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A NUMERICAL STUDY OF VARIABLE DEPTH KDV
EQUATIONS AND GENERALIZATIONS OF

CAMASSA-HOLM-LIKE EQUATIONS

MARC DURUFLÉ AND SAMER ISRAWI

Abstract. In this paper we study numerically the KdV-top equation and

compare it with the Boussinesq equations over uneven bottom. We use here

a finite-difference scheme that conserves a discrete energy for the fully dis-
crete scheme. We also compare this approach with the discontinuous Galerkin

method. For the equations obtained in the case of stronger nonlinearities and

related to the Camassa-Holm equation, we find several finite difference schemes
that conserve a discrete energy for the fully discrete scheme. Because of its

accuracy for the conservation of energy, our numerical scheme is also of inter-

est even in the simple case of flat bottoms. We compare this approach with
the discontinuous Galerkin method.

Keywords : Kdv equation, Camassa-Holm equation, Boussinesq system, To-

pography effect, Finite Difference, Local Discontinuous Galerkin

1. Introduction

1.1. General setting. This article is devoted to the numerical comparison of dif-
ferent asymptotic models for the water waves problem for uneven bottoms. These
equations describe the motion of the free surface and the evolution of the velocity
field of a layer of fluid under the following assumptions: the fluid is ideal, incom-
pressible, irrotationnal, and under the influence of gravity. The solutions of these
equations are very difficult to describe, because of their complexity. We thus look for
approximate models and hence for approximate solutions. The main asymptotical
models used in coastal oceanography, including shallow-water equations, Boussinesq
systems, Green-Naghdi equations (GN) have been rigorously justified in [1]. Some
of these models capture the existence of solitary water waves and the associated
phenomenon of soliton manifestation [21]. The Korteweg-de Vries (KdV) equa-
tion originally derived over flat bottoms [24] is an approximation of the Boussinesq
equations, and this relation has been rigorously justified in [8, 29, 4, 18]. When the
bottom is uneven, various generalizations of the KdV equation with non constant co-
efficients (called KdV-top) have been proposed [23, 30, 10, 26, 13, 34, 27, 12, 22, 28],
and rigorously justified in [19]. One of the aims of this article is to study numerically
these KdV-top equations, and to compare them with the Boussinesq equations over
uneven bottom. The KdV equation on flat bottom can be numerically solved by
using finite difference schemes [31, 35], or discontinuous Galerkin schemes [32]. It
is treated with finite differences in [6] by using a Crank-Nicolson relaxation method
in time introduced by Besse-Bruneau in [2] and justified by Besse in [3]. Our finite-
difference scheme is inspired from these earlier works. We propose a modification
so that the numerical scheme conserves a discrete energy for the fully discrete

1
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scheme (in space and time). We also compare this approach with the discontinuous
Galerkin method of [32].

The generalization of the KdV-top equation to more nonlinear regimes (related
to Camassa-Holm [5] and Degasperis-Procesi [9] equations) contains higher order
nonlinear dispersive/nonlocal balances not present in the KdV and BBM equations.
In 2008 Constantin and Lannes [7], rigorously justified these generalizations of the
KdV equation in the case of flat bottoms . They proved that these equations can be
used to furnish approximations to the governing equations for water waves. These
Camassa-Holm (CH) equations on flat bottom can be numerically studied by using
finite difference schemes [15, 16, 7, 17], or discontinous Galerkin schemes [33]. In
2009 S. Israwi [19], investigated the case of variable bottoms in the same scaling
as in [7]. He derived a new variable coefficients class of equations which takes into
account topographic effects and generalizes the CH-like equations of Constantin-
Lannes [7]. In the present article, we find many finite difference schemes for these
new models, so that the numerical scheme conserves a discrete energy for the fully
discrete scheme (in space and time). Therefore, we compare numerically these
models with the Green-Naghdi equations for a flat bottom. We also compare this
approach with the discontinuous Galerkin method [33].

1.2. Presentation of two-ways models : Boussinesq and Green-Naghdi
equations. Parameterizing the free surface by z = εζ(t, x) (with x ∈ R) and the
bottom by z = −1 + βb(α)(x) (with b(α)(x) = b(αx)), one can use the incompress-
ibility and irrotationality conditions to write the classical adimensionalized water
waves in terms of a velocity potential ϕ associated with the flow, and where ϕ(t, .)
is defined on Ωt = {(x, z),−1 + βb(α)(x) < z < εζ(t, x)} (i.e. the velocity field is
given by v = ∇x,zϕ):

(1)



µ∂2
xϕ+ ∂2

zϕ = 0, at −1 + βb(α) < z < εζ,

∂zϕ− µβα∂xb(α)∂xϕ = 0 at z = −1 + βb(α),

∂tζ −
1
µ

(−µε∂xζ∂xϕ+ ∂zϕ) = 0, at z = εζ,

∂tϕ+
1
2

(ε(∂xϕ)2 +
ε

µ
(∂zϕ)2) + ζ = 0 at z = εζ.

The dimensionless parameters are defined as :

ε =
a

h0
, µ =

h2
0

λ2
, β =

b0
h0

;

where a is a typical amplitude of the waves; λ is the wavelength, b0 is the order of
amplitude of the variations of the bottom topography; λ/α is the wavelength of the
bottom variations; h0 is the reference depth. We also recall that b(α)(x) = b(αx).

The parameter ε is often called nonlinearity parameter; while µ is the shallowness
parameter. Asymptotic models from (1) are derived by making assumptions on the
size of ε, β, α, and µ. In the shallow-water scaling (µ� 1), one can derive (ε, β and
α do not need to be small) the so-called Green-Naghdi equations (see [11, 25] for
a derivation and [1, 20] for a rigorous justification). For one-dimensional surfaces
and over uneven bottoms these equations couple the free surface elevation ζ to the
vertically averaged horizontal component of the velocity,

(2) u(t, x) =
1

1 + εζ − βb(α)

∫ εζ

−1+βb(α)
∂xϕ(t, x, z)dz
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and can be written as:

(3)


∂tζ + ∂x(hu) = 0,

(1 +
µ

h
T [h, βb(α)])∂tu+ ∂xζ + εu∂xu

+ µε
{
− 1

3h
∂x(h3(u∂2

xu)− (∂xu)2) + =[h, βb(α)]u
}

= 0

where h = 1 + εζ − βb(α) and

T [h, βb(α)]W = −1
3
∂x(h3∂xW ) +

β

2
∂x(h2∂xb

(α))W + β2h(∂xb(α))2W,

while the purely topographical term =[h, βb(α)]u is defined as:

=[h, βb(α)]u =
β

2h
[∂x(h2(u∂x)2b(α))− h2((u∂2

xu)− (∂xu)2)∂xb(α)]

+β2((u∂x)2b(α))∂xb(α).

We remark that the Green-Naghdi equations can then be simplified over uneven
bottoms into

(4)

{
ζt + [hu]x = 0

ut + ζx + εuux =
µ

3h
[h3(uxt + εuuxx − εu2

x)]x,

where O(µ2) terms have been discarded, and provided that the parameters satisfy
θ = (α, β, ε, µ) ∈ ℘, where the set ℘ is defined as

℘ = {(α, β, ε, µ) such that ε = O(
√
µ), βα = O(µ), βα = O(ε),(5)

βα3/2 = O(µ2), βαε = O(µ2)}.

In order to obtain the KdV equation (called KdV-top) originally derived in [23,
30, 10], stronger assumptions on ε, β, α and µ must be made namely that the
paramters belong to the subset ℘′ ⊂ ℘ defined as:

(6) ℘′ = {(α, β, ε, µ) such that ε = O(µ), αβ = O(ε), α3/2β = O(ε2)}.

Neglecting the O(µ2) terms, one obtains from (4) the following Boussinesq system:

(7)

{
ζt + [hu]x = 0

ut + ζx + εuux =
µ

3
(c4uxt)x,

where c =
√

1− βb(α).

2. Numerical scheme for the Kdv-top equations

In this section, attention is given to the regime of slow variations of the bot-
tom topography under the long-wave scaling ε = O(µ). We investigate several
situations satisfying the condition (6) on the parameters ε, β, α and µ.

2.1. The continuous case.
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2.1.1. The KDV-top (or original) model. The model studied in this section is the
following (ζ is the elevation)

(8) ζt + Γ1ζ +
3
2c
εζζx +

1
6
µc5ζxxx = 0,

and
Γ1ζ =

1
2

(c ζx + ∂x(c ζ)),

where c =
√

1− βb(α). We assume that (6) is satisfied without any further assump-
tions; to this regime corresponds the so-called KDV-top (or original) model (8). It
is related to the Boussinesq equations in the meaning of consistency (see below)
and it was originally derived in [23, 30, 10]. We list here some of the properties
of this model. The proof of all the results below can be found in [19]. Let us first
define two different kinds of consistency, namely, L∞ and Hs consistency.

Definition 1. Let ℘0 ⊂ ℘ be a family of parameters (with ℘ as in (5)). A family
(ζθ, uθ)θ∈℘0 is L∞-consistent on [0, Tε ] with the GN equations (4), if for all θ ∈ ℘0

(and denoting hθ = 1 + εζθ − βb(α)), ζθt + [hθuθ]x = µ2rθ1

uθt + ζθx + εuθuθx =
µ

3hθ
[(hθ)3(uθxt + εuθuθxx − ε(uθx)2)]x + µ2rθ2

with (rθ1, r
θ
2)θ∈℘0 bounded in L∞([0, Tε ]× R).

When the residual is bounded in Hs and not in L∞, we speak of Hs-consistency.
When s > 1/2, this Hs-consistency is obviously stronger then the L∞-consistency.

Definition 2. Let ℘0 ⊂ ℘ be a family of parameters (with ℘ as in (5)). A family
(ζθ, uθ)θ∈℘0 is Hs-consistent of order s ≥ 0 and on [0, Tε ] with the GN equations
(4), if for all θ ∈ ℘0, (and denoting hθ = 1 + εζθ − βb(α)),{

ζθt + [hθu]x = µ2rθ1

uθt + ζθx + εuθuθx =
µ

3
1
hθ

[(hθ)3(uθxt + εuθuθxx − ε(uθx)2)]x + µ2rθ2

with (rθ1, r
θ
2)θ∈℘0 bounded in L∞([0, Tε ], Hs(R)2).

Remark 1. The definitions can be adapted to define L∞ and Hs consistency with
the Boussinesq equations (7) rather then the GN equations (4).

For the KdV-top model (8), Hs-consistency cannot be established, but L∞-
consistency holds as shown below:

Theorem 1. Let s > 3
2 , b ∈ H∞(R) and ζ0 ∈ Hs+1(R). For all θ ∈ ℘′

℘′ = {(α, β, ε, µ) such that ε = O(µ), αβ = O(ε), α2β = O(ε2)},
we obtain the following properties :

• there exists T > 0 and a unique family of solutions (ζθ)θ∈℘′ to (8) bounded
in C([0, Tε ];Hs+1(R)) with initial condition ζ0 ;
• the familly (ζθ, uθ)θ∈℘′ with (omitting the index θ)

(9) u :=
1
c

(
ζ − 1

2

∫ x

−∞

cx
c
ζ ds− ε

4c2
ζ2 + µ

1
6
c4ζxx

)
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is L∞-consistent on [0, Tε ] with the equations (7).

Remark 2. The term
∫ x
−∞

cx
c ζ ds does not necessarily decay at infinity, and this

the reason why Hs-consistency does not hold in general. The problem of the con-
vergence of the solution of (8) to the solution of (7) remains open; numerical sim-
ulations are performed in §2.2 to being some insight on this matter.

2.1.2. The gentle model. In a first stage, we restrict here our attention to parame-
ters ε, β, α and µ such that

(10) ε = µ, β = O(ε), α = O(ε).

These conditions are stronger than (α, β, ε, µ) ∈ ℘′; we remark in particular that
under the condition (10), the model (8) can be written after neglecting the O(µ2)
terms as :

(11) ζt + cζx +
3
2
εζζx +

1
6
εζxxx +

1
2
cxζ = 0,

we keep here the term 1
2cxζ which is of order O(µ2), to obtain a conservative

scheme, and in that case, we are able to deduce an energy preserved by this model.
This model (11) will be called gentle model since it is only able to handle gentle
variations of bottom topography.

Proposition 1. Let b and ζ0 be given by the above theorem and ζ solve (11). Then,
for all t ∈ [0, Tε ], ∫

R
|ζ(t)|2 dx =

∫
R
|ζ0|2 dx.

Remark 3. With the choice of parameters (10), the model (11), is Hs-consistent
on [0, Tε ] with the equations (7), and a full justification (convergence) can given for
this model (see [19]).

2.1.3. The strong model. We consider here stronger variations of the topography,
i.e. :

(12) µ = ε, β = O(1), α = O(ε4/3).

In order to obtain model with better properties, we add terms of order O(µ2), so
that we get equation (13) :

(13) ζt + Γ1ζ + ε
3
2

(1
c

)2/3

ζ
((1

c

)1/3

ζ
)
x

+
µ

6
Γ3ζ = 0,

where, the skew-symmetric operators Γ1 and Γ3 are defined as

Γ1ζ =
1
2

(c ζx + ∂x(c ζ)),

and
Γ3ζ = c5 ζxxx +

3
2

(c5)x ζxx +
3
4

(c5)xx ζx +
1
8

(c5)xxx ζ.

It is remarked that (13) differ from (8) only up to terms of order O(µ2) under the
condition (12), indeed

3
2c
ζζx =

3
2

(1
c

)2/3

ζ
((1

c

)1/3

ζ
)
x

+O(µ2),

µ

6
c5ζxxx =

µ

6
Γ3ζ +O(µ2).
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The interest of this formulation of the nonlinear and of the dispersive term is that
it allows for exact conservation of the energy.

Proposition 2. Let b and ζ0 be given by the above theorem and ζ solve (13). Then,
for all t ∈ [0, Tε ], ∫

R
|ζ(t)|2 dx =

∫
R
|ζ0|2 dx.

2.2. The numerical case. For any function f , let us denote by fn(x) the approx-
imation of f(t, x) with t = n∆t, fn+1/2(x) the one of f(t, x) with t = (n+ 1/2)∆t
and by fi(t) the approximation of f(t, x) with x = i∆x, fi+1/2(t) the one of f(t, x)
with x = (i+ 1/2)∆x.

2.2.1. L2 conservative finite-difference schemes. We derive in the Lemma below a
spatial discretization for the following nonlinear terms

ut + upux and ut + 2f [u]ux + f [u]xu;

where, p ∈ N∗, f [u] = uxx and f [u]x = uxxx so that the finite difference schemes
conserve the discrete L2 norm.

Lemma 1. The following schemes for ut + upux and ut + 2f [u]ux + f [u]xu :

un+1 − un

∆t
+

1
p+ 2

(
D1

(un+1 + un

2
)
i
(un+1/2)pi +D1

(
(un+1/2)p

un+1 + un

2
)
i

)
,

and

un+1 − un

∆t
+ D1

(un+1 + un

2
)
i
f [un+1/2)]i +D1

(
f [un+1/2]

un+1 + un

2
)
i
,

respectively are conservatives, that is to say we have the equality :∑
i

(uni )2 =
∑
i

(u0
i )

2,

where, the matrix D1 is the classical centered discretizations of the derivative ∂x.

Proof. Taking in the above schemes the inner product with un+1
i +uni

2 , using the fact
that for all v, w ∈ Rm

(D1v, w) = −(v,D1w),

where m = dim(D1), one easily obtains :∑
i

(un+1
i )2 =

∑
i

(uni )2.

�

2.2.2. The numerical scheme of the gentle model. We choose here a spatial dis-
cretization for the gentle model (11) so that the discrete L2-norm is preserved by
the fully discrete scheme. Lemma 1 shows how to discretize the nonlinear term
3
2εζζx in a conservative way, and the third order term µ

6 ζxxx does not raise any
difficulties. For the variable coefficients linear terms Γ1ζ = 1

2 (c ζx + ∂x(c ζ)), the
situation is more delicate, we propose a special conservative discretization that
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allows a discrete version of Proposition 1, which gives the final discretization of
(11):

ζn+1
i − ζni

∆t
+
(
Dv

1

ζn+1 + ζn

2

)
i
+ ε
[1

2

(
ζ
n+ 1

2
i +

ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2

)(
D1

ζn+1 + ζn

2

)
i

(14)

+
1
2
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4

(
D1ζ

n+ 1
2

)
i
+

1
6

(
D3

ζn+1 + ζn

2

)
i

]
= 0,

where the matrices D1 and D3 are the classical centered discretizations of the
derivatives ∂x and ∂3

x, while the skew-symmetric matrix Dv
1 is as follows:(

Dv
1ζ
n
)
i

=
ci+1/2 ζ

n
i+1 − ci−1/2 ζ

n
i−1

2∆x
,

(the index v stands for ”variable coefficients”, if c = 1 one has Dv
1 = D1.) Through-

out this section, we will denote by (ζn)n∈N the unique sequence which solves (14)
for all n ∈ N. We obtain the conservation of a discrete energy (whose continuous
version is stated in Propostion 1).

Theorem 2. The L2-norm of ζn is conserved, that is,

∀n ∈ N,
∑
i

(ζni )2 =
∑
i

(ζ0
i )2.

Therefore, the finite-difference scheme (14) is stable.

Proof. Taking in (14) the inner product with ζn+1
i +ζni

2 , using the fact that D1, D3

and Dv
1 are skew-symmetric matrices, we obtain

∑
i

(ζn+1
i − ζni

∆t
ζn+1
i + ζni

2

)
+ ε

∑
i

([1
2

(
ζ
n+ 1

2
i +

ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2

)(
D1

ζn+1 + ζn

2

)
i

+
1
2
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4

(
D1ζ

n+ 1
2

)
i

]ζn+1
i + ζni

2

)
= S1(ζ) + εS2(ζ) = 0.

We show first that S2 = 0. In order to do this, we remark that

S2(ζ) =
1
2

∑
i

ζ
n+ 1

2
i

(ζn+1
i+1 − ζ

n+1
i−1 + ζni+1 − ζni−1

4∆x

)ζn+1
i + ζni

2

+
1
2

∑
i

ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2

(ζn+1
i+1 − ζ

n+1
i−1 + ζni+1 − ζni−1

4∆x

)ζn+1
i + ζni

2

+
1
2

∑
i

ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4

(
D1ζ

n+ 1
2

)
i

ζn+1
i + ζni

2

= S21 + S22 + S23;
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with a change of subscripts in S21, we get

S21 =
1

8∆x

∑
i

ζ
n+ 1

2
i−1 ζn+1

i

ζn+1
i−1 + ζni−1

2
− ζn+ 1

2
i+1 ζn+1

i

ζn+1
i+1 + ζni+1

2

+ζn+ 1
2

i−1 ζni
ζn+1
i−1 + ζni−1

2
− ζn+ 1

2
i+1 ζni

ζn+1
i+1 + ζni+1

2

=
1

16∆x

∑
i

ζn+1
i + ζni

2

[
2ζn+ 1

2
i−1

(
ζn+1
i−1 + ζni−1

)
− 2ζn+ 1

2
i+1

(
ζn+1
i+1 + ζni+1

)]
,

and we remind that

S22 =
1

16∆x

∑
i

[
ζ
n+ 1

2
i−1

(
ζn+1
i+1 + ζni+1 − ζn+1

i−1 − ζ
n
i−1

)
+ ζ

n+ 1
2

i+1

(
ζn+1
i+1 + ζni+1 − ζn+1

i−1

−ζni−1

)]ζn+1
i + ζni

2
.

Summing S21 and S22, we get

S21 + S22 =
1

16∆x

∑
i

[
(ζn+ 1

2
i−1 − ζ

n+ 1
2

i+1 )(ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1)
]ζn+1
i + ζni

2

= −S23.

Finally, we deduce that S2(ζ) = 0. It follows now that S1(ζ) = 0, which implies
easily the result.

�

2.2.3. The numerical scheme of the strong model. We recall that

Γ1ζ =
1
2

(c ζx + ∂x(c ζ)),

and

Γ3ζ = c5 ζxxx +
3
2

(c5)x ζxx +
3
4

(c5)xx ζx +
1
8

(c5)xxx ζ.

These two operators are discretized by matrices Dv
1 and Dv

3 :(
Dv

1ζ
n
)
i

=
ci+1/2 ζ

n
i+1 − ci−1/2 ζ

n
i−1

2∆x
.

(
Dv

3ζ
n
)
i

=
c5i+1 ζ

n
i+2 − 2 c5i+1/2 ζ

n
i+1 + 2 c5i−1/2 ζ

n
i−1 − c5i−1 ζ

n
i−2

2∆x3
.

These two matrices are skew-symmetric and do not modify the stability of the
scheme. We choose for the strong model (13) a fully discrete scheme, similar to the
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previous section :

ζn+1
i − ζni

∆t
+
(
Dv

1

ζn+1 + ζn

2

)
i

+ ε
(1
c

)1/3

i

[1
2

((1
c

)1/3

i
ζ
n+ 1

2
i

+

(
1
c

)1/3

i+1
ζ
n+ 1

2
i+1 +

(
1
c

)1/3

i−1
ζ
n+ 1

2
i−1

2

)(
D1

(1
c

)1/3 ζn+1 + ζn

2

)
i

(15)

+
1
2

(
1
c

)1/3

i+1
ζn+1
i+1 +

(
1
c

)1/3

i+1
ζni+1 +

(
1
c

)1/3

i−1
ζn+1
i−1 +

(
1
c

)1/3

i−1
ζni−1

4
×

(
D1

(1
c

)1/3

ζn+ 1
2

)
i

]
+
µ

6

(
Dv

3

ζn+1 + ζn

2

)
i

= 0.

Theorem 3. The discrete scheme (15) of the model (13) conserves an energy i.e

∀n ∈ N,
∑
i

(ζni )2 =
∑
i

(ζ0
i )2.

Proof. Taking in (15) the inner product with ζn+1
i +ζni

2 , using the fact that D1, Dv
3

and Dv
1 are skew-symmetric matrix, we obtain∑
i

(ζn+1
i − ζni

∆t
ζn+1
i + ζni

2

)
+ ε

∑
i

([1
2

(
v
n+ 1

2
i +

v
n+ 1

2
i+1 + v

n+ 1
2

i−1

2

)(
D1

vn+1 + vn

2

)
i

+
1
2
vn+1
i+1 + vni+1 + vn+1

i−1 + vni−1

4

(
D1v

n+ 1
2

)
i

]vn+1
i + vni

2

)
= S1(ζ) + εS2(v) = 0,

where

v =
(1
c

)1/3

ζ.

�

2.2.4. Numerical validation. Since there does not exist explicit solutions of (11) or
(13), we have chosen a high-order Local Discontinuous Galerkin (LDG) in space
and high-order Gauss-Runge-Kutta scheme in time (see [14]), in order to obtain
very accurate of implementation results, that can be used as reference solutions
to validate the finite difference method. The main advantage of finite difference
schemes are their simplicity and quickness. It also gives very good conservation of
energy. Details about the LDG method can be found in [32] (for a flat bottom),
the extension to variable bottom does not raise important difficulties. In the case
of flat bottoms, analytical solutions are well-known, and consist of solitary-waves.
Let us consider the following initial condition parameterized by c1

ζ0(x) = 2 c1 sech2(
√

3c1ε
2µ

x),

Therefore, the analytical solution for a flat bottom of (8) is equal to

ζ(x, t) = ζ0(x− c′ t),
with a real velocity c′

c′ = 1 + εc1.
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We can wonder what is the influence of the bottom for this solitary-wave. To this
aim, we consider a sinusoidal bottom

b(x) = sin(2παx).

In the figure 1, we have displayed the solution for this initial condition (c1 = 0.5)
for a sinusoidal bottom and with different models.

Figure 1. Solution of KdV equation for a sinusoidal bottom,
with gentle, strong model and Boussinesq model, for t = 0, t =
6.67, t = 13.33. The 3-D graph represents the solution for the
gentle model (11) for any time t in the case of a sinusoidal bottom.
(c1 = 0.5 β = 0.5, ε = µ = 0.1 α = 0.05)

In the tables 1, 2, 3, the L2 error has been computed for the LDG method and
the finite-difference method for a flat bottom and a sinusoidal bottom for the two
models (11), (13) presented. In these tables, the time step ∆t has been chosen
small enough so that there is no error due to time-discretization, the error comes
only because of space discretization.

In figure 2, we displayed the variation of the L2-norm for the different proposed
schemes. In this figure, we observe that the discrete energy of (14) and (15) is
conserved (the magnitude of the variations is 10−15 due to machine precision),
whereas the energy of LDG scheme is decreasing (in the figure, we see that the
variation of energy is increasing, so that the total energy is strictly decreasing).

As a final test, we propose to check numerically the accuracy of the approxima-
tion provided by the KdV-top models (11), and the strong model (13) ( we recall
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LDG, order 1
N Error Order

160 1.083e-1 -
320 2.859e-2 1.92
640 5.049e-3 2.50
1280 8.414e-4 2.59
2560 1.545e-4 2.46

LDG, order 3
Error Order

1.889e-3 -
1.489e-4 3.67
6.231e-6 4.58
4.469e-7 3.80
2.606e-8 4.10

LDG, order 7
Error Order

2.168e-4 -
8.367e-7 8.02
1.882e-9 8.80
1.328e-11 7.15
7.580e-14 7.45

Finite Difference
Error Order

2.129e-1 -
6.195e-2 1.78
1.634e-2 1.92
4.392e-3 1.90
1.100e-3 1.997

Table 1. L2 errors for the solitary-wave and flat bottom between
the numerical solution and the analytical one for t = 13.333. N
denotes here the number of degrees of freedom. (c1 = 0.5 ε =
µ = 0.1)

LDG, order 1
N Error Order

160 1.350e-1 -
320 4.469e-2 1.59
640 1.119e-2 2.00
1280 1.950e-3 2.52
2560 2.908e-4 2.75

LDG, order 3
Error Order

1.770e-2 -
2.124e-3 3.06
4.347e-5 5.61
2.460e-6 4.14
1.600e-7 3.95

LDG, order 7
Error Order

9.192e-3 -
3.247e-5 8.15
1.785e-7 7.51
7.071e-10 7.98
2.926e-12 7.92

Finite Difference
Error Order

2.395e-1 -
6.804e-2 1.82
1.743e-2 1.97
4.367e-3 1.997
1.092e-3 2.00

Table 2. L2 errors for the solitary-wave and sinusoidal bottom
between the numerical solution and a reference solution for t =
13.33 and for the gentle model (11). N denotes here the number
of degrees of freedom. (c1 = 0.5 β = 0.5, ε = µ = 0.1 α =
0.05)

LDG, order 1
N Error Order

160 2.419e-1 -
320 1.312e-1 0.88
640 4.514e-2 1.54
1280 8.523e-3 2.41
2560 1.218e-3 2.81

LDG, order 3
Error Order

8.4212e-2 -
8.751e-3 3.27
2.718e-4 5.01
8.208e-6 5.05
5.246e-7 3.97

LDG, order 7
Error Order

2.263e-2 -
3.780e-4 5.90
1.819e-6 7.70
4.460e-9 8.67
4.131e-11 6.75

Finite Difference
Error Order

4.263e-1 -
2.202e-1 0.95
7.546e-2 1.55
2.294e-2 1.72
8.924e-3 1.36

Table 3. L2 errors for the solitary-wave and sinusoidal bottom
between the numerical solution and a reference solution for t =
13.33 and for the strong model (13). N denotes here the number
of degrees of freedom. (c1 = 0.5 β = 0.5, ε = µ = 0.1 α =
0.05)

here that the strong model (13) is not fully justified mathematically, and that we
are only able to get L∞ consistency) in comparison to the Boussinesq equations
(7). The initial condition for ζ is the solitary wave (the same as previously, but
centered at x = −10), and the expression of initial condition for u in the Boussinesq
equations is given by (9). The computational domain is [−100, 100] and we have
computed the relative error for T = 50. For a flat bottom (see Fig. 3), we see that
the solutions of the KdV and Boussinesq equations differ from O(ε2). For an uneven
bottom (see Fig. 4) the relative error seems to be in O(ε2) when α = β = O(ε),
whereas it seems to be in O(ε) when β = O(1). We can see that the strong model
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Figure 2. Logarithm of variation of energy versus time for gentle
scheme (14) and strong scheme (15) for solitary-wave and sinu-
soidal bottom (c1 = 0.5 β = 0.5, ε = µ = 0.1 α = 0.05).
Finite difference and third order LDG with 640 degrees of freedom.

gives almost the same solutions as the original model 8 . We have displayed the
solution obtained for β = 0.5, ε = 0.018 and T = 50 on the figure Fig. 5. We
can see that the solution of the Boussinesq equations is non-null for a large range
of x, on the interval [−60, 40], whereas solutions of KdV models are non-null for a
smaller range [−20, 40]. And we clearly see that in this case, the strong and original
model give much better solution (relative L2 error is respectively equal to 6.4 %
and 7.4%) than gentle model (relative L2 error is equal to 62.2 %).
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Figure 3. Relative error between solutions of Boussinesq equa-
tions and KdV for a flat bottom (Log-log scale)

Figure 4. Relative error between solutions of Boussinesq equa-
tions and KdV for a sinusoidal bottom (Log-log scale). We have
considered gentle model (11), strong model (13) and original model
(8). On left α = 0.5 ε, β = 0.5, on right α = 0.5ε, β = ε.
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Figure 5. Solution obtained for a solitary-wave with a sinusoidal
bottom for β = 0.5, ε = 0.018, α = 0.5ε, and T = 50. On bottom,
you can see the solution on a reduced interval so that you can
observe the differences.
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3. Numerical scheme for the Camassa-Holm-like equations

Now we consider the generalizations to more nonlinear regimes of the KdV-top
equation derived in [7] for flat bottoms and [19] for variable bottoms.

3.1. The continuous case.

3.1.1. The original model. The family of equations on the surface elevation ζ (see
[19]) :

ζt + cζx +
1
2
cxζ +

3
2c
εζζx −

3
8c3

ε2ζ2ζx +
3

16c5
ε3ζ3ζx

+µ(Ãζxxx +Bζxxt) = εµẼζζxxx + εµ
(
∂x(

F̃

2
ζ)ζxx + ζx∂

2
x(
F̃

2
ζ)
)
,(16)

where

Ã = Ac5 −Bc5 +Bc

Ẽ = Ec3 − 3
2
Bc3 +

3
2c
B

F̃ = Fc3 − 9
2
Bc3 +

9
2c
B,

called here original model, can be used to construct an approximate solution con-
sistent with the Green-Naghdi equations.

Theorem 4. Let s > 3
2 , b ∈ H∞(R) and ζ0 ∈ Hs+1(R). Assume that

A = q, B = q − 1
6

E = −3
2
q − 1

6
, F = −9

2
q − 5

24
.

For all θ ∈ ℘ such that

℘ = {(α, β, ε, µ) such that ε = O(
√
µ), βα = O(µ), βα = O(ε),

βα2 = O(µ2), βαε = O(µ2)}

we obtain
• there exists T > 0 and a unique family of solutions (ζθ)θ∈℘ to (16) bounded

in C([0, Tε ];Hs+1(R)) with initial condition ζ0 ;
• the familly (ζθ, uθ)θ∈℘ with (omitting the index θ)

u :=
1
c

(
ζ +

c2

c2 + εζ

(
− 1

2

∫ x

−∞

cx
c
ζ − ε

4c2
ζ2 − ε2

8c4
ζ3 +

3ε3

64c6
ζ4(17)

−µ1
6
c3ζxt + εµc2

[1
6
ζζxx +

1
48
ζ2
x

]))
is L∞-consistent on [0, Tε ] with the GN equations (4).

Remark 4. If we take q = 1
12 , b = 0, i.e if we consider a flat bottom, then one can

recover the equation (19) of [7]:

ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx +

3
16
ε3ζ3ζx

+
µ

12
(ζxxx − ζxxt) = − 7

24
εµ(ζζxxx + 2ζxζxx).(18)

The ratio 2 : 1 between the coefficients of ζxζxx and ζζxxx is crucial in our consid-
erations.



16 MARC DURUFLÉ AND SAMER ISRAWI

3.1.2. The gentle model. Choosing q = 1
12 , α = ε and β = µ3/2 the equation (16)

reads after neglecting the O(µ2) terms:

ζt + cζx +
1
2
cxζ +

3
2
εζζx −

3
8
ε2ζ2ζx +

3
16
ε3ζ3ζx

+
µ

12
(ζxxx − ζxxt) = − 7

24
εµ(ζζxxx + 2ζxζxx).(19)

This model (19) is called gentle model since it is only able to handle gentle variations
of bottom topography. It is more advantageous to use the equations (18) and (19),
to study numerically the Camassa-Holm-like equations. In that case, we are able
to deduce in the following Proposition (see [19], in the case of (19)) an energy
preserved by these two models.

Proposition 3. Let b and ζ0 be given by the above theorem and ζ solves (18) or
(19). Then, for all t ∈ [0, Tε ],∫

R
|ζ|2 +

µ

12
|ζx|2 dx =

∫
R
|ζ0|2 +

µ

12
|ζ0x|2 dx.

3.1.3. The strong model. We consider here stronger variations of the parameters,
i.e. :

(20) ε =
√
µ, β = O(ε), α = O(µ).

In order to obtain a stable model, as in the KdV-scaling we add terms of order
O(µ2) . Choosing q = 1

12 , so that we get equation (21) after neglecting the O(µ2)
terms of (16):

ζt + cζx +
1
2
cxζ +

3
2
ε
(1
c

)2/3

ζ
((1

c

)1/3

ζ
)
x

−3ε2

8

( 1
c3

)1/4(( 1
c3

)1/4

ζ
)2 (( 1

c3

)1/4

ζ
)
x

+
3
16
ε3 1
c

(1
c
ζ
)3(1

c
ζ
)
x

+µ(a1/12)1/2
(

(a1/12)1/2ζ
)
xxx
− µ(b1/12)1/2

(
(b1/12)1/2ζ

)
xxx

− µ

12
ζxxt = − 7

24
εµ(ζζxxx + 2ζxζxx).(21)

where, a1/12 = 1
6c

5 and b1/12 = 1
12c. This model (21) is called strong model since

it is able to handle strong variations of bottom topography.

Proposition 4. Let b and ζ0 be given by the above theorem and ζ solves (21).
Then, for all t ∈ [0, Tε ],∫

R
|ζ|2 +

µ

12
|ζx|2 dx =

∫
R
|ζ0|2 +

µ

12
|ζ0x|2 dx.

3.2. The numerical case.

3.2.1. The numerical scheme of the model (18). In this subsection, we propose a
numerical scheme such that the discrete version of the scalar product((

1− µ

12
∂2
x

)
ζ, ζ
)
,
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is preserved as in Propostion 3. The numerical scheme used here is a simple finite
difference scheme whose final discretized version reads

M
ζn+1 − ζn

∆t
+D1

ζn+1 + ζn

2
+ εD 3

2uux
(ζn+1/2,

ζn + ζn+1

2
)

−3ε2

8
Du2ux(ζn+1/2,

ζn + ζn+1

2
) +

3ε3

16
Du3ux(ζn+1/2,

ζn + ζn+1

2
)

+
µ

12
D3

ζn+1 + ζn

2
= − 7

24
εµD2uxuxx+uuxxx(ζn+1/2,

ζn + ζn+1

2
)(22)

where

M = (1− µ

12
D2),

and (see Lemma 1 in order to justify these choice of D 3
2uux

, Du2ux and Du3ux)

(
D 3

2uux
(ζn+1/2,

ζn + ζn+1

2
)
)
i

=
1
2

(
ζ
n+ 1

2
i +

ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2

)(
D1

ζn+1 + ζn

2

)
i

+
1
2
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4

(
D1ζ

n+ 1
2

)
i
,

(
Du2ux(ζn+1/2,

ζn + ζn+1

2
)
)
i

=
1
4

(
(ζn+ 1

2
i )2 +

(ζn+ 1
2

i+1 )2 + (ζn+ 1
2

i−1 )2

2

)(
D1

ζn+1 + ζn

2

)
i

+
1
2
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4
ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2
×(

D1ζ
n+ 1

2

)
i
,

(
Du3ux(ζn+1/2,

ζn + ζn+1

2
)
)
i

=
1
5

(
(ζn+ 1

2
i )3 +

(ζn+ 1
2

i+1 )3 + (ζn+ 1
2

i−1 )3

2

)(
D1

ζn+1 + ζn

2

)
i

+
3
5
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4
×

(ζn+ 1
2

i+1 )2 + ζ
n+ 1

2
i+1 ζ

n+ 1
2

i−1 + (ζn+ 1
2

i−1 )2

3

(
D1ζ

n+ 1
2

)
i
,

for the term 2ζxζxx+ζζxxx we propose the following special conservative discretiza-
tions(
D2uxuxx+uuxxx(ζn+1/2,

ζn + ζn+1

2
)
)
i

=
(
D1

ζn+1 + ζn

2

)
i
(D2ζ

n+ 1
2 )i

+
[
D1

(
D2ζ

n+ 1
2

(ζn+1 + ζn

2

))]
i
,

or one can use the Lemma 1 to get a simple conservative discretizations of this
term.
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3.2.2. The numerical scheme of the gentle model (19). We choose here a fully dis-
crete scheme for the model (19) , similar to the previous scheme but taking into
account the topography effects: (we replace the matrix D1 by Dv

1)

M
ζn+1 − ζn

∆t
+Dv

1

ζn+1 + ζn

2
+ εD 3

2uux
(ζn+1/2,

ζn + ζn+1

2
)

−3ε2

8
Du2ux(ζn+1/2,

ζn + ζn+1

2
) +

3ε3

16
Du3ux(ζn+1/2,

ζn + ζn+1

2
)

+
µ

12
D3

ζn+1 + ζn

2
= − 7

24
εµD2uxuxx+uuxxx , (ζ

n+1/2,
ζn + ζn+1

2
)(23)

The following theorem proves that the discrete equations of the model (18) and
(19) are stable.

Theorem 5. The inner product (
Mζn, ζn

)
,

where ζn solves (22) or (23), is conserved.

Remark 5. We used the discrete stable scheme (22) for the equation (18) and (23)
for the equation (19) , but one can similarly choose a stable discrete scheme using
the spatial discretizations for the ζζxxx + 2ζxζxx found in Lemma 1. In practice,
we chose this solution, since the discrete schemes are simpler to implement in that
case.

Proof. We only prove the theorem for (23), which is the most difficult one because

of the topography effects. Taking in (23) the inner product with ζn+1
i +ζni

2 , using
the fact that D1, D3 and Dv

1 are skew-symmetric matrices, we obtain

∑
i

M
(ζn+1

i − ζni
∆t

)ζn+1
i + ζni

2
+ ε

∑
i

([1
2

(
ζ
n+ 1

2
i +

ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2

)(
D1

ζn+1 + ζn

2

)
i

+
1
2
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4

(
D1ζ

n+ 1
2

)
i

]ζn+1
i + ζni

2

)
−3ε2

8

∑
i

(1
4

(
(ζn+ 1

2
i )2 +

(ζn+ 1
2

i+1 )2 + (ζn+ 1
2

i−1 )2

2

)(
D1

ζn+1 + ζn

2

)
i

+
1
2
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4
ζ
n+ 1

2
i+1 + ζ

n+ 1
2

i−1

2

(
D1ζ

n+ 1
2

)
i

)ζn+1
i + ζni

2

+
3ε3

16

∑
i

(1
5

(
(ζn+ 1

2
i )3 +

(ζn+ 1
2

i+1 )3 + (ζn+ 1
2

i−1 )3

2

)(
D1

ζn+1 + ζn

2

)
i

+
3
5
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4
(ζn+ 1

2
i+1 )2 + ζ

n+ 1
2

i+1 ζ
n+ 1

2
i−1 + (ζn+ 1

2
i−1 )2

3

(
D1ζ

n+ 1
2

)
i

)ζn+1
i + ζni

2

+
7εµ
24

∑
i

((
D1

ζn+1 + ζn

2

)
i
(D2ζ

n+ 1
2 )i +

[
D1

(
D2ζ

n+ 1
2

(ζn+1 + ζn

2

))]
i

)ζn+1
i + ζni

2

= S1(ζ) + εS2(ζ)− 3ε2

8
S3(ζ) +

3ε3

16
S4(ζ) +

7εµ
24

S5(ζ) = 0.
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Proceeding exactly as in the proof of Theorem 2, one can show that S2(ζ) = S3(ζ) =
S4(ζ) = 0.
Using now the fact that for all u, v ∈ Rm, one has

(D1v, u) = −(v,D1u),

to obtain S5(ζ) = 0, and since M is a symmetric matrix one gets easily the result.
�

3.2.3. The numerical scheme of the strong model (21). Here again, we use numerical
scheme for the equation (21) so that the discrete quantity

(
Mζn, ζn

)
is preserved.

M
ζn+1 − ζn

∆t
+Dv

1

ζn+1 + ζn

2

+ε
(1
c

)1/3

D 3
2uux

((1
c

)1/3

ζn+1/2,
(1
c

)1/3 ζn + ζn+1

2

)
−3ε2

8

( 1
c3

)1/4

Du2ux

(( 1
c3

)1/4

ζn+1/2,
( 1
c3

)1/4 ζn + ζn+1

2

)
+

3ε3

16
1
c
Du3ux(

1
c
ζn+1/2,

1
c

ζn + ζn+1

2
)

+µ (a1/12)1/2D3(a1/12)1/2 ζ
n+1 + ζn

2

−µ (b1/12)1/2D3(b1/12)1/2 ζ
n+1 + ζn

2

= − 7
24
εµD2uxuxx+uuxxx(ζn+1/2,

ζn + ζn+1

2
)(24)

where, a1/12 = 1
6c

5 and b1/12 = 1
12c.

Theorem 6. The inner product
(
Mζn, ζn

)
, where ζn solves (24), is conserved.

Proof. Taking in (24) the inner product with ζn+1
i +ζni

2 , remarking that

(
D3(a1/12)1/2 ζ

n+1 + ζn

2
, (a1/12)1/2 ζ

n+1 + ζn

2

)
= 0,

and

(
D3(b1/12)1/2 ζ

n+1 + ζn

2
, (b1/12)1/2 ζ

n+1 + ζn

2

)
= 0.
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Using the fact that D1, D3 and Dv
1 are skew-symmetric matrix, we obtain

∑
i

M
(ζn+1

i − ζni
∆t

)ζn+1
i + ζni

2
+ ε

∑
i

([1
2

(
v
n+ 1

2
i +

v
n+ 1

2
i+1 + v

n+ 1
2

i−1

2

)(
D1

vn+1 + vn

2

)
i

+
1
2
vn+1
i+1 + vni+1 + vn+1

i−1 + vni−1

4

(
D1v

n+ 1
2

)
i

]vn+1
i + vni

2

)
−3ε2

8

∑
i

(1
4

(
(wn+ 1

2
i )2 +

(wn+ 1
2

i+1 )2 + (wn+ 1
2

i−1 )2

2

)(
D1

wn+1 + wn

2

)
i

+
1
2
wn+1
i+1 + wni+1 + wn+1

i−1 + wni−1

4
w
n+ 1

2
i+1 + w

n+ 1
2

i−1

2

(
D1w

n+ 1
2

)
i

)wn+1
i + wni

2

+
3ε3

16

∑
i

(1
5

(
(ζn+ 1

2
i )3 +

(ζn+ 1
2

i+1 )3 + (ζn+ 1
2

i−1 )3

2

)(
D1

ζn+1 + ζn

2

)
i

+
3
5
ζn+1
i+1 + ζni+1 + ζn+1

i−1 + ζni−1

4
(ζn+ 1

2
i+1 )2 + ζ

n+ 1
2

i+1 ζ
n+ 1

2
i−1 + (ζn+ 1

2
i−1 )2

3

(
D1ζ

n+ 1
2

)
i

)ζn+1
i + ζni

2

+
7εµ
24

∑
i

((
D1

ζn+1 + ζn

2

)
i
(D2ζ

n+ 1
2 )i +

[
D1

(
D2ζ

n+ 1
2

(ζn+1 + ζn

2

))]
i

)ζn+1
i + ζni

2

= S1(ζ) + εS2(v)− 3ε2

8
S3(w) +

3ε3

16
S4(ζ) +

7εµ
24

S5(ζ) = 0.

where,

v =
(1
c

)1/3

ζ, w =
( 1
c2

)1/4

ζ.

�

3.2.4. Numerical validation. We consider the same initial condition as for KdV
equation:

ζ0(x) = 2 c1 sech2(
√

3c1ε
2µ

x).

We will produce the same experiment as for KdV equation with a sinusoidal bottom

b(x) = sin(2παx).

In the figure 6, we have displayed the solution for this initial condition (c1 = 0.5) for
a sinusoidal bottom and with different models for ε =

√
µ and T = 13.33. We can

see that strong and original models give very close solutions while the gentle model
provides a different solution. For this problem, we have performed a study of the
convergence in order to compare LDG method and the presented finite difference
method. However, for LDG method, centered fluxes have been used, inducing a
non-optimal convergence for odd orders. As in tables 4, 5, the convergence of
LDG method seems to be in O(hr+1) (r being the order of approximation) for even
orders, while we observe a convergence of O(hr−1) (h = ∆x) for odd orders. For
finite-difference code, we have used the following time step :

∆t = 0.01
320
N

where N denotes the number of points.
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Figure 6. Solution of Camassa-Holm equation for a sinusoidal
bottom, with gentle (19), strong (21) and original model (16) for
t = 13.33. (c1 = 0.5, µ = 0.1, ε =

√
µ, α = 0.5µ, β = 0.5ε)

LDG, order 1
N Error Order

320 1.05e-1 -
640 5.79e-2 0.86
1280 4.85e-2 0.26
2560 4.54e-2 0.09
5120 4.49e-2 0.02

LDG, order 3
Error Order

2.74e-2 -
3.79e-3 2.85
2.55e-4 3.89
7.90e-5 1.69
2.28e-5 1.79

LDG, order 4
Error Order

2.32e-2 -
7.97e-4 4.86
1.25e-5 5.99
2.04e-7 5.94
1.39e-8 3.88

Finite Difference
Error Order

3.33e-1 -
1.08e-1 1.62
2.95e-2 1.87
7.41e-3 1.99
1.85e-3 2.00

Table 4. L2 errors for the solitary-wave and sinusoidal bottom
between the numerical solution and a reference solution for t =
20 and for the gentle model (19). N denotes here the number of
degrees of freedom. (c1 = 0.5, µ = 0.05, ε =

√
µ, α = 0.5 ε, β =

ε)

In figure 7, we displayed the variation of the L2-norm for the different proposed
schemes. In this figure, we observe that the discrete energy of finite difference
schemes is conserved, however the conservation is not as good as for KdV-top
equation. In figure 8, it is difficult to observe a O(µ2) error between the solutions
of Green-Naghdi model and Camassa-Holm equation.
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LDG, order 1
N Error Order

320 1.14e-1 -
640 5.59e-2 1.03
1280 4.78e-2 0.23
2560 4.62e-2 0.05
5120 4.59e-2 0.01

LDG, order 3
Error Order

1.58e-2 -
3.12e-3 2.34
4.06e-4 2.94
8.23e-5 2.30
2.37e-5 1.80

LDG, order 4
Error Order

9.81e-3 -
2.03e-3 2.27
6.40e-5 4.98
2.00e-6 5.00
5.11e-8 5.29

Finite Difference
Error Order

3.51e-1 -
1.12e-1 1.65
2.84e-2 1.98
7.58e-3 1.91
1.90e-3 2.00

Table 5. L2 errors for the solitary-wave and sinusoidal bottom
between the numerical solution and a reference solution for t = 20
and for the strong model (21). N denotes here the number of
degrees of freedom. (c1 = 0.5, µ = 0.05, ε =

√
µ, α = 0.5 ε, β =

ε)

Figure 7. Logarithm of variation of energy versus time for gentle
scheme, strong scheme and original scheme for solitary-wave and
sinusoidal bottom (c1 = 0.5, µ = 0.05, ε =

√
µ, α = 0.5 ε, β = ε)

Finite difference and fourth order LDG with 5120 degrees of free-
dom.
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Figure 8. Logarithm of relative error between Green-Naghdi
model and Camassa-Holm equation for a flat bottom and a gauss-
ian initial condition (ε =

√
µ)
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