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Abstract. The stable population theory is claskicgbplicable to populations in which there
is a maximum age after which individuals die. Demnst (1972) extended this theory to
infinite Leslie matrices, in which the longevity ioidividuals is potentially infinite. However,

Demetrius had to assume that the survival prolighpkr time step tends to 0 with age. We
generalise here the conditions of application efgstable population theory to infinite Leslie

matrix models and apply these results to two examphcluding or not senescence.
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1. Introduction

The Leslie matrix is a classical model for popolatprojection (Caswell, 2000),
characterised by asymptotically exponential groestld by the convergence to a stationary
age distribution, as a result of the spectral dgamsition inthe Perron-Frobenius theorem
(e.g. Sykes, 1969; Seneta, 1981). The Leslie matagel has been used in general under the
assumption that all individuals die before a maxiagen. The projection matrix is then an
nxn matrix. A less restrictive assumption leading he tsame representation is that all
individuals stop reproducing at ageolder individuals playing no role in populatiorogth.
However, in natural populations, the evidence &rescence is often scanty and controversial
(Gaillard et al., 1994). This has led Usher (1972) to defineagen at which demographic
performances, i.e. both survival and fecunditypiéite. Age classn is then made up of
individuals aged or more. The underlying population model can lpresented either by an
nxn matrix with a survival term in the lower corner tbe matrix or by an infinite matrix
(cf. example 1 in section 5).

Although a model similar to an infinite Leslie matmodel is frequently used in the
framework of the stable population theory basethen_otka equation (see e.g. Mertz, 1971),
the mathematics of such a model have only beenidenesl by Demetrius (1972). Infinite
nonnegative irreducible matrices do not necessdrdye the same properties as finite
nonnegative irreducible matrices (e.g. Vere-Jod€§,7, 1968). To show that the classical
Leslie matrix results hold for an infinite matri®emetrius used an analogy of the classical
Perron-Frobenius theorem for infinite matrices (Krand Rutman, 1948) under restrictive
assumptions on the matrix coefficients. In paracuDemetrius' results do not apply to the
infinite matrix form of the Usher model. Obvioushis leaves some hope of getting more
general results for infinite Leslie matrices. Thargmse of this paper is to provide such

results, based on spectral properties of linearatpes less stringent than those used by



Demetrius. We also develop conditions under whiahnious quantities of demographic
interest are defined and provide illustrations of cesults through two examples. The last
example echoes a variety of studies that concewltiat evidence for a plateau in mortality or
at least mortality deceleration with age (e.g. dPet & Curtsinger, 1998; Vaupel et al. 1998;
Partridge & Mangel, 1999). However, to our knowledgobody ever considered how to
produce population projections under such a meytacheme. As convergence of the
mortality (or equivalently, survival) probabilityo tthe plateau value is progressive, it is
impossible to set up a model with a finite humb&rage classes, albeit using an ad hoc
truncation. If an infinite matrix is used, the riésupy Demetrius (1972) do not apply since too
restrictive. Example 2 covers this case and prevaelear rationale for finite dimensional
truncation. The approach proposed makes it possil@asily implement in a reliable fashion
any model with a mortality plateau reached asyngaby with age. We finally discuss the
bearing of our results on the study of mortalityceleration and mortality plateaus (e.qg.

Pletcher and Curtsinger 1998; Vaupel et al. 1998).

2. A broad generalisation of Demetrius’ (1972) redts
Like Demetrius (1972), we denote as:
a; the net fecundity of a female aged.e. the (average) number of females
aged lat the next time step with a mother agedherei is a positive integer;

by the probability of survival of a female from aige® agei +1.

The infinite Leslie matrixM is then equal to:



a a, a |
h O 0
0 b :
M= .
o -. 0
0 ¢ . b
L O .

We denote adv,, the nxn Leslie matrix obtained by truncatihg after agen:

[ @y v ap-p 8y |

b, O 0 0
Mn: 0 bZ

: 0

0 0 b, O

We also denote axs(Mn) the spectral radius of the matri¥,,, i.e. the maximum modulus of
the eigenvalues.

As Demetrius (1972), we assunfe< g <o and O<h < 1for everyi. We also
assume throughout that the greatest common dieisthre indices of the positivea, equals
1, which we think is a biologically unrestrictivesumption.

Demetrius (1972) demonstrated that the ma#idbehaves as a finite Leslie matrix

under the following assumptions :
(i) & >0 for infinitely manyi and the sequenc(ea,- )i is bounded from above

(i.e. supg <), and
i

and (i) lim @ =0.

| > ©

The latter condition appears as quite restricawel prevents to use these results when
mortality stabilises to a positive plateau with reesing age. More general sufficient

conditions (Appendix 1) are as follows. If:



(i) & >0 for infinitely manyi and the sequenc(ea,- )i is bounded from above

(i.e. supg <), and
i

and (iv) there is such thatim supb, < r( M n) ,

i - o
then the operator associated with the maklfixasymptotically behaves as a finite Leslie
matrix (Theorem 1 in Appendix 1).

The assumption (iv) is more general than (ii) andds a marked improvement. Indeed, it
makes the standard results of stable populatiooryhealid in particular for the following
infinite Leslie matrices :

— the infinite counterpart of the Usher matrix (ewde 1 in Section 5);
and — populations whose survival probabilities @ge to a plateau under mild
conditions (example 2 in section 5).
It should also apply to most demographic schemesthven they include a mortality
deceleration or not (Carey et al. 1992; Mueller &R, 1996; Pletcher and Curtsinger 1998;
Vaupel et al. 1998; Rose et al. 2002; Steinsalb2&tyer et al 2007). Actually, condition

(iv) is obviously satisfied if for some, the matrix M, has a leading eigenvalue (i.e. spectral

radius) r(Mn) greater than 1. If on the contrasyjpr(Mn) <1, condition (iv) is met ifl
n

remains less tham(Mn)—g for somen and £ >0 and for all but a finite number of a

condition much more general than (ii).



3. Demographic quantities of interest

Asymptotic exponential growth, stable age distribution, reproductive values
Under conditions (i) and (iv), Eg. (Al1.1) in Apmbx 1 tells us that the matriM has
asymptotic properties similar to those of finiteslie matrices (Caswell, 2000). Indeed, when

time & tends to infinity:
g g
M x=r(M) (u,x)v, (1)

where = means asymptotic equivalence lifF, ndrm for everyk > 0 (cf. notation in

Appendix 1). This signifies that for evernk > (nd x=(xi) ) such that

2k 2k 6 6 _
ZI ‘ Xi‘ < o, ZI ‘ (M xj -r(M) (u,x) V.| converges to 0 when timé@ tends to
i=1 i=1 i

infinity. In Demetrius (1974)'s words, this meahattunder this norm, M is strongly ergodic.
In other words, our results show that under ourddamns, by restricting the vector space on

which the matrix M acts — for somk > , Qo those vectorsx = (xi )i 12 such that

[ee]

ZI ‘ xi‘ < o — M has asymptotic properties similar to those ottdihieslie matrices. The
i=1

vector v = (Vj)., with an infinite number of components, gives #table age distribution.
j

Similarly, the vectoru = (uj), gives the reproductive value of age classe¥hese two
j

o =k ‘ U-‘
infinite vectors are such that for eveily > OZ| ‘vi‘ <o and sup —k'
i=1 i=12.. i

< 0

(Appendix 1).



g
The speed of the convergenceM—); to (u,x) v is then asymptotically described by the
r(M)

r(M)
r(S)

damping ratiop = (cf. notation in Appendix 1): the bigger this mgtthe quicker the

convergence asymptotically.

Rel ationship with stable population theory
Is there an equivalent of the characteristic aqoan infinite Leslie matrices? We are
not aware of any generalisation of the characterefuation method for infinite matrices.
This constitutes another evidence of the differebetveen the spectral theory of infinite
matrices and that of finite matrices. We show irpApdix 2 that such an equation:
o= fa =1, )
i=1
permits to determine the leading eigenvalue r(M) of an infinite Leslie matrix satisfying
i-1
() and (iv), where/; =|_|h , with /4 =1. Following Murray (1991), we call Eq. (2) the
i=1
discrete time version of the Lotka equation.
Even if Eg. (2) has a priori no bearing on eigengal ofM other than the dominant one, it

resembles the characteristic polynomial of finitatnces. Based on it, one obtains, as

classically for finite Leslie matrices (e.g. Caswel000, or Lebreton, 1996):

U = Al U z Cia; A J andv, =/, A0 vy, for everyi = 2, whereu andv are the
j=i

vectors defined in Theorem 1 (cf. Appendix 1).



Generation time and net reproductive value
We prove in Appendix 2 that, under our conditiofpsapd (iv), we can differentiate the
function @ in a neighbourhood of =r(M):

N =>-it;a D <cw,
i=1

: = . —i T . :
Denoting T = Z| g A, we get cp'()l)z—;. The quantityT can be written as
i=1

(o] Vi (o] .
T= Z i ﬁ a, , with T<e, as a result ofz A' v, <o and (i), where A is any number
i=1 1 i=1

such that A>1 and lim supAh <r(Mn) (cf. Appendix 2). As usual (e.g. Houllier and

[ )
Lebreton, 1986)T is called the generation time and can be integdrets the mean age of

mothers at birth once the stable age distributeslieen reached.

The lifelong contribution of an individualR, :z a ¢;, or net reproductive value, is
i=1

i-1

obviously finite under (i) and limsup <1, since/; = |_| b .

i— o =1
Sensitivity of population parameters to variation in individual parameters
Finally, under further conditions, unlikely to bémiting for infinite Leslie matrices,
sensitivity analysis results identical to thosdimte dimension (e.g. Caswell, 2000, Chapter
9) are available (Gosselin, 1997, Submitted). Hwstance, using the terminology in
Demetrius (1989), the sensitivity of the populatiemel dominant eigenvalue (M)

concomitant to the variation in the individual degraphic parameted m j of the (i, j) -

dr(M) _ 4V
dm’j (u,v)

entry of matrixM is equal to . Another example is when all fecundities (resp.



survivals) vary proportionally: the sensitivity ¢fie dominant eigenvalue(M) to such

L&Zav Zbu]+lJ

=
changes i is—L=1 (resp. v

v ). A final application is the situation when there
is senescence — i.e. no reproduction above a maxiage bound — and survival rates are

disturbed only above the senescence age: the aleow@med results show that the

asymptotic growth ratg M) remains constant under such perturbations, amit@fi

dimensional echo of evolutionary considerationstlo& non-selection of genes that would
have an impact only on survival after senescence Réetcher & Curtsinger, 1998; Partridge
& Mangel, 1999). The question is then to determiteether such perturbation schemes are
biologically and evolutionarily realistic (Pletch& Curtsinger, 1998; Partridge & Mangel,

1999).

4. Convergence of the dominant value of finite truocations of the infinite Leslie matrix

While suppressing a maximum age bound may haveagseffect on the model results (e.g.
Lande, 1988), the numerical manipulation of infniteslie matrices, e.g. for calculating the
asymptotic growth rate, will require to reintrodus@ne kind of maximum age bound at the

computer implementation stage. Then, under gerwmmatlitions which are met under the

conditions of Theorem 1 in Appendix 1im r( )—r(M) (cf. Seneta, 1981), i.e. the

n- o
eigenvalue of theax n truncated matrix converges to the infinite mateading eigenvalue
when n tends to infinity. Once a good approximahi(;h’ln) of A =r(M) has been obtained

— as e.g. in Example 2 of section 5 —, the cornedipg eigenvectors andv can be easily
calculated from the formulas in section 3. Furthesults can be found in Gosselin (1997,

Appendix 7).
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5. Some examples

Example 1
The Usher model with stabilisation at agef net fecundity (with valua >0) and of

survival (with valueb > 0) has both a finite matrix form, i.e.

fa a, ... a;_; a|
b, 0 .. 0 0
M= 0 b : . ,
. e 0 0
0O ... 0 b,4 b
and an infinite matrix form, i.e.
I a, a a |

M = b,
0 0O b O

We here consider this last representatMrobviously satisfies (i). The spectral radius af th

truncated matricesMy (for N>n), Ay =r(My), increases withN and we denote

b" = supAy . We then havé' >b, as can be proved from the Lotka equation asstiatth
N

My:
n-1 ~N-1 . _
2 bbby AT+ Z by by ...by b AT =1,
1=n

i=1

which implies :

N-1
> bby..b,_ b Ma T = > — <1. (3)
i=n i

11



N-1 .
If b’ <b, the term Z )l_ would obviously tend to infinity wittN, and Eqg. (3) would not

i
i=n 7'N

be met for everyN. Henceb’ > b, and condition (iv) holds for soni¢ From Theorem 1 in

Appendix 1 and section 3, we get, for ay 0, that when tim&? tends to infinity:

M’ x= r(M)H(u,x)v,
where = means asymptotic equivalence ly{F, ndrm; the generation timd,, and the
lifelong contribution of an individuaRy, are well defined (providetd< fbr Ry). Since these

guantities are not simpler than above, we referdagler to section 3 for the expressions of

these quantities.

Example 2

Infinite matrix models are relevant in all casesevehsurvival varies with age in a complex
fashion, in particular when there is a senescetredse in survival. Most empirical studies
consider a simple function of age such as the se/kgit of a linear or quadratic function of
age. The survival will then decrease to 0, and Deuse(1972) result on infinite matrices is
sufficient to handle this case. However, it mayrim@e realistic to consider that survival
decreases to a plateau (Pletcher and Curtsing®&; Y@@ipel, et al. 1998; Steinsaltz 2005).

Let us consider for instance an example in whiehathnual survival probabilityy. varies

between 0.6 and 1 according to the inverse logit @fiadratic function of age, denoted as
Survival increases from prime age to mature femaled then decreases progressively to
reach a senescent plateau (Figure 1).

As survival reaches the senescent plateau valuenlygsymptotically, the population matrix
model is necessarily infinite. Les us assume marethat reproduction starts at age 2, with a
net fecundity equal to 0.35 female aged one pealemmged 2 or more. A version of the

model truncated at age n either considers thatdilliduals die at age n (Leslie matrix) or

12



that survival stabilizes at its current value (Usimatrix). The Lesliel\/l5 and Ushe!u5

matrices for n=5 are given below:

[0 035 035 035 035] [0 035 035 035 035]

087 0 0 0 O 087 0 0 0 O
M_=| 0 08 0 0 0 |,U O 08 0 0 O
O 0 08 0 O O 0 08 0 O

0 0 0 09 O | |0 0 0 090 090]

The corresponding dominant eigenvalues are 1.00d@3Ld582, respectively. Since with the

notation of section 2ve havelimsup bi =06 < r(M5) =1.0073, condition (iv) holds. Our

i o oo
results ensure that the dominant eigenvalues ofvibetypes of matrices converge to that of
the infinite matrix when the order of truncatiorcrieases. The result is straightforward for

matrix M, , based on Section 4. The result also holds forixnat,,, based on a slightly

different proof on the same lines (unpublished ltssuThis convergence is illustrated in
Figure 2. At order 43 the two eigenvalues are nigaly indistinguishable up to 9 decimals,

and equal to 1.163342945.

6. Discussion

Our work was motivated by the possibility of aadistinuity between the asymptotic
behaviour of finite, truncated matrix models — udihg for example a maximum age or
assuming a constant survival rate above a givenbaged—, and their infinite counterpart.
Our results show that this is not the case. Thdged prove that the stable population theory
still holds with an infinite number of age classesler specific conditions (points (i) and (iv)
in section 2). These conditions are much more gériban those proposed by Demetrius
(1972) as they do not require that the age-spesifieival probability tends to 0 with age. In

particular, they are met by the infinite matrix sien of the Usher matrix. Our approach also

13



provides a reliable way of assessing the effetturfcation of an infinite matrix model on the
population growth rate. Our results show that thpypation quantities involved in the stable
age theory are defined in a consistent fashiorhéninfinite matrix formulation (section 3)
and are the limits of the same quantities obtaunadkr finite truncation (section 4). Similar
results may also be obtained for stage-classifaallation matrices (Caswell, 2000) with an
infinite number of stages. However, due to the ntmn@plex shape of the matrices, specific
checks and conditions have to be developed for eas.

We could not completely match our results with tho§ Demetrius (1983; Theorems 5.0 and

5.1). Under the conditiona, =0, a, =a>0,i =22, and ®(1) = Zfiai>1, Theorem 5.0 in

i=1
Demetrius (1983) shows the existence of a uniqudiequm state. It can actually be shown
that the conditions of Theorem 5.0 in Demetrius8@9mply our conditions (i) and (iv) (cf.
the proof of Theorem 5.0 in Demetrius 1983): thisarem must therefore be considered as a

special case of our Theorem 1 in Appendix 1. Theense holds whena, =0,

a=a>0i22,andd() = Zfia,:l: then, Theorem 1 in Appendix 1 is a special cdse o

i=1
Theorem 5.1, (1), in Demetrius (1983). However, thsults of both theorems are then
surprisingly different, since our results imply s &eller (1968, p. 330-331) — a unique
equilibrium state which is iterparous in the terofs Demetrius (1983, p.734), whereas
Demetrius (1983, Theorem 5.1, (1)) gets two equdijbone iterparous, one semelparous.
Actually, what is most striking with the results B&metrius (1983), is the different number

of equilibrium states given by his two theorems wheplied to a matrix

14



O o w

o
o5 o -0

such thatlim supb =r <1 and ®(1) = Zfia,:l — then his Theorem 5.1, (1) applies and

i~ i=1
yields two equilibria — whereas when considering thatrix —, with r <r'<1, Theorem
r

5.0 of Demetrius (1983) applies and yields only eqailibrium.

The two examples presented in section 5 cover ptipulmodels in presence of a
mortality plateau, whether it is reached at a éimige (example 1) or only asymptotically with
increasing age (example 2). Our results would thezemake possible a general, population-
level treatment of the continuum from negligibleescence (Finch, 1998; Finch & Austad,
2001) to senescence, including the intermediate camortality deceleration and mortality
plateaus: Example 2 in section 5 treats the cas®odfality plateaus without a maximum age
bound; it would similarly be possible to handleesawhere fecundity decreases with age
without a maximum reproductive age. We expect theselts will encourage the use of
realistic survival variation with age of the typensidered here.

Our main result — Theorem 1 in Appendix 1 — maygbeeralised to multisite Leslie
matrices (Lebreton, 1996) or to frailty models,arporating a finite number of demographic
profiles (e.g. Vaupel & Yashin, 1985; Vaupel & Car&993), with an infinite number of age
classes. Then, the same kind of results as inose8tiand appendices 1 and 2 apply if we

consider, instead of conditions (i) and (iv), tb#dwing two conditions:

(") the sequenc(e HA|H )i is bounded (i.esupHAIH < o ), and
[

15



(iv)) there isn such thatim supH B H < r( Mn) :

| - o0
where A and B, are sxs matrices corresponding respectively to the repcdn and

dispersal of new-borns from individuals ageahd to the survival- and dispersal in the case
of multisite models — of individuals agedwheres is the finite number of sites or frailty
groups. This could encourage the population-lewalgionary analysis of two of the
hypotheses identified by Vaupel et al. (1998) foortality deceleration: i.e. mortality
correlation and heterogeneity in frailty, with \ars levels of heritability in frailty (e.g.
Ducrocq et al. 2000). Generalisations to an irdimtumber of sites or frailty groups would
require more specific approaches. Similarly, theorporation of dependences between
individuals, the history of individuals or individlsenvironment interactions — other potential
classes of explanations for mortality deceleratmoposed by Vaupel et al. (1998) and
Partridge & Mangel (1999) — would require the useviarkov chain models (Gosselin &
Lebreton 2000; Gosselin, 2001; Lebreton et al. 200 ore complicated stochastic models.
The inclusion of an infinite number of age classethese models would also require further

developments.

Appendix 1. Spectral decomposition of the infinitd_eslie matrix model
For the sake of simplicity, we use in this paper $hme notation for a matrix and for
the linear operator associated with it. A lineaemgporU on the Banach spaé&eis compact if

the image byJ of every bounded subset Bfis relatively compact, i.e. for every infinite

bounded sequenc(axn) of elements inE (i.e. there is M >0 such that for every,

16



HanE <M), we get byU an image(U xn) from which we can extract a convergent

subsequence, i.e. there are a sequence of int@gérandy in E such that

lim k,=c and lim HU xkn —yHEzo.

n- oo n- o
A linear operatotJ is quasi-compact if there exists a positive integerand a linear operator
V onE such that" -V is a compact operator amgd(V) <rg(U)", whererg(.) denotes the
spectral radius of a linear operator. The inteoéshese notions is that spectral properties of
compact or quasi-compact operators make them sigrtcloser to operators in finite
dimensional Banach spaces than non-compact opgratbose spectrum can be continuous.
Demetrius (1972) showed that under assumptiongn@) (i) in section 2, the matrix
M corresponds to a bounded and compact operatoherHilbert spacel2 made of the

2
‘ <o, Demetrius (1974) also mainly relied on the

complex sequence&xi ) such thatz ‘xi
notion of compactness to develop sufficient condsifor different kinds of ergodicity. Then,

from Krein and Rutman (1948), the operalbrbehaves asymptotically as a classical finite
Leslie matrix. We obtain more general sufficienhdibions than Demetrius (1972) based on

the notion of quasi-compactness (Sasser, 1964grratian compactness, on other Banach

spaces tha|h2, namely, as in Vere-Jones (1968) and Gosselinl(200

‘Xi‘
=SuUp——-<oo¢,

=F i F(J)

Imw){(x,)j;u(x,)j
And

L(F) ={(yj )i |0), ] =2 F]y) <oo},

17



whereF is a map on positive integgrsuch thatF(j) >0 and lim F(j) = . | (F) is the

| » o
dual space of (F). In brief, quasi-compactness corresponds to a ered&crease in the

terms inM with their row and column number than compactnass, nevertheless implies

thatM behaves in certain respects as a finite matrix.

Theorem 1. LetM be the matrix defined above. Further assume:
(i) & >0 for infinitely manyi and the sequenc(ei )i Is bounded from above

(i.e. supg <), and
[

(iv) there isn such thatim supb, < r( Mn) :

i » o
Then, for everyk > Qthe operator associated with the malfiron the Banach spadgF, )
is quasi-compact, wherg, (i) = ik, and

M=r(M)v'u+s, (A1.1)
where

r(M), the spectral radius of the operatbon |, (F, ), is real positive;
Sis a bounded operator ¢j(F, with spectral radius(S) less tharr(M) ; and

u and v are positive vectors inl (F, )and |, (F ) respectively, such that

(uv)='uv=>u v =1, Sv=0 and 'Su=0, 'u (resp. 'S) denoting the transposed
i

vector (resp. matrix) ofi (resp.S). u andv are thus eigenvectors of the matricé andM,

respectively, associated with the eigenval(i§1) .

18



Proof. The transposed matrix M, denoted by M , is:

&gy b, O -+ O
a 0 b O
tM=| P T T
g 0 - 0 h O
R

From (i) and (iv), the operatdM on |, (F, ) is bounded. From proposition 5.3 in Gosselin

(2001), '™ is  quasi-compact on I (F, ) provided r(M)>0 and

| a  (i+) | .

limsup 7+i—kh <r(M). The first condition, r(M)>0, results from the
aperiodicity ofM. As to the second conditiorM = M,, implies r(M) 2r(M,,) for everyn

(e.g. Seneta, 1981). Furthermosa;;pa,— <o implies lim ik =0 for everyk > Oand the

i | - oo

second condition reduces to limsap<r M (. Hence, under (i) and (iv), the operatdid

i > o
onl_(F, ) andM on |, (F, ) are quasi-compact. Equation (Al.1) is then a dapplication of

lemma 6.1 in Gosselin (2001).

Appendix 2. Relationship with stable population thery

Some properties, trivial in the finite-dimensioralse, raise the need of sound proofs in the
infinite-dimensional case. Such is the case foretkistence of a solution for the discrete time

version of the infinite Lotka equation. The condisoand techniques we used in Appendix 1
actually make it possible to prove that=r(M) fulfils the discrete time version of the Lotka

equation: @(A) = Z ! & A=1. Although this point is treated by Feller (1968 3B0-
i=1

19



331), when®(1) = 1, the existence ofl satisfying @(A) =1 is not obvious whem(1) < 1,

since one can hav@(l) <1 and @(1 ) = . This is why Feller (1966, p. 360-363) assumed
that such al exists to find results whea(1) < 1.

Theorem 2. Let M be the matrix defined above. Further assume @ @). Then,

denoting A =r(M), we have: @A) = Z ! & A 1=1 and @ is differentiable in a
i=1

neighbourhood oft with @'(A) = > -i 7, g A~ (") <o,
i=1
Proof. We denote ble(H) the population size in the first age class at téhehen
the initial composition of the population is sudtatt N;(0) =1 and N;(0) =0, i 22. We
also denoted =r(M), A" =r(S) and A, =r(M,) (cf. Appendix 1). We have already seen

in the proof of Theorem 1 in Appendix 1 that> A,. Now, A, satisfies the characteristic

equation of the matrixv,:

n-1 _
D lia AT =1,
i=1

i-1
where /; = |_|lq , with ¢4 =1. This implies, together withl > A,, that for every:
i=1

n-1 .
z Ei a, A_I <1.
i=1

Whence,

z ﬁi a, A_i <1.
i=1

Besides, for ever¥ > 0 chosen such that' + £ < A, Theorem 1 implies

N (6) = A"Kv, + of(1+e)’),
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Jola=2r'),
where of(*+£)°) is such thatiim © =0 for k as in Theorem 1. Busgs in e.g.

ST (e

Lebreton (1996), the very nature of the Leslie matmodel implies the following renewal

equation:

6
N,(6) = > ¢.aN (6 -i), for every6. (A2.1)
i=1

These elements combine to prove thAadatisfies:

@A) = i loa A =1, (A2.2)
i=1

We now prove formally that we can differentiate fhaction @ in a neighbourhood

of A. Indeed, consideringA >1 such thatlim supAQ <r(Mn), we can prove the same

i > o0
results as in Theorem 1, but on the Banach spgo&™ , whgre AFl(i):Ai. Indeed,

following the same line as in the proof of Theordm it is sufficient to show that

a i+1
lim su;{—'i + A—I bi} < r(M), which follows directly from conditions (i) andvjiand the
A A

i oo
condition met byA. Since the Leslie matrix model with a given idit@opulation vector

N(0) has its own asymptotic behaviour, we know by tgki(0) in the intersection of

I,(F,) and I,(A™) that the eigenvalug(M) and the eigenvectorg andu are the same

whether Eq. (A1.1) is written i (F,  ®r |,(A™). This provesz A v, <o and, given the
i=1

A .
shape of the vectar, that for everyR > a @(R) < o . From classical results about power

series,® can thus be differentiated nearas:
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N =>-it;a s <cw,
i=1
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Figure 1. Survival ratb; (y axis) as a function of age clagx-axis) in the model of Example
2. Survival increases from prime age to mature fespj@nd then decreases progressively to

1

reach a senescent plateau of 0.6, accordiry +00.6 + 0.4 x —,
1+ e0.5+0.2><|—0.01><|
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Figure 2. Dominant eigenvalu‘lsn (y-axis) of truncated Leslie (dotted line) and Usfpain

line) matrices as a function of the order of trammn (x-axis).
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