council of Scientific Research) and French Ministry of Education and Research.