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Magnetic resonance imaging has proven its potential application in bread dough and 

gas cell monitoring studies, and dynamic processes such as dough proving and baking can be 

monitored. However, undesirable magnetic susceptibility effects often affect quantification 

studies, especially at high fields. A new low field method is presented based on local 

assessment of porosity in spin-echo imaging, local characterization of signal loss in gradient-

echo imaging and prediction of relaxation times by simulation to estimate bubble radii in 

bread dough during proving. Maps of radii showed different regions of dough constituting 

networks which evolved during proving. Mean radius and bubble distribution were assessed 

during proving. 

 

Key Words: magnetic susceptibility; MRI simulation; field inhomogeneity; gas bubble; gas 
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Magnetic susceptibility effects are of increasing interest in Magnetic Resonance 

Imaging (MRI). Traditionally, as field inhomogeneities induce geometry and intensity 

distortions in spin-echo (SE) imaging  and signal loss in gradient-echo (GE) imaging [1, 2], 

susceptibility artefacts have been considered undesirable and therefore subjected to correction 

[3]. However, there are number of emerging techniques and applications using magnetic 

susceptibility effects and T2*-weighted imaging. The difference in magnetic susceptibility 

between deoxygenated and oxygenated blood, termed the BOLD effect, led to functional MRI 

which is widely used in cognitive neuroscience [4]. Susceptibility Weighted Imaging (SWI) 

uses the original phase image to enhance contrast between tissues with different 

susceptibilities [5]. This technique has been applied to studies of brain tumors, trauma, 

vascular malformations and for quantification of brain iron [6]. Superparamagnetic iron oxide 

(SPIO) particles create intense magnetic field distortions within and around cells, leading to 

irreversible signal dephasing in GE sequences. SPIO particles have been exploited as contrast 

agents for non-invasive cell tracking to determine their biodistribution in different organs [7-

10]. Susceptibility studies have been applied to material characterization [11, 12] and particle 

identification in industrial systems [13].  

The potential of gas microbubbles as an in vivo intravascular susceptibility contrast 

agent for MRI has been demonstrated [14]. Moreover, differences in magnetic susceptibility 

(∆χ) between gas bubbles and a water environment create field inhomogeneities which induce 

intravoxel dephasing and associated signal loss characterized by a T2* shortening in GE 

imaging. However, the presence of air bubbles in several food products has not to date been 

the focus of studies of susceptibility effects. Understanding bubble mechanics is very 

important with a wide range of foamed food products. Bubble studies make possible the 

optimization of process design, contribute to the development of strategies for deaeration and 
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are important in the area of texture and sensory analysis [15]. It can be anticipated that air or 

gas bubbles would be natural markers or contrast agents. Moreover, bubbles are part of a 

product and thus could be considered as a signature of the medium.  

Proving flour dough is an essential stage in breadmaking. As the final character of most 

bakery products depends on the creation and control of gas bubble structures in the unbaked 

matrix, improving the understanding of the nucleation and growth of bubbles is of major 

interest [16]. MRI is a particularly suitable tool to study bread dough as it is non-invasive 

(essential for dough monitoring during proving as the alveolar structure is fragile and may 

collapse if intrusive measurement techniques are used), and provides a good trade-off between 

spatial and time resolution [17-20]. Dough samples can thus be quite large and imaged with 

high resolution during proving [20]. Even the entire baking process can be monitored with 

MRI [21]. Bonny et al. [17] used high-field (9.4 T) magnetic resonance microscopy along 

with routine mathematical morphology to characterize the proving process noninvasively. 

They faced critical susceptibility effects responsible for severe geometrical distortions due to 

the heterogeneous structure characterized by many interfaces. Different stages of fermentation 

could be identified, with a general increase in bubbles, but no quantitative assessment of 

bubble size could be made. Van Duynhoven et al. [20] illustrated the ability of MRI and 

image analysis to assess gas cell development in the growth of the dough during proving. 

Basically, the size of each cell was determined by counting the number of pixels, thus 

presupposing high resolution and hence small fields of view. Moreover, this method does not 

account for susceptibility effects that are especially disrupting at 4.7 T and are responsible for 

geometry and intensity distortions in SE imaging. X-ray tomography has also proved its 

ability in analyzing bubble growth during bread making [22]. However, this technique is only 

sensitive to density, and imaged samples have to be small (< 10 mm). 

 4



 

80 

81 

82 

83 

84 

85 

86 

The aim of the study reported here was to characterize the alveolar structure of bread 

dough and its evolution during proving using susceptibility effects. Grenier et al. [18] 

assessed local dough porosity (volume of gas per volume of dough) during proving. However, 

nothing can be inferred about bubble size for a given value of porosity, as different cell 

distributions can be obtained [23, 24]. We therefore developed an original method to estimate 

bubble size based on the local porosity assessed in SE imaging and on the susceptibility 

effects in GE imaging. MRI simulation was used to predict signal loss for virtual networks of 

gas bubbles embedded in a water matrix. A low magnetic field (BB87 

88 
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0 = 0.2 T) was used in order 

to avoid the severe geometric distortions encountered at high field in SE imaging and critical 

signal losses in GE imaging as the heterogeneous structures were characterized by many 

susceptibility interfaces [17]. The dynamic side of bread proving requires acquisition to be 

quite fast, leading to a limited number of acquisitions, limited resolution and an appropriate 

hypothesis to compute maps of interest. 

Section 2 reports how relaxation times affected by susceptibility were predicted with 

simulation. Section 3 describes the materials and methods used with bread dough 

preparations, the MRI protocol, computation of the maps and the principle of the estimation 

algorithm. Section 4 presents the results on non-yeasted bread dough and yeasted dough 

during proving, followed by a discussion in section 5. 

2. Prediction of relaxation times by simulation  

The algorithm developed for estimation of bubble size was partly based on simulation 

results. This section introduces theoretical considerations and describes the simulation 

protocol. We demonstrate how relaxation times can be modeled at 0.2 T and what can happen 

at 1.5 T. 
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2.1. Theoretical considerations 103 

104 

105 

We first verified that the static dephasing regime conditions for spherical magnetic 

perturbers of radius r as described by Yung et al. [25] were largely met, as 1/τ << δω with τ =  

r2/D and δω = γ∆χBB106 

107 
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110 
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117 

0/3, D being the translational diffusion coefficient of spins taken as the 

water diffusion coefficient and γ the proton gyromagnetic ratio. In fact, D is even smaller in 

bread dough. 

Microscopic field inhomogeneities (i.e. magnetic field inhomogeneities over distances 

with orders of magnitude smaller than the voxel size) are responsible for irreversible signal 

decay (R2 = 1/T2) and mesoscopic field inhomogeneities (from perturbers smaller than the 

voxel size but greater than the diffusion length) contribute to R2
#, the reversible portion of R2

* 

(R2
* = R2 + R2

# = 1/T2
*) [3, 26]. Macroscopic field inhomogeneities are not present in T2

* 

definition and induce non-exponential signal decay [3, 27]. Macroscopic field 

inhomogeneities can typically arise from air inclusions or ferromagnetic objects. Finally, 

assuming a constant proton density across the voxel (ρ(r) = ρ), signal decay in a voxel of 

volume V is expressed in Eq. (1): 

)2(sin).2(sin).2(sin..)(
*
2

zzyyxx
tR

voxel ltgcltgcltgceVtS γγγρ −=   (1) 118 

119 where lx, ly, lz are the voxel dimension, and field inhomogeneities along one direction i are 

expressed with a linear gradient (ΔBB120 
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i = gi.i). In this study, we defined T2χ as the constant of 

the exponential curve fitting the initial part of the susceptibility-induced signal decay. 

Microscopic, mesoscopic and macroscopic inhomogeneities were thus taken into account in 

the approximation of T2χ. 

2.2. Simulation protocol 

The purpose of the simulation was to investigate quantitatively the signal loss in GE 

MR images induced by networks of gas bubbles embedded in water. We used the SIMRI MRI 
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simulator as described by Benoit-Cattin et al [28]. In a previous study [27], intravoxel 

modeling and associated signal decay were quantitatively assessed and experimentally 

validated in the case of a single well-resolved air-filled cylinder and in the case of a network 

of small interacting air-filled cylinders. An overview of the simulation framework is 

presented in Fig. 1. A 3D virtual object was defined by radius (r) and center to center distance 

between bubbles (ccd) expressed in pix
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obj (i.e. the pixel in the 2563 object space), difference in 

magnetic susceptibility (∆χ) and number of bubbles in each dimension (Nb). The additive 

property of the magnetic field, and the analytical formulation of field inhomogeneities created 

by one sphere [1], were combined to compute the relative field inhomogeneities (∆B/B0). 

From this map, SIMRI provides simulated MR images with susceptibility effects. At this 

stage, object parameters such as spin-lattice relaxation time T1, spin-spin relaxation time T2, 

and proton density ρ could be defined. NMR experiments (Minispec PC 120, Bruker SA, 

Wissembourg, France) on the bread dough showed several T1 and T2 components leading to 

multi-exponential decay, as previously described [29, 30]. The first components were smaller 

than the echo times (TE) used in this study. As a single value for relaxation times is necessary 

in simulation, weighted averaging of the relaxation times of the different components was 

performed, resulting in T1 = 100 ms and T2 = 20 ms. Lodi et al. [31] assessed T2 values from 

spin-echo images by fitting time-series points pixel-by-pixel, resulting in T2 maps of soy 

bread (mean values around 18 ms) consistent with this averaging. Simulation parameters such 

as main magnetic field (BB146 

147 

148 
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150 

151 

0 = 0.2 T), pixel bandwidth (BW = 279 Hz/pixel) and repetition time 

(TR = 300 ms) were set to match real experimental conditions. By defining the number of 

pixels constituting the simulated image, we could define the relative proportion of the bubble 

radius in the simulated image pixel (pixima). For instance, considering the high-resolution 

object used as an example in Fig. 1 (r = 4 pixobj, ccd = 12 pixobj, ∆χ = -9.05 ppm, Nb = 17 in 

the 256  object space), a 32x32 slice simulated image resulted in r = 0.5 pix3
ima, ccd = 1.5 
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pixima (r = 0.125 pixima, ccd = 0.375 pixima with a 8x8 simulated image). For each object, GE 

images were simulated at different increasing TE from 4 to 12 ms. The mean gray level was 

then computed on regions of interest (ROI) enclosing several bubbles (visible on Fig. 1). This 

centred ROI made it possible to avoid boundary effects and to account for the interactions 

between several bubbles. Good representation of the medium was thus assured with such an 

ROI as bubbles were regularly spaced. T
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2χ was calculated as the constant of the exponential 

curve fitting the initial part of the mean gray level decay computed in the ROI. In fact, objects 

with large ccd gave quasi-exponential decay even for longer TE (12 ms). As ccd decreased, 

signal decay was hardly exponential because of high gradients gi in Eq. (1) and T2χ was 

assessed on the very first TE values (between 4 and 8 ms). 

2.3. Evolution of T2χ as a function of bubble radius 

Our aim was to link the object configuration with T2χ values so as to characterize the 

medium. The initial question was to find out whether small or large intravoxel bubbles 

engendered a similar signal loss for the same porosity (i.e. the gas volume fraction in the 

voxel). We therefore gathered all T2χ values relative to the different object configurations as a 

function of bubble radius at the different porosities shown in Fig. 2.a. The same curve shape 

was observed for each porosity. The first plateau indicated that a similar initial signal loss was 

measured for small radii, i.e. T2χ was only dependent on porosity. Then, a rapid increase in 

T2χ leveled off on a second plateau; note that the lower the porosity the smaller the radii 

corresponding to T2χ values as they started to increase. This was appropriate to our study as 

the initial mean porosity of bread dough was around 10% and overall porosity and bubbles 

increased during proving. One significant feature was that T2χ was sensitive to porosity and 

intravoxel structure according to bubble size. 
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2.4. Modeling of T2χ at 0.2 T 175 

176 

177 

T2χ as a function of bubble radius was modeled with a sigmoid curve for each porosity 

value; a typical sigmoid function being defined in Eq. (2). 

xe
xf λ−+
=

1
1)(          (2) 178 

179 

180 
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183 

As curves were not centered but shifted along the radius axis, we defined rbreak as the 

radius corresponding to the symmetrical point of the curve. As the amplitude between low 

and high radius values was not 1, K was introduced as multiplying factor. Finally, T2χinit was 

defined as T2χ offset, i.e. the value of T2χ for the smallest radius. Using these new variables 

and Eq. (2), T2χ as a function of radius is expressed in Eq. (3): 

)(22 1
1.)(

breakrrinit e
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For several porosity values, the parameters of Eq. (3) (T2χinit, K, rbreak, λ) were assessed 

to best fit the data according to the least mean square criterion (using Marquardt’s algorithm 

in TableCurve2D® software, Jandel Scientific, version 5). Each parameter separately was 

then studied as a function of porosity. T2χinit and K (Fig. 3.a), rbreak and λ (Fig. 3.b) were 

drawn up and found to be closely related to porosity with second order polynomial functions 

(R2 (T2χinit) = 0.995, R2 (K) = 0.988, R2 (rbreak) = 0.994 and R2 (λ) = 0.993).  

Finally, a complete description of T2χ as a function of radius and porosity (ε) is 

expressed in Eqs. (4,5). 

))()((22 1
1).()(),( εελχχ εεε

breakrrinit e
KTrT −−+
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Note that the polynomial fitting on K as a function of ε was accurate and determined for 

porosity values greater than 10%. It was obvious that a homogeneous object without bubbles 

(ε = 0) would normally result in a zero multiplying factor (K). The same was valid for r

195 
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206 

break, 

whose limit for low porosities should be zero. Moreover, zero porosity in the T2χinit expression 

corresponded to the T2* value, i.e. the exponential signal decay constant representing the 

signal loss due to the mesoscopic field inhomogeneities. 

2.5. Signal losses at 1.5 T 

Although a low magnetic field was used, we felt that it could be of interest to predict 

signal losses in simulation at a higher field. The same simulations were therefore undertaken 

at 1.5 T and the results are summarized in Fig. 2.b. Susceptibility was obviously stronger as 

field inhomogeneities were proportional to the main magnetic field. When porosity was equal, 

T2χinit times were considerably shortened compared to the situation at B0 = 0.2 T. Indeed, if ε 

= 0.12, simulations gave the followings: T2χinit = 12.65 ms at BB207 0 = 0.2 T and T2χinit = 3.8 ms at 

B0B  = 1.5 T. The value of BB208 0 did not seem to impact on rbreak value. However, the K factor was 

significantly increased (1.35 at B0B  = 0.2 T against 5.11 at BB209 

210 

211 

212 

213 

214 

215 

0 = 1.5 T if ε = 0.12). Signal decay 

was dramatically decreased for higher porosities (ε > 0.2), preventing GE studies at high 

fields. 

 

 We have shown in this section that T2χ relaxation time could be modeled with a 

sigmoid function dependent on porosity and radius of bubbles. We therefore used Eqs. (4,5) 

in the next section to build an estimation algorithm to assess bubble size in bread dough. 
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3. Materials and methods 216 
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3.1. Sample preparation and experimental procedure 

Bread dough samples were obtained by mixing 2000 g of wheat flour (Type 55, 

Moulins Soufflet Pantin), 1140 g of water, 40 g of salt, 20 g of improver and 100 g of yeast 

(optional) in a Moretti Forni Grain Spiry 8 dough mixer for 17 min at 100 rotations per 

minute. The advantages of using non-yeasted dough were to provide a stable object with 

regard to the acquisition time, with possible comparison of structure with yeasted dough at the 

initial time of proving. A fraction of gas (mainly air) is incorporated at the mixing stage and 

porosity at the end of mixing was estimated at 10 ± 2% depending on the mixer used for a 

given recipe [32], with a mean gas bubble size of approximately 0.05 mm to 0.3 mm [22].  

Dough temperature and water content were checked for the evaluation of the 

reproducibility between batches as both are known to affect the relaxation signal of dough 

[29, 30]. The temperature was 24.5 ± 0.5°C, and water content was 45 ± 3 g of water per 100 

g of dough. Cylindrical flasks (Ø = 50 mm, 70 mm height) were filled with 50 g of yeasted 

dough or 100 g of non-yeasted dough. A lid was placed over the flask to limit dehydration 

during measurement. Flasks were then placed in a tunnel within the magnet, equipped with 

thermal regulation set at 24.5°C. Internal tunnel temperature was monitored with 

thermocouples. MRI acquisitions were begun at approximately t= 7 min, t=0 referring to the 

end of mixing. 

Cylindrical flasks were also filled with MnCl2 solution, the concentration (1287.2 μM) 

being adjusted to obtain a T2 value close to that of bread dough, i.e. T2 = 20 ms. SE images of 

the phantom were used to normalize dough MR images to correct for inherent magnet and 

coil spatial inhomogeneities. 
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3.2. MRI device and parameters 239 

240 

241 
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A 0.2 T electromagnet scanner in open configuration (Magnetom Open, Siemens, 

Erlangen, Germany) equipped with a head coil was used to image the bread dough. Double 

GE sequences (TE1 = 4 ms, TE2 = 12 ms) were performed to assess signal loss and T2χ during 

dough proving. SE sequences (TE = 8 ms) were used to obtain local porosity. For all 

sequences, slice thickness (ST), bandwidth (BW), field of view (FOV), matrix size (N), 

number of accumulations (Acc) and repetition time (TR) were set as follows: ST = 5 mm, BW 

= 279 Hz/pixel, FOV = 128 x 128 mm2, N = 128x128, Acc = 4, TR = 300 ms. Each sequence 

lasted 2 min 33 s, and GE and SE sequences were alternated. 

3.3. Porosity map 

Assuming an initial uniform porosity at a reference time, the porosity of a voxel (i, j) 

can be estimated from its gray level during proving in SE imaging 

[18]:
init

init MGL
jiSEji ),().1(1),( εε −−=         (6) 

with ε

251 

252 

253 

254 

255 

256 

257 

258 

259 

init the initial overall porosity (εinit = 10%) at tinit = 9.5 min, i.e. the time to obtain the 

first SE image, MGLinit the corresponding mean gray level computed on a reference ROI, and 

SE(i,j) the gray level in the SE image at the location (i,j). We verified that the mean value 

computed in the porosity map was concordant with the overall porosity computed from the 

total dough volume measurement. 

3.4. T2χ map 

With GE1(i,j) and GE2(i,j) as the GE images at TE1 and TE2, the T2χ map can be defined 

as follows: 

)
),(
),(ln(

)(),(

2

1

12
2

jiGE
jiGE

TETEjiT −
=χ          (7) 260 
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In fact, the exponential signal decay constant was estimated from two points only. Prior 

simulations showed that TE

261 

262 

263 

264 
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266 

1 = 4 ms and TE2 = 12 ms were suitable for a 0.2 T magnetic field. 

3.5. Bubble size estimation algorithm 

The algorithm principle was to combine T2χ and porosity maps to estimate local bubble 

radii. Indeed, from Eq. (4) we can extract bubble radii (r) and compute the map of radii r(i,j) 

according to Eq. (8):  

)1
),(),(

),(ln(.
),(

1),(),(
22

−
−

−=
jiTjiT

jiK
ji

jirjir
init

break
χχλ

         (8) 267 
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rbreak, K, λ and T2χinit were determined for each pixel from the porosity map using Eq. (5).  

T2χ was simulated from a set of several bubbles, i.e. signal loss was characterized in the 

center of the image to take into account the influence of the neighboring bubbles. This local 

approach based on several voxels should result in a coherent estimation algorithm, and 

therefore r(i,j) was not directly computed pixel-by-pixel but through a 3x3 averaging mask. 

This allowed replacement of the pixel value by a local average around the pixel of interest. 

Indeed, the non-linear property of the logarithm function made the subsequent use of an 

averaging on the map of radii impossible. Prior to computation of Eq. (8), we therefore 

applied the mask on rbreak, K, λ, T2χ and T2χinit maps. 

 

4. Results 

4.1. Non- yeasted dough 

The porosity map of the non-yeasted dough was computed according to Eq. (6) and is 

represented in Fig. 4. The largest bubbles were easily detectable and the rest of the dough was 

quite uniform and dense. Mean porosity on a large reference ROI was found to be 12.6%. The 

corresponding mean value in the T2χ map computed on the same ROI was 12.9 ms. Compared 
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with simulation results (T2χ = 13 ms and ε = 12.5 % in Fig. 2.a), these two values were in 

good agreement. The T
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2 value of bread dough used for simulation and the general hypothesis 

of regularly spaced bubbles were justified to reach a good order of magnitude. The bubble 

size estimation algorithm was then applied to obtain the map of radii depicted in Fig. 5. The 

large bubbles were even more clearly revealed due to increased contrast compared to the 

neighboring environment. Fig.5 also demonstrates localized regions of smaller bubbles which 

were hardly visible in the porosity map (Fig. 4).  The map of radii depicted different regions 

corresponding to different bubble sizes. Smaller bubbles can be seen surrounded by larger 

bubbles, themselves surrounded by larger bubbles and so on.  This radius evolution was 

spatially reproduced on the dough area, leading to different visible networks. The histogram 

representing the number of pixels according to their estimated radii extracted from the 

reference ROI is presented in Fig. 6. A Gaussian probability density function was found to fit 

well the experimental distribution of bubble size, as shown in Fig. 6 (σ = 0.062, μ = 0.37, R2 = 

0.991 with TableCurve2D® software, Jandel Scientific, version 5). The mean value computed 

in the reference ROI of the r(i,j) map was r = 0.38 pixima. As detailed in the discussion 

section, estimated radius values were subjected to certain limits inherent to the method and 

values were not systematically significant. However, they can provide relative information 

about spatial differences (for a given protocol) and between different protocols of dough 

production. 

4.2. Dough during proving 

As in the previous experiment with the non-yeasted dough, r(i,j) was then computed for 

dough during proving. The three first maps at t1 = 7 min, t2 = 12.5 min and t3 = 18 min after 

completing mixing are represented in Fig. 7 on the same scale as Fig. 5. Histograms were 

computed at t1, t2 and t3, taking the same reference ROI occupying almost all the dough at t1 

(Fig. 8). As in the non-yeasted dough, distributions were Gaussian and shifted to the higher 
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radius during proving, consistent with the growth of bubbles under 

desolubilization/vaporization of CO
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329 
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2, ethanol and water vapor. The average radius estimated 

from the algorithm as a function of the proving time is also presented in Fig. 9. Bubble size 

distribution was slightly shifted compared to non-yeasted dough, which may be attributed to 

the start of fermentation between the end of mixing and the first MRI acquisition (see 

Materials and Methods section). At t2, modification in the dough structure was clearly 

observed (Fig. 7.b). Groups of bubbles were growing and were identifiable from t1 to t3 and 

also for longer proving times. The overall networks, i.e. virtual limits between regions of the 

same radius, seemed to be almost unchanged in the horizontal direction during proving while 

bubbles underwent overall growth. From Fig. 7 and a complete set of maps of radii, dough 

evolution seemed to be related to the starting structure of the dough. Image processing 

methods on maps of radii would be useful for tracking purposes. 

5. Discussion 

In this section, we first discuss the simulation of T2χ and the behavior of the signal. We 

then explain the limitations of the method. Finally, results on non-yeasted dough and dough 

during proving will be analyzed in the light of this previous discussion. 

5.1. Simulated evolution of T2χ 

Simulation results concerning T2χ as a function of bubble radius (Fig. 2) were original 

and to our knowledge have never been reported in the literature. Several studies have been 

undertaken to study NMR signal dephasing due to the presence of mesoscopic field 

inhomogeneities in the static dephasing regime [25, 26]. The relaxation constant was thus 

found to be independent of cylinder or bubble radii. From the free induction decay due to 

randomly distributed spherical particles, Yablonskiy [33] derived an expression for the 

relaxation rate R2
# defined in section 2.1: 
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Eq. (9) explains T2χ shortening with increasing porosity (Fig. 3.a) or main magnetic 

field (Fig. 2.b), and the values are compatible with our present study. Indeed, if ε = 12.6%, 

Eq. (9) resulted in T2
*
 = 1 / (R2 + R2

#) = 12.2 ms and T2χ = 13 ms in our simulation.  

We demonstrated three levels for T2χ observation. First, the plateau in Fig. 2.a indicated 

that, for a given porosity (or density), T2χ values are independent of bubble radii. This 

confirmed all the results encountered in mesoscopic scale studies. We showed that T2χ was 

dependent on radius in a certain range (macroscopic scale) and thus constitutes a sensitive 

indicator of the medium alveolar structure. The second plateau occurred for large bubbles 

compared to voxel size. T2χ was higher for larger bubbles because the signal from an air voxel 

could not decrease with TE due to the almost total absence of signal. In fact, heterogeneity 

was high in the ROI corresponding to the second plateau with complete air voxels, whereas 

for the first plateau each voxel contained small air bubbles. There were therefore more 

susceptibility interfaces for small bubbles, thus explaining the lower T2χ values. At a constant 

radius, an increase in porosity means a reduction in the center to center distance (ccd) and 

thus intravoxel dephasing is greater, as described in [27] and in Eq. (1), explaining the 

decrease of  T2χ with porosity. 

Simulations at 1.5 T (Fig. 2.b) showed the potential of this method since there was a 

greater difference between T2χinit values for low porosities and an augmentation of the K 

factor. By using Eq. (8) to reveal bubbles, the estimated radius dynamic is thus enlarged and 

the algorithm would be more stable. Furthermore, a major gain in signal at high field would 

make better resolution possible. This is valuable for the study of the very small bubbles 

present in non-yeasted dough. Indeed, Bellido et al. reported a mean value of 100 μm in wheat 

flour dough [16].  
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Fig 2.a illustrates some drawbacks of the method. T2χ is the same for small radii 

constituting the first plateau. Bubbles within this range cannot be discriminated. Fortunately, 

the process of dough proving with the growth of bubbles and the increase in local porosity 

was suited to this sensitive domain. Due to the shape of the T2χ curve (Fig. 2.a), computation 

of r(i,j) according to Eq. (8) worked well in the dynamic area between the two plateaux. 

Although bread dough structure is highly heterogeneous (gaseous phase and dough 

films included), the model was quite accurate in terms of signal loss. A more accurate virtual 

description of the object will undoubtedly make possible the calculation of values of greater 

accuracy. In fact, the expansion of bubbles rapidly becomes heterogeneous and anisotropic 

(non-spherical and distorted bubbles) due to mechanisms of coalescence [23]. However, using 

the estimation algorithm, it is possible to distinguish between bubbles according to their 

radius. At this point, r(i,j) values have to be considered as variables related to length rather 

than a physical variable. Babin et al. [22] found dough structures were heterogeneous and 

dependent on the recipe, with bubble radii in the range 0.05-0.3 mm at the very beginning of 

dough proving. Maps of the radii in the present study were thus thought to be overestimated.  

5.3. Non-yeasted dough and dough during proving 

There is a real value in combining SE and GE sequences to assess local porosity and 

signal loss and thus deduce bubble radii. A porosity map (Fig. 4) provides important 

information (density is a criterion used by bakers to distinguish between bread recipes or to 

evaluate defects originating from the flour or the different stages in bread making) but a map 

of radii (Fig. 5) supplements the scientific understanding of evolution of the dough structure, 

from small to large bubbles. Additionally, the field of view available with MRI offers the 

possibility of assessing macroscopic heterogeneities (scale of a few millimeters to 

centimeters) in samples of realistic size comparable with industrial practices. Several image 
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processing techniques based on this map could be developed to classify or segment bubbles. 

The histogram presented in Fig. 6 shows a Gaussian distribution of bubbles. Bellido et al. [16] 

used microcomputed tomography on dough and found a log-normal distribution. These first 

results were encouraging for the study of non-yeasted bread dough. 

Bikard et al. [23] analyzed the foaming phase during proving using 3D simulation. They 

characterized the influence of parameters such as dough viscosity, kinetics or initial number 

of bubbles on the evolution of average bubble radius over time. Fig. 9 obtained from maps of 

radii at different times of proving is in good agreement with their results while looking at 

curve shapes. From a quantitative point of view, it was hard to compare as values were highly 

dependent on the above parameters that we could not quantify in our experiments.  

Using digital image analysis, Rouille et al. [34] showed that reduction in the number of 

small bubbles (Ø < 1 mm) was proportionally balanced by an increase in the number of larger 

bubbles ( 1 mm < Ø < 2 mm) during proving. This is also obvious from Figs. 7-8. 

Image analysis-based methods [17, 20] showed limitations due to small sample size 

(magnetic resonance microscopy) and long imaging times. Even for small pixel size (115 

μm), resolution is not sufficient to detect small bubbles at the beginning of the proving time 

[34]. Susceptibility-based methods are able to reveal information at a lower scale due to the 

expansion of field inhomogeneities and associated signal loss. 

6. Conclusion 

Because they arise from object-dependent field inhomogeneities, magnetic susceptibility 

effects can be a source of quantitative data to characterize alveolar products such as bread 

dough. While classic image analysis techniques are limited by image or temporal resolution, 

this new method combines local porosity, local signal loss and simulation predictions to 

assess bubble radii which can be smaller or the same order of magnitude than the voxel. 

However, fully quantitative accuracy of the method would suppose comparisons between 
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different techniques or the use of a test object with known geometry and susceptibility. 

Moreover, further simulation studies with more realistic object geometries to mimic bread 

dough would make possible more quantitative results. Growth and distribution of bubbles 

were observed during proving. Maps of radii gave information about dough structure and 

evolution. The principle of the estimation algorithm was shown at 0.2 T and simulations 

predicted greater distinction between bubble sizes at 1.5 T, especially for low porosities 

which are also encountered at key stages in breadmaking.  
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Figure 1: Overview of simulation framework. Field inhomogeneities map was dependent on 

object parameters (r, ccd, ∆χ, Nb) and was an input of MRI simulator SIMRI. T2χ was 

determined for each object from ROI in GE simulated images at different TE from 4 to 12 ms. 

Figure 2: T2χ value as a function of bubble radii at different porosities with sigmoid fitting 

curves. a) At BB0 = 0.2 T. b) At B0B516 
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 = 1.5 T. Three stages were identified: an initial plateau 

where T2χ was only dependent on porosity (density), a rapid increase in T2χ value and a 

second plateau corresponding to high air proportion in voxels. 

Figure 3: a) K and T2χinit as functions of porosity. b) rbreak and λ as functions of porosity. 

Second order polynomial relationship with porosity was found for each simulation parameter. 

Figure 4: Porosity map of non-yeasted bread dough. Large bubbles can be distinguished as 

high-value pixels. The squared reference ROI is represented. 

Figure 5: Map of estimated radii of bubbles in non-yeasted bread dough. Contrast 

enhancement between the different regions of bubble sizes highlighting dough structure with 

small bubbles surrounded by larger bubbles, etc.   

Figure 6: Histogram with Gaussian distribution (σ = 0.062, μ = 0.37, R2 = 0.991) of the non-

yeasted dough computed on the reference ROI with a 0.02 pixima interval. 

Figure 7: Map of estimated radii of bubbles in bread dough during proving. a) At t = 7 min b) 

At t = 12.5 min c) At t = 18 min showing distribution and growth of bubbles. 

Figure 8: Histograms extracted from maps of radii showing distribution of bubble sizes at 

three proving times. 

Figure 9: Average estimated radius as a function of proving time. 
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