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Abstract:

Environmental  impact assessments of agricultural  practices  on a regional  scale may be

computed by running spatially distributed biophysical models using mapped input data on

agricultural  practices.  In  cases  of  hydrological  impact  assessments,  such  as  herbicide

pollution through run-off, methods for generating these data over the entire water resource

catchment  and  at  the  plot  resolution  are  needed.  In  this  study,  we  aimed  to  identify

indicators  for  simulating the  spatial  distribution of  weed  control  practices  (WCP) in a

French vine growing catchment. On the basis of interviews of 63 winegrowers, a spatially

explicit database was developed that included 1007 vine plots and information regarding

practices and potential explanatory variables. Four practices were differentiated according

to the methods used (chemical weed control, shallow tillage, grass cover or a combination)

that determine the intensity of herbicide use and potential surface run-off. Three groups of

explanatory  variables  corresponding  to  three  assumed levels  of  spatial  organisation  of

WCP (the plot, the farm and the local government area (LGA)) were tested and compared.

In the first step, selection of explanatory variables within each group was performed using

a tree-partitioning method that combined the advantages of the CART algorithm (building

an  interpretable  and  controlled  model)  and  the  Random  Forest  algorithm  (limiting

overfitting)  algorithm. In  the second step,  the performance of the selected variables for

reproducing the observed repartition of practices was evaluated by a stochastic use of the

tree, leading to a set of equiprobable spatial distributions of practices at the plot resolution.

The results indicate that plot characteristics related to alley width play an important role in

the weed control choices; however, to take into account the total diversity of the WCP, it

appears to be necessary to focus on the farm holding variables and, in particular, on the

variable LGA. However, the interpretation of these results is still difficult. Specifically, the

great relevance of the variable LGA to discriminate the practices may be related to various

factors, one of which is the distribution of soil properties within the Peyne catchment that

still requires more precise characterization. The results also indicate that  the combination

of the three groups of variables leads to the highest-performing simulations of the spatial

distribution of WCP. Nevertheless,  the farm holding variables provided little additional

spatial information, which supports the idea that they may be omitted without significantly

impacting the final results. 

Keywords: Viticulture, classification tree, uncertainties, stochastic simulation, indicators

of practices
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1. Introduction

Since land use is an important factor in governing environmental impacts (see for example,

Ojima et al., 1994; Thapa and Rasul, 2005), new challenges for agriculture are emerging

from societal  requirements  for  sustainable  development,  such  as  preservation  of  water

resources, soil conservation, and gene flow restriction within cultivated landscapes.

Proper  solutions  to  these  new challenges  require  environmental  impact  assessments  of

agricultural practices at the regional scale. In many environmental cases, these assessments

are  computed  by  running  spatially  distributed  biophysical  models  that  require  large

amounts  of  mapped  input  data  (Faivre  et  al.,  2004),  including  data  on  agricultural

practices. The extension and spatial resolution of the data on agricultural practices must be

appropriately scaled to the underlying biophysical process being modelled. For instance, in

the  case  of  regional  water  resources  assessments,  the  water  fluxes  that  have  to  be

considered are mainly vertical (e.g., Leenhardt et al., 2004). Thus, only knowledge of the

global spatial trends of practice distributions is necessary.  Spatial resolution of data on

agricultural  practice can be coarse  (small  agricultural  area,  local  government  area)  and

simply correspond to an estimation of the proportion of each practice. But in cases where

the hydrological processes are also significantly governed by lateral flow there is a need to

map agricultural  practices  over  the  entire  water  resource  catchment  at  plot  resolution.

Indeed, spatial plot design induces spatial practice discontinuities that impact lateral water

flows.  Therefore,  the precise location of agricultural  practices  in the catchment  can be

important for assessing environmental impacts on water resources, for example regarding

nitrogen fluxes (Beaujouan et al., 2001).

Since existing agricultural inventories generally do not provide data on practices at field

resolution,  methods  that  aim  to  map  variability  of  agricultural  practices  need  to  be

proposed. For large areas with numerous farmers, exhaustive ground surveys or enquiries

are clearly unrealistic. Therefore, an approach is to invest in spatial observation techniques,

such as remote sensing. Even though remote sensing has proven value for mapping land

use, particularly for crop mapping (Faivre et al., 2004), in the process of downscaling land

use  from  crops  to  agricultural  practices,  limitations  of  remote  sensing  are  usually

experienced,  especially  for  perennial  crops.  For  instance,  remote  sensing  has  been

successfully  used  to  map  tillage  practices  in  annual  crops  in  the  United  States  (e.g.,

Briclemeyer  et al., 2006; Gowda et al., 2001; South et al., 2004); yet for perennial crops

like vines,  which exhibit a wider range of practices,  remote sensing still  appears to be

ineffective  for  characterizing  weed  control  practices  (Wassenar  et  al.,  2005;  Corban,

2006). Moreover, remote sensing can only provide partial knowledge of practices because

some  technical  options,  particularly  those  involving  the  use  of  pesticides,  cannot  be

detected.

Another strategy is to look for available spatial variables that might be used as indicators to

simulate  the  spatial  distribution  of  agricultural  practices.  It  is  known  that  agricultural

practices are generally not randomly distributed in space, since they result from spatially

structured  driving  factors  (Verburg  et  al.  1999;  Thapa  and  Rasul,  2005).  Agricultural

practices  can  therefore  be  predicted  after  (1)  identifying  the  set  of  spatially  explicit

indicators that correspond to agricultural driving factors, and (2) assessing the statistical

relations between these factors and the practices. Such methods, which are usually based

on multivariate  statistical  analysis,  use data from censuses,  remote  sensing,  maps,  and

enquiries. Geographers and agronomists have already developed such methods at various

scales of resolution, including the field scale, both to map current or future land use and to

assess the relative importance of socio-economical and biophysical factors on the spatial
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distribution of land use (e.g., Pierret, 1996; Verburg et al., 1999; Veldkamp and Lambin,

2001; Veldkamp and Verburg, 2004). However, these studies have dealt primarily with a

definition of land use that is  restricted to the specification of land use (cultivated area,

forest, grassland, etc.), to the main crop groups (annual vs. permanent crop) and sometimes

to crop types (wheat, maize, etc.) Details on crop management systems are often omitted

from these methods. When such information is required, most studies are based not on an

indicator approach, but on the use of averaged data derived from the literature,  experts'

assessments,  technical  recommendations  (e.g.,  Giupponi  et  al.,  1999;  Mignolet  et  al.,

2004) or the use of schemes with a uniform spatial distribution of agricultural practices

(e.g., Knox  et al., 1996; Hartkamp  et al., 2004). In contrast, the few studies based on a

search  of  spatialized  indicators  to  map  crop  management  systems  have  not  been  not

applied at plot resolution but rather at coarser resolutions (Maton et al., 2007). 

The objective  of this  paper  was to identify indicators  that  are suitable to simulate the

spatial  distribution  of  agricultural  practices  on  a  water  resource  catchment  at  plot

resolution. This paper is based on the specific case of weed control practices in a vine

growing catchment in southern France. Section two presents the study area, the data and

the  statistical  and  probabilistic  (i.e.,  stochastic)  approaches  used.  The  method  used

represents an extension of the classical CART segmentation algorithm. Three groups of

potential explanatory variables were tested and compared. These three groups correspond

to  three assumed levels of the spatial organisation of weed control practices. The results

are presented and discussed in sections three and four. 

2. Materials and Methods 

2.1. Study site

We studied  the  Peyne  river  catchment  in  the  mid  Hérault  valley  in  the  Languedoc-

Roussillon region of France, one of the world’s largest wine-producing regions (Figure 1).

This catchment suffers from serious herbicide pollution of the surface water. Studies show

that this pollution is related to herbicide leaching through runoff during heavy rainfall that

is typical of the area’s sub-humid Mediterranean climate (Lennartz et al., 1997; Louchard

et al., 2001). Vineyard weed control practices play a crucial role, since they determine both

the type and amount of herbicide applied and the evolution of soil surface characteristics

on which surface runoff depends (Leonard and Andrieux, 1998; Hébrard et al., 2006). 

The Peyne river catchment is a representative example of a vineyard catchment in the mid

Hérault  valley,  both in terms of physical  characteristics and land use. It  covers 75 km²,

about the same size as catchments in the region that are used as water resources and the

area includes  about 5000 ha of  vines.  It  presents  a  succession of clearly differentiated

geomorphological  units  that  strongly  determine  the  distribution  of  soils  within  the

landscape  (Bonfils,  1993).  The  region’s  altitude  ranges  from  20 m  (southeast  of  the

catchment) to 340 m (northwest of the catchment). There are sharp contrasts in landscape

between the northwest, which is rugged and mainly scrub-covered with little arable land,

and the rest of the valley, which has gentler landforms and is almost entirely covered by

vines. 

The Peyne catchment incorporates all or part of the territories of eight local government

areas (LGA, in France referred to as “communes”) and is farmed by 650 winegrowers. In

2000, according to data from the last farm census carried out by the Regional Direction of

Agriculture and Forest, 61% of the farm holdings of the LGAs of the catchment cultivated

under 5 ha of vines, and only 6% over 20 ha. In terms of area, the former represented only
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12%  of  the  vineyard  area,  whereas  the  latter  represented  26%.  93% of  the  holdings

supplied their grapes to cooperative wineries, whereas the others use private wineries. Four

mono-LGA-based cooperative wineries (those of Alignan du vent, Margon, Roujan and

Tourbes) and two bi-LGAs-based cooperative wineries (those of Vailhan-Neffiès and of

Caux-Pezenas) collect most of the grape production. In the case of the mono-LGA-based

cooperative wineries, the supply basin of each winery extends over a great part of the vine

growing area of the LGA where the winery is located. In the case of the other two wineries

of the Peyne catchment, the supply basin of each winery also includes the neighbouring

LGA.

2.2. Data 

A geographical  database  was  developed  that  included  (a)  information  regarding  weed

control practices (WCP) and (b) a description of physical or socio-economic variables that

can  potentially  explain  the  practices.  The  database  included  a  sample  of  1007  geo-

referenced vine plots of land that are owned by 63 winegrowers.

2.2.1. Sampling scheme and data collection

The  required  data  were  gathered  by  surveying  winegrowers.  The  winegrowers  were

selected by sampling vine plots along five transects perpendicular to the Peyne river. The

transects were regularly spread from upstream to downstream so as to intersect LGAs, soil

and geomorphological  units (Figure 2). Along each transect,  one-fifth of the vine plots

were  randomly  selected.  The  winegrowers  cultivating  these  plots  were  contacted  by

telephone in order to make an appointment for the inquiries, which were conducted at the

winegrowers’  residences.  The  refusal  rate  was  8%.  Sixty-three  winegrowers  were

surveyed.  These  winegrowers  cultivated  a  total  of  1007  vine  plots  within  the  Peyne

catchment,  i.e.,  about 20% of the area under vines within the Peyne valley.  Due to the

unequal repartition of the farm holdings structures, such sampling gave more weight to the

larger farms. We assumed that this sampling was representative of the spatial weight of the

farms and of the distribution of WCP in the catchment. 

The survey questionnaire consisted of two parts. The first focused on the WCP used in

each plot cultivated by the selected winegrowers. The second part was designed to provide

data for the variables that were assumed to explain the choice of practices. In addition, the

plots were precisely located on both the land register map and the 1:100,000 soil map of

Bonfils (1993).

2.2.2. Weed control practices

From the collected data, a 4-type expert-based classification of the WCP was performed.

The  types  were  distinguished  according  to:  (1)  their  potential  impact  on  soil  surface

features  and surface  runoff,  characterised  by a  range  of  different  possible  soil  surface

characteristics  during the year  and their  corresponding infiltration values,  and (2)  their

intensity of herbicide use, characterised by the mean amount of herbicide used per year. As

shown in Table 1, the practices differed in the weed control methods used in the alleys and

the vine strips. Practice Pa was based on chemical weeding in vine strips and alleys alike.

The other three practices,  Pb, Pc, and  Pd  also used chemical weeding in the strips, but

differed  in  the methods used for  the alleys.  In  practice  Pc,  the alleys  were  repeatedly

shallow-tilled.  Practices  Pb and  Pd both  managed  some  alleys  by  shallow  tillage  but

alternated  these at  regular  intervals  within the plot  with  alleys  managed by a different

method. In practice Pb, shallow tillage alternated with chemical weed control, and in Pd,

shallow  tillage  alternated  with  alleys  under  permanent  grass,  natural  or  sown  and
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controlled by mower or rotary cutter. In both  Pb and  Pd, the untilled alleys were those

where tractors passed to spray pesticides during the spring and summer; shallow tilling was

not used so as to ensure a good load-bearing capacity. In the case of Pd, the use of grass

cover also aimed to reduce vine vigor and production through competition for water and

mineral nutriments. This practice may be necessary when plot yield is over the threshold

authorized by the French wine legislation, for example. 

As a trend, these practices can be ranked according to the risk of runoff and herbicide

leaching  they generate.  From  Pa to  Pd (Pa >  Pb >Pc >  Pd),  the  environmental  risk

decreases due to a reduction of herbicide used (from total to partial chemical weed control)

and to the use of weed control methods that reduce surface runoff. 

The survey results are summarized in Table 2. They show that the most common practice,

Pc, was used on 50% of vine plots, 49% of the land area concerned and by 76% of the

winegrowers interviewed. A majority of winegrowers (54%) also used practice Pa, but on

fewer plots (17%) and on a much smaller land area (14%). Practices Pb and Pd were used

by a minority of winegrowers, and both were used on about the same number of plots and

the same area as Pa. 

The location of each type of practice in space according to the geographic coordinates of

the surveyed plot centroids clearly shows that the WCP were not randomly distributed in

space (Figure 3). Pc was the dominant practice in plots located on the left side of the Peyne

river (east-northeast side); whereas Pb and Pd were dominant in plots located on the right

side of the river (west-southwest side).

2.2.3. Potential explanatory variables 

In order to further extend the use of identified explanatory variables to simulate the spatial

distribution of WCP throughout the whole Peyne catchment or other vineyard areas of the

region, we collected variables that (1) we assumed to be potentially explanatory of the

WCP and (2) which were directly (or assumed to be indirectly) available at plot scale from

digital  regional  maps,  very  high  spatial  resolution  images  from  French  Geographic

Mapping Agency (IGN) and national databases.

The collected potential explanatory variables belonged to three groups corresponding to

three hypothesized levels of spatial organisation of practice diversity and different degrees

of  direct  availability at  plot  scale:  (1)  the physical  characteristics  of  the  plots;  (2)  the

structural characteristics and production priorities of the farm holdings; and (3) the local

government area (LGA) the plots belong to. 

Concerning  the  spatial  organisation  of  practices,  the  choice  of  these  three  groups  of

variables was guided (1) by the agronomic literature, which emphasizes the plot and the

farm levels to explain the diversity of practices at local or regional scale (Gras et al., 1989;

Dounias  et  al.,  1998;  Maton  et  al.,  2007)  and  (2)  by  the  results  of  a  previous  study

conducted in two of the eight LGAs of the valley,  in which the authors confirmed the

influence of plot and farm levels (in the case of WCP) and suggested an effect at the LGA

level (Biarnès et al., 2004). 

Concerning the availability of variables, the variables of the plot and LGA groups can be

collected directly at the plot scale by remote sensing (Delenne et al., 2008) and regional

digital maps. The farm holding variables are nor directly available at the plot scale. They

are usually aggregated at the LGA scale in national databases. To obtain them at the plot

scale, without any exhaustive inquiries, a procedure needs to be developed to allocate plots

to farm holdings.  Although attempts to better geo-reference farm holding territories can be
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found in the literature (e.g. Durr and Froggatt, 2002), no procedure has been proposed to

produce explicit farm territories defined at the plot resolution. 

a- The plot physical characteristics variables 

The plot physical  characteristics variables (Table 3) were intended to take into account

four specific constraints of the plots that might limit the technical options: the type of soil

(SOIL), the mean slope (MS), the size of the plot (SP), and the alley width (AW). These

variables  are respectively available from the regional  soil  map, DEM (digital  elevation

model from IGN©) and remote sensing (Delenne et al., 2008).

The  soils  of  the  Peyne  catchment  present  contrasting  characteristics  of  moisture  and

surface  texture  that  determine  their  mechanical  properties  (bearing  capacity,  crusting

sensibility) and which might therefore influence the choice of weed control practices. The

only available regional map was the 1/100,000 map by Bonfils (1993), which differentiates

the soil units according to landscape units. In  order to reduce the number of soil units,

particularly in the northern part of the catchment where there are very few vine plots, we

created an expert-based reclassification of the soils of this map. Eight units of soil (better

reflecting landscape units than the original map) were differentiated (Table 3 and Figure

2). 

The mean slopes and the sizes of the plots varied respectively from 0 to 31 % and from 0.3

ha to 5.5 ha. A high slope or small plot size make tractor use difficult. 

Vine  spacing  varied  greatly,  with  alley  widths  ranging  from  1.5  m  to  3  m.  This

heterogeneity results from the gradual replanting associated with mechanization since the

1960s,  and  from  the  switch  from  mass  production  of  Vin  de  Table to  quality  wines

(Appellation d’origine contrôlée or Vin de Pays) since the 1970s. Alley width determines

both the maximum size of equipment that can pass in the alleys and the ease of work. Only

equipment under 1 m wide can be used if the alley width is 1.6 m or less. Such widths are

suitable for animal traction, but make it difficult for tractors to pass easily. 

b- The farm holding characteristics variables

Ten variables  characterizing the farm holdings were collected : “cultivated area of the

holding” (CA); “vineyard area of the holding” (VA); “mean age of the vineyard” (MAV);

“percentage of the vineyard area under aromatic varieties” (ARM); “percentage of wine

production under  Vin de Pays” (VDP), “under  Appellation d’origine contrôlée” (AOC),

“under  Vin  de  Table”  (VDP);  “principal  winery  of  the  farm  holding”  (WIN);  total

manpower  (TMP),  “other  activity”  (ACT).  These  variables  are  commonly  used  to

characterize the diversity of the winegrowing farms in the Languedoc-Roussillon (Agreste,

1996;  Agreste,  2001).  They  are  all  available  in  national  administrative  farm  census

databases.  We  did  not  collect  information  on  the  characteristics  of  the  weed  control

equipment because such information is not available in farm census databases. From the

collected variables,  only five independent variables were kept: VA, ARM, VDP, ACT,

WIN for the analysis presented in this paper (Table 3). The other variables were left out

due to their correlations with these five variables. For each variable, an identical value was

attributed to all sets of plots belonging to the same farm holding.

c – The LGA variable

The third group of variables only had one variable, “the local government area the plot

belongs  to”  (LGA),  which  is  available  from  an  administrative  map.  In  the  Peyne

catchment, such a variable may be considered as a proxy of the local government area to

which the farm belongs because most farm holdings have a majority of their plots within
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the local government area where they are based. This variable was intended to take into

account  the  natural  and  socio-professional  environment  of  the  winegrowers,  including

relations between neighbours and the influence of the LGAs-based cooperative wineries in

the organization of the industry. 

d- Correlation between groups

In order to analyse the independence of these three groups of variables,  in Figure 4 we

computed:  the  determination  coefficient  when  crossing  two  numerical  variables;  the

Cramer  statistic,  derived  from the  chi-square  test  used  when  crossing  two  qualitative

variables; and the eta-square statistic, derived from the ANOVA sum of variances when

crossing a qualitative variable and a numerical one. All of these statistics can be interpreted

in the same way: values close to zero indicate independent variables; values close to one

indicate correlated variables. The results show that  the three groups of variables are not

entirely independent. The plot variable SOIL and the holding variables VDP, WIN and

ACT are not randomly distributed among LGAs. The variable SOIL is the variable most

correlated to the variable LGA, a fact that is explained by distribution of the soils within

the landscapes (Figure 2). In the case of VDP, the correlation may be explained by the

characteristics of the wine industry. The productive orientation of the winegrowing farm

holdings is strongly determined by national regulations on wine production that delimit

specific geographic areas for producing AOC or VDP wines. The Peyne valley is a VDP

production area,  but  an AOC production area is  localized in the northwest  area of  the

valley and corresponds to part of the territory of three LGAs. The winegrowers of these

LGAs  that  have  some  plots  localized  in  this  area  can  therefore  reduce  their  VDP

production  to  produce  AOC wines.  However,  when  the  winegrowers  are  cooperative

winegrowers,  their  productive  orientations  also  depend  on  the  LGA-based  wineries  of

which they are members and, consequently, are linked to the LGA that they belong to. 

2.3. Data processing

In order to optimise the choice of indicators used to reproduce the spatial distribution of

agricultural practices at plot resolution, we developed methods that permit comparison of

results coming from several sets of potential explanatory variables (Bailly et al., 2008).

This methodological development was performed in two steps. 

In the first step, a statistical modelling method based on the classification and regression

tree  (CART)  algorithm  (Breiman  et  al,  1984)  was  proposed.  Rather  than  maximising

predictive  performances  of  the model,  the method,  called the robust  classification tree

(RCT), was built in order to obtain an explicative model, with explicative rules that can be

easily interpreted and generalized in other contexts. However, at the end of this first step,

the WCP classical prediction performances obtained with the proposed RCT model were

compared  to  the  model  obtained  with  classical  CART  and  another  CART  derivative

algorithm in order to verify that the predictive power of the proposed method was not far

away from other usual methods. 

In the second step, the performance of various sets of explanatory variables to reproduce

the observed repartition of practices in space was assessed by a stochastic use of the RCT.

In contrast to the usual spatial prediction method that yields only a solution that minimizes

prediction error, we preferred to devise a process that shows spatial uncertainties through a

set of equiprobable spatial distributions of practices at plot resolution.
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2.3.1. Characterisation of the stable relationships between the weed control practices and

explanatory variables through the robust classification tree method

The  method used  is  an  extension of  the  classical  CART segmentation  algorithm.  The

CART algorithm is based on a recursive partitioning process of the multidimensional space

defined by a set  of explanatory variables in areas  that are as homogeneous as possible

regarding the variable being explained (the WCP class, in our case). The result is a binary

hierarchical  tree.  The  tree  is  characterised  by  several  splits  whose  nodes  depend  on

homogeneity measures (the Gini index (Gini, 1912) in our case), which determine a set of

logical if-then conditions linking the variable to be explained to the explanatory variables.

The branch lengths are related to the discriminating power of the splitting variables. The

growth  of  the tree  is  performed on a  set  of  samples,  called  the  growing set.  To limit

overfitting, the tree is then pruned by maximizing a cost-complexity criterion measured

when using the tree to predict classes on another set of samples called test set. At the end

of the process, each terminal node of the tree, called a leaf, contains a probabilities vector

for each class of WCP. The values of this probabilities vector are adding up to one. In a

classical classification use, the major class is attributed to each leaf (Breiman et al., 1984). 

CART is very popular since it facilitates classification model interpretation and does not

assume a particular shape (such as a linear shape) for relationships between variables. It

has been widely applied over the last 20 years in many different studies, for example in

landscape research (Gellrich et al., 2008) and agronomy (Tittonell  et al., 2008; Maton et

al.,  2007).  However,  CART  is  known  to  be  sampling-sensitive,  especially  when

correlations between explanatory variables exist, which can be the case in the present study

when  using  jointly  the  groups  of  explanatory  variables.  To  overcome  this  problem,

numerous derivative methods have been proposed (Breiman, 1996; Breiman, 2001; Geurts

et al., 2006), which are all based on aggregation of several classification trees (a forest)

built  with  randomisation.  Unfortunately,  if  these  derivative  methods  smooth  sampling

effects, the advantages of CART interpretation to obtain an easily interpretable explicative

model are lost. Therefore, we developed the robust classification tree process in order to

preserve the advantage of CART and the advantage of randomised tree algorithms. 

The robust classification tree algorithm runs in two steps. We first built a “forest,” i.e., a

collection of numerous trees (1000 trees) using random resampling without replacement,

where each tree of the forest is grown on a random sample of 702 plots and pruned from

the 305 others using a typical pruning process (Breiman  et al.,1984). The common tree

structure of the forest (the robust structure) is then extracted with a frequency analysis of

the tree collection: (1) only nodes in the forest tree having the same position with the same

rule for splitting for at least f% (frequency parameter) of forest trees are kept; and (2) only

leaves having plots coming from at least p different farm holdings (farm parameter) are

kept. To detail the former splitting rule criteria, the frequencies of each variable name and

values  pair  are  computed when the  variable  used for  splitting is  qualitative;  when the

variable is continuous, only frequencies of the variable name and sign pair are computed,

and pairs are associated with the median continuous value.

2.3.2. Weed control practices spatial distribution simulation: comparison of explanatory

variables performances

We used three sets of explanatory variables in order to assess the benefit of using the farm

holding  characteristics  variables:  set  1  contains  the  five  farm  holding  characteristics

variables; set 2 contains the four plot characteristics variables and the variable LGA; and

set  3 contains the three groups of variables.  This choice leads to three different  robust

trees.
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a. Weed control practices prediction overall accuracy

A  K-fold cross  validation test  was computed on each  classification method (K=20)  to

achieve a prediction performance comparison between the proposed robust classification

tree and the other classification methods. For each of the 20 loops of the test, 19/20th of the

1007 plots were used to build the models (robust classification tree, CART, random forest).

These models were therefore used to predict WCP on the other 1/20th of the 1007 plots. To

calculate prediction accuracy, we computed omissions and commissions on this same set

of 1/20th of 1007 plots. The predictions were performed with a classical use of the methods

(i.e. attributing the major class of WCP to each leaf). For each new loop, the next 1/20th of

the 1007 plots were used to compute the prediction accuracy resulting from models built

on the other 19/20th  plots and so on to the end. At the end, for each classification method,

we  computed  a  global  overall  accuracy  coming  from  the  arithmetic  mean  of  the  20

accuracy rates.

b. Weed control practices spatial predictions

Each robust tree was used to predict a practice for each of the 1007 plots of the surveyed

sample. For each plot, the path in the considered robust tree ends on a leaf. Since this leaf

contains a probabilities vector for WCP, a WCP was thus randomly attributed to this plot

with  respect  to  the  probabilities  vector  of  the  leaf.  All  plots  were  thus  processed,

simulating a WCP spatial distribution that was mapped using plot centroids.

c. Spatial predictions comparison

For each robust tree, a set of simulated WCP spatial distributions were compared to the

observed one, dividing the whole catchment into regular sub-areas (Figure 3). For each

sub-area, we computed a dissimilarity between n simulated WCP (n= 1000), giving an n by

p matrix  X(n),  and the observed WCP distribution  y = [y1,  ...,yp],  with  y1 denoting the

proportion of practice with modality 1 for instance, and  p denoting the total number of

modalities (p= 4). The matrix X(n) concatenates n vectors Xi (i=1,...,n) that compute for the

simulation i, the proportion of plots for each practice: Xi=[X1i, ...,Xpi]. To compare a value

to a distribution,  the typical practices are  to measure the dissimilarity using normalized

Euclidean distances or methods that score when the value fails into confidence intervals for

various  probabilities (Goovaerts,  2001).  Since we obtained correlated data ([X1i,  ...,Xpi]

summing to one), we preferred to compute the dissimilarity between  y and  X(n) for each

cell using the Mahalanobis distance (Mahalanobis, 1936) given by:

d(y,X(n)) = [ (y-µ)
t . Σ-1 . (y-µ) ]0.5

with : µ = [µ1, ...,µp], means of X(n)

Σ = covariance matrix of X

t just denotes the transpose of the (y-µ) vector

Finally, we computed a global dissimilarity (dissimilarity between the simulated and the

observed WCP distributions)  for  the entire  catchment  using a weighted average  of  the

dissimilarities computed for each cell, with weights equal to the plot number for each cell

(or sub-area).
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From the previous process, we obtained a single value of global dissimilarity. In order to

compare the value obtained for each robust tree, we computed a dissimilarities distribution

just by repeating the previous process m times, giving m global dissimilarities for robust

tree (m = 50).  This allowed us to compute and empirically test  the significance in the

difference of dissimilarities obtained with the three sets of explanatory variables, by simply

comparing  the  obtained  distributions  (comparison  of  the  mean  values  and  bilateral

confidence intervals).

All of these methods were conducted on R 2.6.0 statistical software (Ihaka and Gentleman,

1996)  using  the  tree  package  (Ripley,  2007),  the  Random Forest  package  (Liaw  and

Wiener, 2008) and many custom R scripts.

3. Results 

3.1. Predicting the weed control practices by different sets of explanatory variables 

Three robust trees (T1, T2 and T3) were obtained (Figure 5) from the three tested sets of

explanatory variables with parameters f=50% (frequency parameter), p=4 (farm parameter)

and from forests of 1000 trees. The three trees confirm that it is possible to find indicators

of WCP distributions in each group of variables. 

From the five variables tested to construct tree T1, only three variables (VDP, VA, ARM)

related to the economic scale, and the productive choices of the farm holdings were kept to

differentiate distributions of practices. The right branch of tree T1 is associated with VDP

oriented farm holdings (percentage of wine under VDP greater than 84.5% of the total

production). In these holdings, choices of practices vary according to the vine area. As a

trend, winegrowers adopt practices that increasingly limit polluting runoff (Pb, then  Pc,

then  Pd)  when increasing the vine area.  In  the farm holdings characterized by weaker

production of VDP (left branch of the tree), choices of weed control practices are linked to

the  percentage  of  area  under  aromatic  varieties  (ARM).  The  plots  belonging  to  farm

holdings with little renewal of their varieties (ARM <39.345% of the total vine area) are

associated with intensive use of herbicide (practice Pa in 54% of the plots), which may be

explained by the  high  proportion  of  vines  with very  small  alley widths  in  these  farm

holdings. The other plots are associated with shallow tillage (Pc in 88 or 66% of the plots).

The bases of trees T2 and T3 are very similar.  Regarding the branch lengths, the LGA

variable clearly appears to be the most discriminant. In the two trees, the root node is split

based on the values of the LGA variable,  dividing all the sets of plots into two groups

respectively located in the LGAs on the left side (right branch of the tree) and on the right

side (left branch of the tree) of the Peyne river. As a result, the trees reproduce the non-

uniform distribution of practices between the two river sides and highlight its structuring

effect  in  the  spatial  distribution  of  the  practices.  In  opposition  to  our  hypothesis,  the

variables SOIL, SP and MS do not participate in the splitting of these two groups of plots.

They do not appear to be determinant criteria to discriminate the practices at the plot scale.

In  contrast,  as  hypothesised,  the alley width (AW) does appear  to  be a  discriminatory

variable. 

In T2, the plots characterised by narrow alleys (less than 1.75 m or than 1.875m according

to the river side), are associated with intensive use of herbicide (Pa, and even Pb), which is

not the case for the plots characterized by wider alleys. On the left river side, the plots with

wide alleys are associated with practice  Pc in 78% of the cases. On the right river side,

they are almost equally associated with practices Pb, Pc or Pd.
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In tree T3, in addition to the variables used by tree T2, two farm holding variables (VA and

ARM) were used to differentiate the distribution of practices. These variables operate in

the last  nodes,  after  the variables  LGA and AW. The most appreciable  effect  of  these

variables was in obtaining purer leaves,  as for example leaf  L4,  which was principally

associated with grass cover (Pd). This leaf contains the plots belonging to farm holdings

with more than 45.175 ha of vines. The variable VDP was not used in tree T3, which

suggests  that  due  to  its  non-uniform  distribution  among  LGAs,  it  does  not  provide

supplementary information to better discriminate between the practices.

3.2. Prediction accuracy comparison

As explained in section 2.3.2, we computed a 20-fold validation test using successively

robust trees, CART usual trees and random forest algorithm. The results are tabulated in

Table 4 using the three sets of explanatory variables. These results show that random forest

gives higher prediction accuracies and that robust trees give slightly higher accuracies than

usual CART. The results also indicate that the prediction accuracy is very similar between

the three tested sets of variables.

3.3. Simulating the spatial distribution of the weed control practices by the selected robust

trees

Figure 6 shows four examples of simulated WCP spatial distributions: a totally random

spatial simulation respecting only global practices percentages (Figure 6a) and three spatial

simulations using, respectively, trees T1, T2 and T3 (Figures 6b, c and d). These examples

show that a random spatial distribution looks very different from the observed one (Figure

3). Conversely, the use of spatialized indicators gives contrasting and realistic distributions

between the two sides of the Peyne river. Nevertheless, these distributions are difficult to

compare visually. 

Global dissimilarities between the observed WCP distributions and 1000 simulations were

first computed as explained above. This was done successively using trees T1, T2, T3 and

a  totally  random  spatial  simulation.  The  results,  presented  in  Table  5,  confirm  that

simulations conditioned by trees are much better than random ones. They also show that

simulations resulting from trees T2 and T3 are close but significantly different and that

they are the closest to the observed distribution. 

4. Discussion

4.1. Variability in weed control practices driving forces

For  each  of  the  three  assumed levels  of  spatial  organisation  of  practices,  at  least  one

indicator was found. 

At the plot scale, the plot characteristic related to alley width explained the most important

part of the distribution of practices between integral (Pa) and partial chemical weed control

practices (Pb, Pc and Pd), as shown in trees T2 and T3 (Figure 5). But choosing between

partial weed control practices could not be explained by this variable. In addition, the soil

on  a  1/100,000  map  did  not  participate  in  WCP  discrimination.  This  result  may  be

explained by (1) the uncertainty related to the location of plots on a 1/100,000 scale soil

map, (2) by the variability of soil characteristics within a soil unit. The 1/100,000 scale

map is probably not sufficiently detailed to detect a relationship between soil and practices.

Finally, neither the MS nor the SP variable explained the diversity of WCP, which may be
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related to the small number of plots characterized by problematic values for these variables

(high slopes or very small plots), since these values determine the plots that are currently

abandoned by the winegrowers.

To take fullest account of the diversity of the weed control practices (Pa, Pb, Pc and Pd)

and to precisely discriminate them, it  appeared necessary to focus on the farm holding

variables (tree T1) or to add them into the set of tested variables (tree T3). These results

show that the plot constraints were not absolute, and that practice choices are handled in

the farm holding context. They confirm previous studies on two Peyne catchment local

government areas (Biarnès et al., 2004). From the three explanatory variables selected by

the tree, ARM may be related to specific constraints of the holdings, such as the proportion

of vines with very small alley widths (tree T1); VA may be related to the economic scale

of the farming and an effort to adopt more environmentally-friendly practices when this

economic scale increases (trees T1 and T3). However,  in tree T1, the effect  of VDP is

difficult to interpret since this variable is correlated to the LGA variable (Figure 4).  An

additional independence test (chi-square test) showed that the values of VDP inferior or

superior to the threshold value of tree T1 (84.5%) are unequally distributed between the

left and the right river sides of the Peyne catchment (Table 6).

Lastly, by affecting the environment of the farm holdings, the variable LGA also affected

the spatial distribution of the practices. This variable seemed to integrate various driving

factors of practices, which explained its relevance in discriminating the practices. Figure 4

shows that soils and LGA's are correlated, and Figure 2 shows that the distribution of the

1/100 000 soil units are highly dissimilar between the two river sides. In particular, the

LGA’s of the right river side have more soils on plateau (unit 5) and less soils on alluvial

shallow (unit 4) than does the left river side.  We hypothesize that the differences might

even be more important with a more detailed soil map and partly explain the difference of

WCP between river sides. For example, studies in progress show that unit 5 (soils on the

plateau)  of the 1/100,000 scale map corresponds to very heterogeneous soils,  with the

possibility of very clayed surface soils on small areas un-evenly distributed (Couloma G.,

personal communication). These soils in particular justify the use of practices Pb or Pd due

to high risk of not having bearing capacity after a heavy rainfall event. In contrast, the soils

of  unit  4  partially  correspond  to  equilibrated  textures  with  no  specific  problem  of

trafficability or workability. The total area with highly clayed surface soils alone might not

justify the extent of practices Pb and Pc. However, studies on farm management indicate

an effort to simplify work by limiting the range of different practices used (Aubry, 1998). A

practice selected to resolve a particular problem in a particular plot may be used in other

plots, particularly when this practice is easy to use and has other advantages, as is the case

with practices Pb and Pd. For example, compared to shallow-tillage (Pc), both of Pb and

Pd reduce labour time requirement  by using herbicides or  grass  cover  in  some alleys.

Lastly, a leading role in the diffusion of practices by farm information networks has been

shown by sociologists (Darré, 1989; Chiffoleau, 2005). The role of such networks and their

links with LGA are being studied in two LGAs of the Peyne catchment by sociologists.

Initial  results  indicate  that  some of  the  winegrowers’ information  networks  (proximity

networks, technical advice networks) depend on the LGA where they are living and may

explain the differences in practices between LGAs (Compagnone and Valdivieso, studies in

progress). 

However, for each of the three selected trees, all the terminal nodes are composed of a

probability  distribution  of  the  four  WCP.  These  distributions  reflect  the  uncertainty

associated with the discrimination of practices. This uncertainty is also reflected by the

prediction performance of each of the robust trees, which does not exceed 0.64 (Table 4).
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The  uncertainty  may  result  from  data  collection  errors  or  from  the  restricted  set  of

variables used. Since our objective was to take into account only variables that are already

available, we can assume that the tested variables do not explain the whole variability of

WCP. For instance, we know that the non-use of integral chemical WCP (Pa) in vine plots

with narrow alleys may be explained by the non-availability of appropriate shallow tillage

equipment and tractors.

4.2. Appropriate indicators to represent spatial distribution of practices 

Even if the previous results showed that it is possible to find indicators of practices at the

three assumed levels of diversity organisation, the individual performance of these levels

to reproduce the observed spatial distribution of practices was very variable. 

While the farm holding variables appeared to be pertinent to discriminate the distribution

of WCP (tree T1), this set of variables was less efficient than the other sets to simulate

their spatial distribution: compared to the other tree-based simulations, the T1 ones were

the furthest from the observed distribution (Table 4). The combination of the three tested

groups of variables led to the best performing simulations of the spatial distribution of

WCP. Nevertheless, the proximity of the values of the global dissimilarity between the T2-

based and the T3-based simulations suggests that, in tree T3, the nodes linked to the farm

holding variables provided little additional spatial  information. Such results support the

idea that the holding variables,  which are not directly available in databases at the plot

scale,  may  be  left  out  for  simulating  the  spatial  distribution  of  WCP  in  the  Peyne

catchment.

4.3. Performances and limits of the proposed methods 

Considering the usual criteria for classification method assessments, we showed that the

proposed  RCT process  is,  as  expected,  a  compromise  between  the  random forest  and

CART methods. We obtained higher prediction performances than the CART method and

a much more easily interpretable model than the random forest method. 

Using criteria more devoted to the assessment of the spatial structure of prediction with

RCT, only calibration dissimilarities, i.e. the dissimilarities computed on the set of plots

used  to  construct  the  trees,  were  considered.  We  assumed  that  assessing  calibration

dissimilarities is  sufficient  because our objective was to allow a relative comparison of

spatial prediction results coming from different  sets of explanatory variables and not to

interpret  the absolute values of spatial prediction performances. (A cross-validation test

would have been necessary to assess validation dissimilarities.) In addition, when dividing

the study catchment into six cells to allow this relative comparison, only the spatial trends

of the WCP distribution were investigated. To investigate local spatial structures it would

be necessary to  use  smaller  cells  or  indicators  of  spatial  autocorrelation,  such as  local

Moran or Geary indices. For this latter point as well for a cross-validation test, much more

data than the available ones are necessary which make these in-depth investigations quite

difficult to realize.

Considering the chosen variables  for the robust trees,  tree procedures  are known to be

sensitive to the number of classes of the qualitative variables.  In particular, Srobl et al.

(2007) indicate that forest procedures systematically prefer variables with higher numbers

of classes. To overcome this problem we chose to use, when it was possible, the same

number of classes for the qualitative variables: this is the case for the LGA and the SOIL

variables which both have eight classes. Consequently we assumed that the choice of LGA
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as the first discriminant variable in T2 and T3 and the non selection of SOIL are not due to

a bias in the variables selection procedure.

5. Conclusion

We aimed to identify, from potential explanatory variables, indicators suitable to simulate

the observed WCP spatial distribution at plot resolution over a water resource catchment. 

An important result of the study is a methodological one. In this study, we developed an

original statistical and stochastic method that can be used in other contexts. The robust tree

method  developed  combines  advantages  of  CART  and  Random  Forest  algorithms:  it

provides  a single,  easily interpretable model between indicators and WCP with limited

overfitting and intermediate predictive performances.  The goal  of the proposed method

was not just to allow simulation of the spatial distribution of practices. The method also

provides  an  explicit  view of  the  uncertainty associated  with  the  discrimination  of  the

practices and the simulation of their spatial distribution since the output of the trees are

probability distributions  of practices  (Figure  5).  These  probability distributions may be

used to produce a set of equiprobable maps of agricultural  practices. When using these

maps as input in the biophysical models that assess environmental impact of practices, a

sensitivity analysis to agricultural practices mapping uncertainties can be performed.

Considering the case study, the results indicate that the three assumed levels of the spatial

organisation of practices  were  pertinent to  discriminate the practices  in the study area.

They show that it was possible to find one or several indicators of practices for each of

these levels and to use them to reproduce the observed spatial distribution of practices at

plot  resolution.  However,  because  of  inter-relationships  (1)  between  indicators  of  the

different  groups  and  (2)  between  some  indicators  and  other  decisions  factors,  the

interpretation of these results is still difficult. In particular, the relevance of variable LGA

to  discriminate  the  practices  may  be  related  to  various  factors,  one  of  which  is  the

distribution of  soil  properties  within the  Peyne  catchment;  these still  need  to  be more

precisely characterized. In contrast, the results also show that the ability of the indicators to

reproduce the observed distribution of practices  was variable.  In  the case of the Peyne

catchment,  the combination of the three groups of variables led to the best  performing

simulations of the spatial distribution of WCP. Nevertheless, the farm holding variables

may not be used to simulate the spatial distribution of WCP without overly affecting the

final results.

Such results cannot be directly transferred to other areas of the mid Hérault Valley. Further

efforts are needed to verify the relevance of the rules that link the WCP to the explanatory

variables  in  other  areas  of  the  mid  Herault  Valley.  To  do  so,  we  need  a  better

understanding of what these rules mean. 

Finally, our spatial representation of distribution of WCP still cannot be directly combined

with a distributed hydrological  model.  Since one type of input data required by such a

model is the soil surface characteristics (whose yearly dynamic depends not only on the

four types classification of WCP, but also on the cropping calendars) efforts are needed to

take cropping calendars into account in the representation of the practices.
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Weed control methods

Practice Vine strips Alleys

Pa Chemical weeding Chemical weeding

Pb Chemical weeding Chemical weeding or shallow-tillage 

Pc Chemical weeding Shallow-tillage

Pd Chemical weeding Grass cover or shallow-tillage 

Table 1 : Description of weed control practices
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Weed

control

practice

Plots concerned Land area

concerned

Farm holdings

concerned

Number % Ha % Number %

Pa 170 17 139 14 34 54

Pb 197 20 189 19 22 35

Pc 505 50 486 49 48 76

Pd 135 13 175 18 14 22

Note: The last two columns do not add up to 63 or 100, respectively, because some

winegrowers use various weed control practices.

Table 2: Percentage of the different weed control practices in the plots sample
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Group of variable Variable Modalities or range of variation

1: Characteristics of the

plots

AW: alley width 1.5 to 3 m 

SOIL 1: Soil on quartzic bedrock; 2: Regosols and

calcisols on terraced hillsides; 3: Calcisold on

glacis; 4: Endogleyic calcisols and fluvisols on

alluvial shallows; 5: calcisols (clayic),

calcisols and leptosols on plateau; 6: Luvisols

(chromic or rhodic) on Plio-Pleitocene

alluvials terraces; 7: Fluvisols, cambisols

(skeletic) and luvisols (chromic) on

Pleistocene alluvial terraces; 8: Fluvisols on

Holocene alluvial terraces (1).

PS: plot size 0.1 to 5.5 ha 

MS: mean Slope 0 to 31% 

2: Characteristics of the

farm holdings

ARM : percentage of area

under aromatic varieties 

0 to 100 %

VDP : percentage of wine

production under Vin de

Pays

0 to 100 %

VA : vineyard area 0.3 to 62 ha

ACT: activity Full time, Part time, Retired (2)

WIN: principal winery Cooperative winery; Private winery

3: Administrative unit LGA: local government

area

Alignan (a), Caux (b), Margon (c) Neffiès (d),

Pezenas (e), Roujan (f), Tourbes (g), Vailhan

(h)

(1) soil classes according to Bonfils (2003) and IUSS Working Group WRB (2006).

(2) Full time: the only activity is vine growing; Part time: the concerned wine growers also

have an activity that is not vine growing; Retired: retired wine growers who still cultivate

some vine plots.

Table 3: Explanatory variables
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Set of

variables Robust Tree CART

Random

Forest

1 0,64 0,63 0,77

2 0,62 0,61 0,71

3 0,61 0,60 0,74

Table 4: Prediction accuracy comparison
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Dissimilarity statistics Random

distribution

Tree 1 Tree 2 Tree 3

Mean 14.92 5.64 2.72 1.95

96% bilateral confidence

interval

14.47-15.57 5.38-5.89 2.57-2.90 1.85-2.10

Table 5: Global dissimilarity distribution between observed WCP spatial distribution and

simulated ones
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VDP LGAs of the right river side LGAs of the left rive side

Number of

plots concerned

Number of

holdings

concerned

Number of plots

concerned

Number of

holdings

concerned

> 84.5 hl 297 21 179 11

< 84.5 hl 183 9 348 22

Table 6: Repartition of values of VDP by river side
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Figure 1: Location of the study area 
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Figure 2: Location of the sampling transects (T1 to T5)

Note : Soil units 1 to 8: see Table 3 ; soil unit 9: urban area.
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Figure 3: Spatial distribution of the observed practices (with division of the Peyne valley

into six sub-areas (SA))
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Figure 4: Matrix of correlation statistics between variables

Note: The six numerical variables have wide tic marks on axes.
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Figure 5: Presentation of the selected robust trees

Each  terminal  node  (or  leaf  Li)  is  associated  with  a  lay  of  distribution  of  the  four

modalities of WCP (% of plots per practice). For instance, in Tree T1, among the plots

belonging to holdings with less than 84.5% of their wine production under VDP and less

than 39.345 % of their vine area under aromatic varieties, Pa, Pb, Pc and Pd respectively

represent 54, 32, 0 and 14% of the plots (leaf L1). 

Figure 5a: Tree T1

28



Version soumise à Agricultural System le 8/09/08

Figure 5b: Tree T2

a: Alignan, b: Caux, c: Margon, d: Neffiès, e: Pezenas, f: Roujan, g: Tourbes, h: Vailhan 
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Figure 5c: Tree T3

a: Alignan, b: Caux, c: Margon, d: Neffiès, e: Pezenas, f: Roujan, g: Tourbes, h: Vailhan
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Figure 6: Simulations of spatial distribution of practices

Figure 6a: Random distribution 
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Figure 6b: Simulation with T1
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Figure 6c: Simulation with T2
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Figure 6d: Simulation with T3
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