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Weak limit theorems in the Fourier transform method for the

estimation of multivariate volatility

Emmanuelle Clément∗ Arnaud Gloter†

february 2010

Abstract

In this paper, we prove some weak limit theorems for the Fourier estimator of multivariate

volatility proposed by Malliavin and Mancino ( [12], [13]). We first give a central limit theorem

for the estimator of the integrated volatility assuming that we observe the whole path of the Ito

process. Then we study the case of discrete time observations possibly non synchronous. In this

framework we prove that the asymptotic variance of the estimator depends on the limit behavior

of the ratio N/n where N is the number of Fourier coefficients and n the number of observations.

We point out some optimal choices of N with respect to n to minimize this asymptotic variance.

MSC 2010. Primary: 62G20, Secondary: 60F05, 60H05.
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1 Introduction

A large literature is devoted to the computation of the volatility or the integrated volatility of financial

asset returns. In practice, one observes discrete time realizations of some asset prices which time

evolution is given by a multivariate Itô process X. In this typical framework of high frequency data,

volatility can be estimated through parametric or non parametric methods. Many of these methods

rely on the quadratic variation formula ([8], [3], [1]). Subsequently, modifications of the quadratic

variation method have been introduced in order to cope with specific difficulties arising with financial

data. Presence of jumps in data leads to the use of bi-power variation instead of the quadratic
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variation ([4], [2]), microstructure noises are handled with pre-averaged variation or related methods

([18], [10], [17]). In the case of estimation of cross-volatility for assets observed at non synchronous

instants, some alternative methods were introduced by Hayashi and Yoshida ([6], [7]). Indeed, in case

of non synchronous data, the standard quadratic variation method yield to a biased estimation of the

cross-volatility.

In [12], Malliavin and Mancino proposes an estimator of the volatility based on the computation of

N Fourier coefficients of an Itô process X and study some of its properties in [13]. A main advantage

of this method is that the estimator only relies on the Fourier coefficients of each components of X

computed individually. A proxy for these Fourier coefficients seems easily available to the statistician

and the method has direct applications in empirical studies ([15], [14]).

In this paper we focus on the asymptotic properties of the Fourier estimator and give new results.

We first assume that we observe continuously the process X on a fixed time interval and we prove a

central limit theorem for the estimator of the integrated volatility as N goes to infinity with the rate

of convergence
√

N , where N denotes the highest Fourier frequency used in the estimation method.

The asymptotic variance is half the so called ’quarticity’ which is the asymptotic variance when the

volatility is estimated by a discrete sampling with step 1/N . Although the case of exact observation of

the path is unfeasible in practice, this result serves as a benchmark for the case of discrete observations.

Then we give asymptotic results in the case of discrete time observations. In a first step we

assume that the observations of X are synchronous and we note n the number of observations. In

this situation, we show that the estimator of the integrated volatility is consistent as N and n go

to infinity. In particular, this extend the result of [13] where the restriction that N/n goes to zero

was imposed. Turning to the central limit theorem the situation is drastically different and the limit

behavior of N/n is crucial. Indeed assuming that N/n goes to zero we are essentially in the previously

studied situation of continuous time observations. Now if we assume that N/n converges to a > 0, we

obtain a central limit theorem with rate of convergence
√

n but the asymptotic variance depends on

the parameter a. In particular we prove that there are some optimal choices of N with respect to n

to minimize the asymptotic variance.

In a second step, we investigate the case of non synchronous data. Although the Fourier coefficients

involved in the estimation method are computed individually for each components, results are rather

different with the situation of synchronous sampling and much more surprising. We first show that the

estimator may be biased, when the highest frequency used matches the number of data collected. We
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explicitly compute this bias in a general framework, and prove a central limit theorem associated to

this convergence. To illustrate the situation we consider the specific example of an alternate sampling

scheme (n equidistant data alternatively collected on different components of X). We establish that

if N/n goes to zero the estimator of the integrated volatility is consistent. This is not surprising since

the effect of non synchronous data disappears under this assumption. Now if N/n tends to a > 0

the estimator is not consistent. We are able to correct the explicit bias. Then, we find an explicit

expression for the variance of the estimator. Moreover, numerical simulations shows that the corrected

estimator performs well on simulated data.

The paper is organized as follows. Section 2 is devoted to the asymptotic results assuming that X

is observed continuously. Section 3 contains the case of discrete synchronous observations. Finally in

section 4 we consider non synchronous data.

2 Weak convergence in case of continuous time observations

Throughout this paper, we consider a complete probability space (Ω,F , P) which is the canonical

space of a d-dimensional Brownian motion on the time interval [0, 2π]. We denote by F = (Ft)0≤t≤2π

the usual augmentation of the natural filtration of W and we denote by L2
a([0, 2π]) the space of real

measurable adapted processes X = (X(t))0≤t≤2π such that E
∫ 2π
0 |X(t)|2dt < +∞. We assume that we

observe a J-dimensional continuous time process X(t) = (X1(t), . . . , XJ(t)) solution of the equations

dXj(t) = bj(t)dt +

d
∑

r=1

σj,r(t)dW r(t), (1)

where bj ∈ L2
a([0, 2π]) and σj,r ∈ L2

a([0, 2π]) for 1 ≤ j ≤ J and 1 ≤ r ≤ d. In the following, we note

σj∗ the transpose of the vector σj and more generally A∗ the transpose of a matrix A. We define the

volatility process as

Σj,j′(t) =

d
∑

r=1

σj,r(t)σj′,r(t) = (σj∗σj′)(t) (2)

for 1 ≤ j, j′ ≤ J . Our aim is to study the asymptotic properties of the Fourier transform estimator

of Σ proposed by Malliavin and Mancino [12]. We denote by (ck(Σ
j,j′))k∈Z the Fourier coefficients of

Σj,j′ , we have :

ck(Σ
j,j′) =

1

2π

∫ 2π

0
e−iktΣj,j′(t)dt. (3)

Moreover for any measurable bounded function h, we note ck(hdXj) the Fourier coefficient

ck(hdXj) =
1

2π

∫ 2π

0
e−ikth(t)dXj(t). (4)
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With these notations we construct the estimator

Γj,j′

N (h) =
2π

2N + 1

∑

|l|≤N

c−l(dXj)cl(hdXj′). (5)

We remark that for hk(t) = e−ikt, Γj,j′

N (hk) is a consistent estimator of ck(Σ
j,j′) (see [12]). In fact

applying Ito’s formula to the product of stochastic integrals c−l(dXj)cl(hdXj′) we have :

Γj,j′

N (h) =
1

2π

∫ 2π

0
h(t)Σj,j′(t)dt + Rj,j′

N (2π),

Rj,j′

N (t) =
1

2π

(
∫ t

0
(

∫ s

0
dN (s − u)dXj(u))h(s)dXj′(s) +

∫ t

0
(

∫ s

0
dN (s − u)h(u)dXj′(u))dXj(s)

)

, (6)

where dN denotes the normalized Dirichlet kernel

dN (u) =
1

2N + 1

N
∑

k=−N

eiku =
1

2N + 1

sin((2N + 1)u/2)

sin(u/2)
. (7)

In this section, we study the weak convergence of the process (Rj,j′

N (t))t∈[0,2π] normalized by
√

N .

More precisely we prove that
√

NRj,j′

N converges stably in law. We refer to Jacod [9] for the definition

of the stable convergence in law. In order to prove this result we need some regularity assumptions

on the coefficients b and σ. In particular we assume that σ admits a Malliavin derivative. We denote

by D the derivative operator and we refer the reader to Nualart [16] for the basic theory of Malliavin

calculus. We make the following hypotheses.

H1. For 1 ≤ j ≤ J and 1 ≤ r ≤ d we assume that ∀p ≥ 1 :

E( sup
t∈[0,2π]

|bj(t)|p) < +∞, E( sup
t∈[0,2π]

|σj,r(t)|p) < +∞.

H2. We assume that almost surely the function t 7→ σ(t) is continuous on [0, 2π].

H3. We assume that ∀p ≥ 1 σ ∈ D
1,p and that for 1 ≤ j ≤ J and 1 ≤ r ≤ d

E( sup
s,t∈[0,2π]

|Dsσ
j,r(t)|p) < +∞.

This hypothesis is satisfied in particular for a diffusion process with regular coefficients.

Theorem 1 Under H1, H2 and H3, the process
√

NRj,j′

N converges stably in law to Rj,j′ with

Rj,j′(t) =
1

2
√

π

∫ t

0
|h(s)|

√

(σj∗σj)(s)(σj′∗σj′)(s) + (σj∗σj′)2(s)dW̃ (s),

where W̃ is a brownian motion independent of W .
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Before proving Theorem 1, we recall some useful properties of the Dirichlet kernel dN .

Lemma 1 Let dN the normalized Dirichlet kernel defined by (7), then the following properties are

satisfied.

i)
∫ 2π
0 |dN (u)|2du = 2π

2N+1 ;

ii) ∀p > 1, there exists a constant Cp such that
∫ 2π
0 |dN (u)|pdu ≤ Cp

2N+1 ;

iii) ∀0 < ε < 2π, limN→+∞ N
∫ ε
0 |dN (u)|2du = π

2 .

The proof of this Lemma is straightforward and we omit it.

Proof of Theorem 1.

First step. We first observe that the hypothesis H1 implies that for p > 1

Rj,j′

N (t) = M j,j′

N (t) + M̃ j,j′

N (t) + oP (
1√
N

), (8)

with

M j,j′

N (t) =
1

2π

∫ t

0

(
∫ s

0
dN (s − u)σj∗(u)dW (u)

)

h(s)σj′∗(s)dW (s), (9)

M̃ j,j′

N (t) =
1

2π

∫ t

0

(
∫ s

0
dN (s − u)h(u)σj′∗(u)dW (u)

)

σj∗(s)dW (s). (10)

Since Xj and Xj′ are solutions of equation (1), we can decompose Rj,j′

N (t) as follows :

Rj,j′

N (t) = M j,j′

N (t) + M̃ j,j′

N (t) + I1
N (t) + I2

N (t) + I3
N (t) + Ĩ1

N (t) + Ĩ2
N (t) + Ĩ3

N (t), (11)

with

I1
N (t) =

1

2π

∫ t

0

(
∫ s

0
dN (s − u)bj(u)du

)

h(s)σj′∗(s)dW (s), (12)

I2
N (t) =

1

2π

∫ t

0

(
∫ s

0
dN (s − u)σj∗(u)dW (u)

)

h(s)bj′(s)ds, (13)

I3
N (t) =

1

2π

∫ t

0

(
∫ s

0
dN (s − u)bj(u)du

)

h(s)bj′(s)ds. (14)

The other terms are similar and we don’t give them explicitly. We have from H1

EI1
N (t)2 =

1

(2π)2

∫ t

0
E

(

(
∫ s

0
dN (s − u)bj(u)du

)2

h(s)2(σj′∗σj′)(s)

)

ds,

≤ C(

∫ 2π

0
|dN (u)|du)2 ≤ C

1

N2/p
, (15)
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where C is a constant whose value may change from a line to another and p > 1. The last inequality

is a consequence of Hölder’s inequality and property ii) of Lemma 1. We bound EI3
N (t)2 on the same

way. It remains to prove that NEI2
N (t)2 tends to zero as N goes to infinity in order to obtain (8).

This is a little bit more technical. To simplify the notation, we introduce the process

Y j
N (t, s) =

∫ s

0
dN (t − u)σj∗(u)dW (u). (16)

From Burkholder-Davis-Gundy inequality and H1, it is easy to check that :

(E sup
s≤t

|YN (t, s)|4)1/4 ≤ C(

∫ t

0
|dN (t − u)|2du)1/2 ≤ C√

N
, (17)

With this notation we have

I2
N (t)2 = C

∫

[0,t]2
YN (s, s)h(s)bj′(s)YN (s′, s′)h(s′)bj′(s′)dsds′.

By symmetry, it is enough to prove that

NE

∫

[0,t]2
YN (s, s)h(s)bj′(s)YN (s′, s′)h(s′)bj′(s′)1s′≤sdsds′ → 0.

Let ε > 0, for s − ε ≤ s′ ≤ s we have using H1 and (17)

NE

∫

[0,t]2
YN (s, s)h(s)bj′(s)YN (s′, s′)h(s′)bj′(s′)1s−ε≤s′≤sdsds′ ≤ Cε.

Now if s′ < s − ε, we observe that

∫

[0,t]2 YN (s, s)h(s)bj′(s)YN (s′, s′)h(s′)bj′(s′)1s′<s−εdsds′ = I2,1
N + I2,2

N ,

with

I2,1
N =

∫

[0,t]2
YN (s, s − ε)h(s)bj′(s)YN (s′, s′)h(s′)bj′(s′)1s′<s−εdsds′,

I2,2
N =

∫

[0,t]2
(

∫ s

s−ε
dN (s − u)σj∗(u)dW (u))h(s)bj′(s)YN (s′, s′)h(s′)bj′(s′)1s′<s−εdsds′.

From Cauchy-Schwarz inequality, H1 and (17)

NEI2,1
N ≤ C

√

N

∫ t

ε
d2

N (v)dv

and from lemma 1, the right hand side term of the inequality goes to zero with N if t < 2π. At last

we observe by conditioning on Fs−ε that

EI2,2
N = E

∫

[0,t]2
(

∫ s

s−ε
dN (s − u)σj∗(u)dW (u))h(s)(bj′(s) − bj′(s − ε))YN (s′, s′)h(s′)bj′(s′)1s′<s−εdsds′,

6



and consequently

NEI2,2
N ≤ C(E

∫ t

0
|bj′(s) − bj′(s − ε)|4ds)1/4.

Finally letting ε go to zero we obtain the announced result.

Now to study the weak convergence of
√

NRj,j′

N we just have to study the limit behavior of

the martingale
√

N(M j,j′

N + M̃ j,j′

N ). By symetry this can be reduced to the martingale
√

NM j,j′

N .

Following Jacod [9] and Jacod-Protter [11] we just have to determine the limit in probability of
〈√

NM j,j′

N (t), W r(t)
〉

for 1 ≤ r ≤ d and
〈√

NM j,j′

N (t),
√

NM j,j′

N (t)
〉

, ∀t ∈ [0, 2π].

Second step. We prove that for all r ∈ {1, . . . , d},
〈√

NM j,j′

N (t), W r(t)
〉

tends to zero in L2(Ω)

as N goes to infinity. Using the notation (16) we can write

E

(

〈√
NM j,j′

N (t), W r(t)
〉2
)

=
N

4π2

∫

[0,t]2
E

(

Y j
N (s, s)Y j

N (s′, s′)σj′,r(s)σj′,r(s′)
)

h(s)h(s′)dsds′

From H3, using the duality for stochastic integrals, we have

E

(

Y j
N (s, s)Y j

N (s′, s′)σj′,r(s)σj′,r(s′)
)

= E

(
∫ s

0
dN (s − u)σj∗(u)Du(Y j

N (s′, s′)σj′,r(s)σj′,r(s′))du

)

,

and consequently

E

(

Y j
N (s, s)Y j

N (s′, s′)σj′,r(s)σj′,r(s′)
)

= E1
N (s, s′) + E2

N (s, s′) + E3
N (s, s′),

with

E1
N (s, s′) = E

(

(σj′,r(s)σj′,r(s′)
∫ s

0
dN (s − u)dN (s′ − u)1{u≤s′}(σ

j∗σj)(u)du

)

,

E2
N (s, s′) = E

(

σj′,r(s)σj′,r(s′)
∫ s

0
dN (s − u)σj∗(u)(

∫ s′

0
dN (s′ − v)Du(σj∗(v))dW (v))du

)

,

E3
N (s, s′) = E

(

Y j
N (s′, s′)

∫ s

0
dN (s − u)σj∗(u)Du(σj′,r(s)σj′,r(s′))du

)

.

This leads to the decomposition

E

〈√
NM j,j′

N (t), W r(t)
〉2

=
N

4π2

∫

[0,t]2
(E1

N (s, s′) + E2
N (s, s′) + E3

N (s, s′))h(s)h(s′)dsds′. (18)

Using successively H1 and Fubini’s theorem, we obtain for the first term

N

4π2
|
∫

[0,t]2
E1

N (s, s′)h(s)h(s′)dsds′| ≤ CN

∫

[0,t]2

∫ s

0
|dN (s − u)dN (s′ − u)|1{u≤s′}dsds′,

= CN

∫ t

0
(

∫ t

u
|dN (s − u)|ds

∫ t

u
|dN (s′ − u)|ds′)du,

≤ CN(

∫ 2π

0
|dN (s)|ds)2 ≤ C

N2/p−1
.
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Choosing p ∈ (0, 1), we deduce that the first term in (18) goes to zero. For the second term, we have

from H1, H3 and Cauchy-Schwarz inequality

|E2
N (s, s′)| ≤

∫ s

0
|dN (s − u)||Eσj∗(u)

∫ s′

0
dN (s′ − v)Du(σj∗(v))dW (v)σj′,r(s)σj′,r(s′)|du,

≤ C

∫ s

0
|dN (s − u)|du(

∫ s′

0
|dN (s′ − v)|2dv)1/2 ≤ C

N1/p+1/2
,

this yields
N

4π2
|
∫

[0,t]2
E2

N (s, s′)h(s)h(s′)dsds′| ≤ C

N1/p−1/2
,

We proceed similarly for the third term and this achieves the proof of the second step.

Third step. We prove in this section that ∀t ∈ [0, 2π] the following convergence holds in proba-

bility

lim
N

〈√
NM j,j′

N (t),
√

NM j,j′

N (t)
〉

=
1

8π

∫ t

0
(σj∗σj)(s)(σj′∗σj′)(s)h(s)2ds. (19)

With the preceding notation we have

〈√
NM j,j′

N (t),
√

NM j,j′

N (t)
〉

=
N

4π2

∫ t

0
Y j

N (s, s)2(σj′∗σj′)(s)h(s)2ds

From Ito’s formula we have

Y j
N (s, s)2 =

∫ s

0
d2

N (s − u)(σj∗σj)(u)du + 2

∫ s

0
Y j

N (s, u)dN (s − u)σj∗(u)dW (u),

and consequently
〈√

NM j,j′

N (t),
√

NM j,j′

N (t)
〉

= T 1
N (t) + T 2

N (t),

with

T 1
N (t) =

N

4π2

∫ t

0
(

∫ s

0
d2

N (s − u)(σj∗σj)(u)du)(σj′∗σj′)(s)h(s)2ds, (20)

T 2
N (t) =

N

2π2

∫ t

0
(

∫ s

0
Y j

N (s, u)dN (s − u)σj∗(u)dW (u))(σj′∗σj′)(s)h(s)2ds. (21)

a) We first prove that T 2
N (t) tends to zero in L2(Ω). We denote by Zj

N (t, s) :

Zj
N (t, s) =

∫ s

0
Y j

N (t, u)dN (t − u)σj∗(u)dW (u) (22)

and we use the notation :

σj′(s, s′)4 = (σj′∗σj′)(s)(σj′∗σj′)(s′).

We proceed as in the second step, we have :

E(T 2
N (t))2 =

N2

4π4

∫

[0,t]2
h2(s)h2(s′)E

(

Zj
N (s, s)Zj

N (s′, s′)(σj′∗σj′)(s)(σj′∗σj′)(s′)
)

dsds′.
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Now from the duality formula

E

(

Zj
N (s, s)Zj

N (s′, s′)σj′(s, s′)4
)

= F 1
N (s, s′) + F 2

N (s, s′) + F 3
N (s, s′),

with

F 1
N (s, s′) = E

(

σj′(s, s′)4
∫ s

0
Y j

N (s, u)dN (s − u)(σj∗σj)(u)Y j
N (s′, u)dN (s′ − u)1{u≤s′}du

)

,

F 2
N (s, s′) = E

(

σj′(s, s′)4
∫ s

0
Y j

N (s, u)dN (s − u)σj∗(
∫ s′

0
dN (s′ − v)Du(Y j

N (s′, v)σj∗(v))dW (v))du

)

,

F 3
N (s, s′) = E

(

Zj
N (s′, s′)

∫ s

0
Y j

N (s, u)dN (s − u)σj∗Du(σj′(s, s′)4)du

)

.

From H1 and (17) we get :

(EZj
N (s, s)2)1/2 ≤ C/N.

Combining Cauchy-Schwarz inequality with the preceding inequality, this gives :

N2

4π4

∫

[0,t]2
h2(s)h2(s′)F 1

Ndsds′ ≤ CN

∫

[0,t]2

∫ s

0
|dN (s − u)dN (s′ − u)|1{u≤s′}dudsds′,

= CN

∫ t

0
(

∫ t

u
|dN (s − u)|ds)2du,

and finally from Hölder ’s inequality and Lemma 1 ii) we obtain for p > 1 :

N2

4π4

∫

[0,t]2
h2(s)h2(s′)F 1

Ndsds′ ≤ C

N2/p−1
.

Turning to F 3
N we have

N2

4π4

∫

[0,t]2 h2(s)h2(s′)F 3
Ndsds′ ≤ CN2

∫

[0,t]2

∫ s
0 |dN (s − u)|E|Zj

N (s′, s′)Y j
N (s, u)σj∗Du(σj′(s, s′)4)|dudsds′,

but

E|Zj
N (s′, s′)Y j

N (s, u)σj∗Du(σj′(s, s′)4)| ≤ C√
N

(E(Zj
N (s′, s′))2)1/2 ≤ C

N
√

N
,

consequently for any p > 1

N2

4π4

∫

[0,t]2
h2(s)h2(s′)F 3

Ndsds′ ≤ C

N1/p−1/2
.

We bound the last term on a similar way observing that

Du(Y j
N (s′, v)σj∗(v)) = Y j

N (s′, v)Du(σj∗(v)) + dn(s′ − u)σj(u)1{u≤v}σ
j∗(v)

+

∫ v

0
dN (s′ − v′)Du(σj(v′))dWv′σj∗(v).

9



Finally we conclude that E(T 2
N (t))2 tends to zero as N goes to infinity.

b) Now we determine the limit in probability of T 1
N (t) given by (20). For 0 ≤ t < 2π, one can

easily check from the continuity assumption H2 and from Lemma 1 iii) that almost surely ∀s ≤ t :

lim
N

N

∫ s

0
d2

N (s − u)(σj∗σj)(u)du = lim
N

N

∫ s

0
d2

N (u)(σj∗σj)(s − u)du =
π

2
(σj∗σj)(s).

We deduce then from the dominated convergence Theorem that ∀t < 2π

lim
N

T 1
N =

1

8π

∫ t

0
(σj∗σj)(s)(σj′∗σj′)(s)h2(s)ds.

At last by a continuity argument the preceding result holds for t ∈ [0, 2π].

Fourth step. We turn back to the decomposition of Rj,j′

N (t) given in (8). We deduce from the

second step that
〈√

N(M j,j′

N (t) + M̃ j,j′

N (t)), W r(t)
〉

tends to zero, ∀r ∈ {1, . . . , d}. And from the third

step we can prove that

lim
N

〈√
NN j,j′

N (t),
√

NN j,j′

N (t))
〉

=
1

4π

∫ t

0
h2(s)((σj∗σj)(s)(σj′∗σj′)(s) + (σj∗σj′)2(s))ds,

where N j,j′

N (t) = M j,j′

N (t) + M̃ j,j′

N (t). This achieves the proof of Theorem 1. ⋄

The estimator of the volatility studied in this section is constructed from the observation of X(t) on

the time interval [0, 2π]. However in practice we observe X(t) at discrete time (tk) and so we propose

in the next section an estimator of Σj,j′ based on discrete time observations.

3 Weak convergence in case of discrete time observations

We assume in this section that we observe the process X(t) solution of (1) at time tk = 2πk
n for

k = 0, . . . , n. The case of non synchronous data will be treated in the next section. We denote by ϕn

the function :

ϕn(t) =
2πk

n
if

2πk

n
≤ t <

2π(k + 1)

n
. (23)

Our estimators are now based on the discrete Fourier coefficients

cn
k(hndXj) =

1

2π

∫ 2π

0
e−ikϕn(t)hn(t)dXj(t), (24)

where hn(t) = h(ϕn(t)). With these notations we define the discrete time estimators

Γj,j′

N,n(h) =
2π

2N + 1

∑

|l|≤N

cn
−l(dXj)cn

l (hndXj′). (25)

10



Our aim is to study the asymptotic properties of these estimators as n and N go to infinity.

We first remark that for h = 1, Γj,j′

N,n(1) is an estimator of the integrated volatility 1
2π

∫ 2π
0 Σj,j′(t)dt.

Moreover we can check that limN Γj,j′

N,n(1) is the discretized quadratic covariation of the process

(Xj , Xj′) and consequently a central limit theorem holds as n goes to infinity with the classical rate

of convergence
√

n (see Genon-Catalot and Jacod [5]). In fact if we note ∆Xj
k = Xj(tk+1) − Xj(tk),

we have

cn
−l(dXj)cn

l (dXj′) =
1

4π2

n−1
∑

k=0

eil 2kπ
n ∆Xj

k

n−1
∑

k=0

e−il 2kπ
n ∆Xj′

k ,

=
1

4π2

n−1
∑

k=0

∆Xj
k∆Xj′

k +
1

4π2

n−1
∑

k 6=k′=0

eil
2(k−k′)π

n ∆Xj
k∆Xj′

k′ .

This gives

Γj,j′

N,n(1) =
1

2π

n−1
∑

k=0

∆Xj
k∆Xj′

k +
1

2π

n−1
∑

k 6=k′=0

dN (
2(k − k′)π

n
)∆Xj

k∆Xj′

k′ .

Assuming that n is fixed and letting N go to infinity, we have limN dN (2(k−k′)π
n ) = 0, for k 6= k′ and

consequently

lim
N→∞

Γj,j′

N,n(1) =
1

2π

n−1
∑

k=0

∆Xj
k∆Xj′

k , (26)

which is the expected result.

In this section we assume that N and n go to infinity simultaneously and that N/n tends to

a ∈ R+. The case a = 0 has been studied essentially in the preceding section. In this case the process

(X(t)) is observed continously. In the case a = +∞ the estimator Γj,j′
∞,n corresponds to the discretized

quadratic covariation of the process (X(t)) as we remark above.

Before stating our main result we give some useful properties of the discretized normalized Dirichlet

kernel.

Lemma 2 Let ϕn defined by (23) and dN the normalized Dirichlet kernel then we have, assuming

that N/n → a > 0 :

i) ∀p > 1, ∃Cp,a such that
∫ 2π
0 |dN (ϕn(u))|pdu ≤ Cp,a/N ;

ii) ∀0 < ε < π, limN,n→∞ N
∫ ε
0 |dN (ϕn(u))|2du = 2πa(η(2a) + 1), with

η(a) =
∞
∑

k=1

sin2(aπk)

(aπk)2
=

1

2a2
r(a)(1 − r(a)), r(a) = a − [a],

where [x] denotes the integer part of x ;

11



iii) ∀0 < ε < π, limN,n→∞ N
∫ ε
2π/n |dN (ϕn(u))|2du = 2πaη(2a) ;

iv) ∀0 < ε, η < π, limN,n→∞ N
∫ 2π−η
ε |dN (ϕn(u))|2du = 0.

We remark that the function η(a) = 0 if a ∈ N
∗. Moreover aη(2a) tends to 1/4 as a goes to zero and

then ii) is coherent with Lemma 1 iii).

Proof We omit the proofs of i) and iv) which are straightforward.

ii) Let 0 < ε < π. We note kn(ε) = nϕn(ε)/2π. We have

∫ ε

0
|dN (ϕn(u))|2du =

2π

n

kn(ε)−1
∑

k=0

d2
N (

2kπ

n
) +

∫ ε

ϕn(ε)
d2

N (ϕn(u))du.

Obviously limN,n N
∫ ε
ϕn(ε) d2

N (ϕn(u))du = 0, so we just have to determine limN,n
∑kn(ε)−1

k=0 d2
N (2kπ

n ).

But
kn(ε)−1
∑

k=0

d2
N (

2kπ

n
) = 1 +

∞
∑

k=1

1

(2N + 1)2
sin2((2N + 1)kπ/n)

sin2(kπ/n)
1{k≤kn(ε)}.

We have

lim
N,n

1

(2N + 1)2
sin2((2N + 1)kπ/n)

sin2(kπ/n)
=

sin2(2aπk)

(2aπk)2
,

and since kn(ε)π/n ≤ ε/2 < π/2, using sinx ≥ 2x/π for x ≤ π/2,

1

(2N + 1)2
sin2((2N + 1)kπ/n)

sin2(kπ/n)
1{k≤kn(ε)} ≤

C

(2ak)2
.

We conclude then from the dominated convergence Theorem that

lim
N,n

kn(ε)−1
∑

k=0

d2
N (

2kπ

n
) = 1 +

∞
∑

k=1

sin2(2aπk)

(2aπk)2
,

and if we note

η(a) =

∞
∑

k=1

sin2(aπk)

(aπk)2
,

we obtain

lim
N,n

N

∫ ε

0
|dN (ϕn(u))|2du = 2πa(η(2a) + 1).

To achieve the proof of ii), it remains to explicit η(a).

Defining f(x) = x(1 − x) on [0, 1], we have the Fourier Development

f(x) =
1

6
−
∑

k≥1

cos(2πkx)

π2k2
,

12



we deduce then that

∑

k≥1

cos(2πka)

k2
=
∑

k≥1

cos(2πk(a − [a]))

k2
= π2(

1

6
− r(a)(1 − r(a)),

with r(a) = a − [a]. Turning back to η(a), we obtain

η(a) =

∞
∑

k=1

1 − cos(2aπk)

(2a2π2k2)
,

=
1

2a2
r(a)(1 − r(a)).

To prove iii), we just observe that

N

∫ 2π/n

0
dN (ϕn(u))du = dN (0)2πN/n → 2πa,

since dN (0) = 1. ⋄

We can now state the main result of this section. In the following, we note dN,n(s, u) = dN (ϕn(s)−
ϕn(u)). From Ito’s formula we have the decomposition

Γj,j′

N,n(h) =
1

2π

∫ 2π

0
hn(t)Σj,j′(t)dt + Rj,j′

N,n(2π), (27)

with

Rj,j′

N,n(t) =
1

2π

(
∫ t

0
(

∫ s

0
dN,n(s, u)dXj(u))hn(s)dXj′(s)ds +

∫ t

0
(

∫ s

0
dN,n(s, u)hn(u)dXj′(u))dXj(s)ds

)

.

(28)

Theorem 2 Let h a continuous bounded function with bounded derivative. We assume that N and n

tend to infinity and that lim N/n = a > 0 then under H1, H2 and H3

i) the process
√

NRj,j′

N,n converges stably in law to Rj,j′ with

Rj,j′(t) =

(

a(2η(2a) + 1)

2π

)1/2 ∫ t

0
|h(s)|

√

(σj∗σj)(s)(σj′∗σj′)(s) + (σj∗σj′)2(s)dW̃ (s),

where W̃ is a brownian motion independent of W and η(a) is defined in Lemma 2 ;

ii)
√

n(Γj,j′

N,n(h) − 1
2π

∫ 2π
0 h(t)Σj,j′(t)dt) converges stably in law to Rj,j′(2π)/

√
a.

Recalling that η(a) = 0 for a ∈ N
∗, we deduce from ii) that the optimal asymptotic variance is obtain

for 2a ∈ N
∗ and is equal to

1

2π

∫ 2π

0
|h(s)|2

(

(σj∗σj)(s)(σj′∗σj′)(s) + (σj∗σj′)2(s)
)

ds.
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In particular given n the number of observations, the choice of N = n/2 Fourier coefficients to estimate

the integrated volatility is optimal and in this case, the variance is the same one as for the quadratic

variation estimator. Remark that the choice N = n/2 was used in earlier empirical work [15] since it

corresponds to the natural choice of the Nyquist frequency of the signal.

Remark 1 Let us stress that the case a = 0 is excluded in theorem 2, and that the variance of the

limit variable Rj,j′(2π)/
√

a explodes as a → 0. Actually it could be shown that for a = 0,
√

NRj,j′

N,n(t)

converges to the limit term given in theorem 1. Thus, in this situation the effect of sampling disappears

and the behaviour is analogous to the case of a continuous observation. However the rate of convergence
√

N is slow compared to the number of observations
√

n. Hence, from the statistical point of view, this

situation is not satisfactory.

Proof ii) is a straightforward consequence of i) since from (27) we have

Γj,j′

N,n(h) =
1

2π

∫ 2π

0
h(t)Σj,j′(t)dt + OP (

1

n
) + Rj,j′

N,n(2π).

i) We proceed as in the proof of Theorem 1.

First and second steps. As previously, from H1 and Lemma 2 i), iv), we have the decomposition:

Rj,j′

N,n(t) = M j,j′

N,n(t) + M̃ j,j′

N,n(t) + oP (
1√
N

), (29)

with

M j,j′

N,n(t) =
1

2π

∫ t

0

(
∫ s

0
dN,n(s, u)σj∗(u)dW (u)

)

hn(s)σj′∗(s)dW (s), (30)

M̃ j,j′

N,n(t) =
1

2π

∫ t

0

(
∫ s

0
dN,n(s, u)hn(u)σj′∗(u)dW (u)

)

σj∗(s)dW (s). (31)

Moreover from H1 and H3,
〈√

N(M j,j′

N,n(t) + M̃ j,j′

N,n(t)), W r(t)
〉

tends to zero in probability for 1 ≤
r ≤ d , ∀t ∈ [0, 2π].

Third step. We prove in this section that ∀t ∈ [0, 2π] the following convergence holds in proba-

bility

lim
N

〈√
NM j,j′

N,n(t),
√

NM j,j′

N,n(t)
〉

=
a(2η(a) + 1)

4π

∫ t

0
(σj∗σj)(s)(σj′∗σj′)(s)h(s)2ds. (32)

We note

Y j
N,n(t, s) =

∫ s

0
dN,n(t, u)σj∗(u)dW (u). (33)

(34)
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We have
〈√

NM j,j′

N,n(t),
√

NM j,j′

N,n(t)
〉

=
N

4π2

∫ t

0
Y j

N,n(s, s)2(σj′∗σj′)(s)hn(s)2ds,

and from Ito’s formula

〈√
NM j,j′

N,n(t),
√

NM j,j′

N,n(t)
〉

= T 1
N,n(t) + T 2

N,n(t),

with

T 1
N,n(t) =

N

4π2

∫ t

0
(

∫ s

0
d2

N,n(s, u)(σj∗σj)(u)du)(σj′∗σj′)(s)hn(s)2ds, (35)

T 2
N,n(t) =

N

2π2

∫ t

0
(

∫ s

0
Y j

N,n(s, u)dN,n(s, u)σj∗(u)dW (u))(σj′∗σj′)(s)hn(s)2ds. (36)

a) Following the proof of Theorem 1, one can easily see that T 2
N,n(t) tends to zero in L2(Ω).

b) We just have to determine the limit in probability of T 1
N,n(t) given by (35). For 0 ≤ t < 2π and

s ≤ t we have

∫ s

0
d2

N,n(s, u)(σj∗σj)(u)du = V 1
N,n(s) + V 2

N,n(s),

with

V 1
N,n(s) =

∫ s

ϕn(s)
d2

N,n(s, u)(σj∗σj)(u)du, (37)

V 2
N,n(s) =

∫ ϕn(s)

0
d2

N,n(s, u)(σj∗σj)(u)du. (38)

It is easy to check that (since DN (0) = 1)

V 1
N,n(s) =

∫ s

ϕn(s)
(σj∗σj)(v)dv,

and consequently, assuming H2

lim
N,n

N

∫ t

0
V 1

N,n(s)(σj′∗σj′)(s)hn(s)2ds = aπ

∫ t

0
(σj∗σj)(s)(σj′∗σj′)(s)h(s)2ds.

Now we set v = ϕn(s) + 2π/n − u in V 2
N,n(s) and we obtain for 0 < ε < π :

NV 2
N,n(s) = N

∫ ε

2π/n
d2

N (ϕn(v))(σj∗σj)(ϕn(s) + 2π/n − v)dv (39)

+N

∫ ϕn(s)+2π/n

ε
d2

N (ϕn(v))(σj∗σj)(ϕn(s) + 2π/n − v)dv. (40)

From Lemma 2 iv), the second term tends to zero and from iii) we conclude that almost surely, ∀s ≤ t

lim
N

NV 2
N,n(s) = 2aη(2a)π(σj∗σj)(s).
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Finally, we obtain ∀0 ≤ t < 2π :

lim
N,n

T 1
N,n(t) =

a(2η(2a) + 1)

4π

∫ t

0
(σj∗σj)(s)(σj′∗σj′)(s)h(s)2ds,

and we end the proof as in section 2. ⋄

4 non synchronous data

4.1 General case

In this section we consider the case of non-synchronous data. To lighten the notations, we assume

that X = (X1, X2) is two-dimensional and respectively denote by (t1k)k=0,...,M1
n

and (t2k)k=0,...,M2
n

the

instants when the data are collected for X1 and X2. There is no need that the number of data is the

same for each component. For simplicity assume t10 = t20 = 0 and define for j = 1, 2 and t ∈ [0, 2π]:

ϕj
n(t) = sup{tjk | tjk ≤ t}.

The estimator is based on the discrete Fourier coefficients:

cn,1
k (dX1) =

1

2π

∫ 2π

0
e−ikϕ1

n(t)dX1(t), cn,2
k (h2

ndX2) =
1

2π

∫ 2π

0
e−ikϕ2

n(t)h(ϕ2
n(t))dX2(t) (41)

where h2
n(t) = h(ϕ2

n(t)). We shall focus on the covolatility estimator

Γ1,2
N,n(h) =

2π

2N + 1

∑

|l|≤N

cn,1
−l (dX1)cn,2

l (h2
ndX2). (42)

However, it is clear that by taking X2 = X1 with ϕ2
n(t) = ϕ1

n(t), results for the covolatility estimator

imply results for the volatility estimator of any components.

As suggested by the previous section, one need to calibrate the cut-off frequency N = Nn with the

sampling steps in order to get some result.

To maintain shorter notation, we define for s, u ∈ [0, 2π]:

di,j
N,n(s, u) = dN (ϕi

n(s) − ϕj
n(u)), with i, j ∈ {1, 2} (43)

We make the following assumptions.

A1 For j = 1, 2, sup
k=0,...,Mj

n−1

∣

∣

∣
tjk+1 − tjk

∣

∣

∣

n→∞−−−→ 0.

A2 The sequence of function t 7→ d1,2
Nn,n(t, t) weakly converges to some integrable function γ(t) :

for any continuous function f
∫ 2π

0
d1,2

Nn,n(t, t)f(t)dt
n→∞−−−→

∫ 2π

0
γ(t)f(t)dt.
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Proposition 1 Let h a continuous bounded function. Assume H1, H2, A1 and A2, then we have:

Γ1,2
Nn,n(h)

n→∞−−−→
P

1

2π

∫ 2π

0
γ(t)h(t)Σ1,2(t)dt.

Proof From Ito’s formula we obtain a decomposition analogous to (27)–(28) in the case of non-

synchronous data:

Γ1,2
Nn,n(h) =

1

2π

∫ 2π

0
d1,2

Nn,n(t, t)h2
n(t)Σ1,2(t)dt + R1,2

Nn,n(2π), (44)

R1,2
Nn,n(t) =

1

2π

(
∫ t

0
(

∫ s

0
d1,2

Nn,n(u, s)dX1(u))h2
n(s)dX2(s) +

∫ t

0
(

∫ s

0
d2,1

Nn,n(u, s)h2
n(u)dX2(u))dX1(s)

)

where we have used the notation (43). Remark that contrarily to the synchronous case, the kernels

di,j
N,n are non symmetric here.

Using the continuity of the functions h and Σ1,2, the assumptions A1–A2 easily imply that the

first term in the right hand side of (44) converges almost surely to 1
2π

∫ 2π
0 γ(t)h(t)Σ1,2(t)dt.

It remains to check that R1,2
N,n(2π) converges to zero in L2 norm. Since X is solution of (1) we can

find for R1,2
Nn,n(2π) a decomposition analogous to (11) and check that the two leading terms now are

M1,2
Nn,n(2π) and M̃1,2

Nn,n(2π) with:

M1,2
Nn,n(t) =

1

2π

∫ t

0

(
∫ s

0
d1,2

Nn,n(u, s)σ1∗(u)dW (u)

)

h2
n(s)σ2∗(s)dW (s), (45)

M̃1,2
Nn,n(t) =

1

2π

∫ t

0

(
∫ s

0
d2,1

Nn,n(u, s)h2
n(u)σ2∗(u)dW (u)

)

σ1∗(s)dW (s). (46)

We finish the proof by showing that these terms converge to zero. Using assumption H1 with the

Burkholder–Davis–Gundy inequality we get

E
[

(M1,2
Nn,n(2π))2

]

≤ c

∫ 2π

0

∫ s

0
d1,2

Nn,n(u, s)2duds, (47)

for some constant c.

Assume u 6= s are fixed, then by A1, for large enough n, we have
∣

∣ϕ1
n(u) − ϕ2

n(s)
∣

∣ > |u − s| /2 > 0.

Using that the Dirichlet kernel dN uniformly converges to zero on compact subsets of (0, 2π) we deduce

that d1,2
Nn,n(u, s)

n→∞−−−→ 0. Since d1,2
Nn,n(u, s) is bounded by the constant 1, the dominated convergence

theorem implies that the right hand side of (47) converges to zero. We treat M̃1,2
Nn,n(2π) on the same

way and the proposition is shown. ⋄
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Remark 2 Let us stress that the conditions A1–A2 for convergence of the estimator are rather weak.

The condition A2 relates the choice of the frequency Nn with the sampling scheme. In most situations,

by choosing 1/Nn converging slowly to zero, it seems possible to get that d1,2
Nn,n(t, t) converges pointwise

to 1. In this case the estimator is consistent for the co-volatility.

If Nn is chosen too large, a bias may appear when d1,2
Nn,n(t, t) converges to a function not everywhere

equal to one. We shall see that the weak convergence of d1,2
Nn,n(t, t) is the natural assumption in this

circumstance.

The following assumptions are needed to obtain a central limit theorem related to proposition 1.

A3 ∀p > 1, ∃Cp, ∀n ≥ 1, ∀i ∈ {0, 1}, supc∈[0,2π]

∫ 2π
0

∣

∣dNn(ϕi
n(s) − c)

∣

∣

p
ds ≤ Cp/n.

A4 There exists three integrable functions γ1,2,γ̃1,2, γc defined on [0, 2π] such that, for any con-

tinuous function g : [0, 2π]2 7→ R the following convergences hold for all t ∈ [0, 2π),

n

∫ t

0

∫ s

0
d1,2

Nn,n(u, s)2g(u, s)duds
n→∞−−−→

∫ t

0
γ1,2(u)g(u, u)du,

n

∫ t

0

∫ s

0
d2,1

Nn,n(u, s)2g(u, s)duds
n→∞−−−→

∫ t

0
γ̃1,2(u)g(u, u)du,

n

∫ t

0

∫ s

0
d1,2

Nn,n(u, s)d2,1
Nn,n(u, s)g(u, s)duds

n→∞−−−→
∫ t

0
γc(u)g(u, u)du.

In the statement of the assumption A4, we exclude the convergence in the case t = 2π, as it will be

convenient in the example given below. However under the assumption A3, the condition A4 is clearly

equivalent if we include t = 2π in the statement.

Theorem 3 Let h a continuous bounded function. Assume H1–H3, A1, A3–A4, then the sequence of

random variables
√

n

(

Γ1,2
Nn,n(h) − 1

2π

∫ 2π

0
d1,2

Nn,n(t, t)h2
n(t)Σ1,2(t)dt

)

converges stably in law to a variable with the representation,

1

2π

∫ 2π

0
|h(t)|

√

(γ1,2(t) + γ̃1,2(t))Σ1,1(t)Σ2,2(t) + 2γc(t)(Σ1,2(t))2dW̃t.

Proof From (44) the theorem amount to show the convergence of
√

nR1,2
Nn,n(2π) as n → ∞. We

proceed as in the proof of theorem 1.

First and second steps. Again we use the decomposition, R1,2
Nn,n(t) = M1,2

Nn,n(t) + M̃1,2
Nn,n(t) +

I1
Nn,n(t) + I2

Nn,n(t) + I3
Nn,n(t) + Ĩ1

Nn,n(t) + Ĩ2
Nn,n(t) + Ĩ3

Nn,n(t), where the main terms M1,2
Nn,n(t) and
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M̃1,2
Nn,n(t) are explicitly given in (45)–(46) and the remainder terms are analogous to (12)–(14). We

need to show that these remainder terms are negligible versus 1/
√

n. For instance, by a computation

analogous to (15) we find for any p > 1:

E[(I1
Nn,n(t))2] ≤ C

∫ t

0

(
∫ s

0
d1,2

Nn,n(u, s)du

)2

ds ≤ C

n2/p

where we have used the assumption A3. This gives the result for I1
Nn,n. We omit the details for the

other terms.

For the second step, using assumption A3, we show as in theorem 1 that
〈√

nM1,2
Nn,n(t), W r(t)

〉

〈√
nM̃1,2

Nn,n(t), W r(t)
〉

tend to zero in L2(Ω) for all r ∈ {1, . . . , d}.
Third step. Here, we prove that the following three convergence properties hold in probability:

lim
n

〈√
nM1,2

Nn,n(t),
√

nM1,2
Nn,n(t)

〉

n→∞−−−→ 1

4π2

∫ t

0
γ1,2(s)h(s)2Σ1,1(s)Σ2,2(s)ds,

lim
n

〈√
nM̃1,2

Nn,n(t),
√

nM̃1,2
Nn,n(t)

〉

n→∞−−−→ 1

4π2

∫ t

0
γ̃1,2(s)h(s)2Σ1,1(s)Σ2,2(s)ds,

lim
n

〈√
nM1,2

Nn,n(t),
√

nM̃1,2
Nn,n(t)

〉

n→∞−−−→ 1

4π2

∫ t

0
γc(s)h(s)2Σ1,2(s)2ds.

For the first property, we follow the proof of the part 3 in theorem 2 and easily get,

〈√
nM1,2

Nn,n(t),
√

nM1,2
Nn,n(t)

〉

=
n

4π2

∫ t

0

∫ s

0
d1,2

Nn,n(u, s)2Σ1,1(u)duΣ2,2(s)h2
n(s)2ds + oP (1).

Now the convergence of
〈√

nM1,2
Nn,n(t),

√
nM1,2

Nn,n(t)
〉

follows from assumptions A1, A4 and the conti-

nuity of h, Σ1,1, Σ2,2. The two other properties are shown in a similar way. ⋄

4.2 An example

We give in this section an example of a two dimensional process (X1(t), X2(t)) observed non syn-

chronously. We assume that (X1(t)) is observed at time t1k = 2kπ/n for k = 0, . . . , n, and thus

ϕ1
n(t) = 2kπ/n if 2kπ/n ≤ t < 2(k+1)π/n. The process (X2(t)) is observed at time t2k = 2πk/n+π/n,

for k = 0, . . . , n− 1, yielding to ϕ2
n(t) = 2kπ/n + π/n, for 2kπ/n + π/n ≤ t < 2(k + 1)π/n + π/n. We

also assume that we observe X2(0) and X2(2π). This situation of alternate sampling is studied in [7]

too. Although being a particular case of non synchronous observation, its main advantage is that all

computation are explicitly tractable here. Our aim is to estimate the covolatility Σ1,2
t = (σ1∗σ2)(t)

and we consider the Fourier estimator Γ1,2
N,n(h) defined by the equations (41)–(42) of the previous

section. We first establish that the estimator Γ1,2
N,n(h) is not consistent but we have an explicit bias.
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Theorem 4 Let h be a continuous function then, under H1–H2, Γ1,2
N,n(h) converges in probability to

1

2π

∫ 2π

0
h(t)Σ1,2(t)dt

sin(aπ)

aπ

as N and n go to infinity and N/n goes to a ∈ R+.

If a = 0, which means that the number of observations n goes faster to infinity than the number of

Fourier coefficients N , the effect of non synchronous data disappear and we have a consistent estimator

of the integrated volatility 1
2π

∫ 2π
0 h(t)Σ1,2(t)dt. If a ∈ N

∗, Γ1,2
N,n(h) goes to zero and the estimation

method seems useless. Finally if a /∈ N, a consistent estimator is given by aπ
sin(aπ)Γ

1,2
N,n(h).

Proof Using the proposition 1 we just determine the limit of
∫ 2π
0 d1,2

N,n(t, t)f(t)dt for any continuous

function f . One can easily see that
∫ 2(k+1)π/n

2kπ/n
d1,2

N,n(t, t)f(t)dt = dN (−π

n
)

∫ 2kπ/n+π/n

2kπ/n
f(t)dt + dN (

π

n
)

∫ 2(k+1)π/n

2kπ/n+π/n
f(t)dt,

and consequently
∫ 2π

0
d1,2

N,n(t, t)f(t)dt = dN (
π

n
)

∫ 2π

0
f(t)dt.

We conclude the proof observing that dN (π
n) converges to sin(aπ)

aπ . ⋄

Remark 3 We could treat, in the same way, more general non synchronous sampling. Indeed if X1

is sampled at times t1k = 2kπ/n and X2 at times t2k = (2k + s)π/n, where s in any fixed shift in )0, 1(,

we can show that the bias factor becomes s
sin(2π(1 − s)a)

2π(1 − s)a
+(1− s)

sin(2πsa)

2πsa
. However the associated

central limit theorem is not explicit except if s = 1/2.

We study now the rate of convergence of the estimator Γ1,2
N,n(h) and give some explicit limit.

Theorem 5 We assume that H1, H2 and H3 hold true, that h is a function with a bounded derivative,

and that N and n go to infinity such that N/n = a + o(1/
√

n) as n → ∞, with a > 0. Then
√

n(Γ1,2
N,n(h) − 1

2π

∫ 2π
0 h(t)Σ1,2(t)dt sin(aπ)

aπ ) converges stably in law to

1√
2π

∫ 2π

0
|h(s)|

√

γ1(a)(σ1∗σ1)(s)(σ2∗σ2)(s) + γ2(a)(σ1∗σ2)2(s)dW̃ (s),

where W̃ is a brownian motion independent of W and where γ1 and γ2 are defined by

γ1(a) = 2π(η(a) − η(2a)), (48)

γ2(a) = π(η(a) − η(2a)) +
sin 2πa

8a2
(1]0,1/2[(r(a)) − 1]1/2,1[(r(a))). (49)
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Remark that for a ∈ N we have γ1(a) = γ2(a) = 0 and the estimator Γ1,2
N,n(h) converges (to zero) faster

than the rate
√

n.

Proof We will use Theorem 3. First, observe that

1

2π

∫ 2π

0
d1,2

N,n(t, t)h2
n(t)Σ1,2(t)dt = dN (

π

n
)

1

2π

∫ 2π

0
h2

n(t)Σ1,2(t)dt,

consequently,

1

2π

∫ 2π

0
d1,2

N,n(t, t)h2
n(t)Σ1,2(t)dt − 1

2π

∫ 2π

0
h(t)Σ1,2(t)dt

sin(πa)

πa
= o(

1√
n

) (50)

as soon as

dN (
π

n
) − sin(πa)

πa
= o(

1√
n

),

which is equivalent to the condition given in the statement of the theorem: N/n − a = o( 1√
n
).

Now, the following lemma with theorem 3 and (50) give the result. ⋄

Lemma 3 Let g a continuous bounded function on R
2 and assume that N and n go to infinity with

N/n → a > 0 then we have ∀t ∈ [0, 2π[ :

i) limN,n n
∫ t
0

∫ s
0 d1,2

N,n(s, u)2g(s, u)duds = γ1(a)
∫ t
0 g(s, s)ds,

ii) limN,n n
∫ t
0

∫ s
0 d2,1

N,n(s, u)2g(s, u)duds = γ1(a)
∫ t
0 g(s, s)ds,

iii) limN,n n
∫ t
0

∫ s
0 d1,2

N,n(s, u)d2,1
N,n(s, u)g(s, u)duds = γ2(a)

∫ t
0 g(s, s)ds,

where γ1 and γ2 are defined in Theorem 5.

iv) ∀p > 1,∀j ∈ {0, 1}, supc∈[0,2π]

∫ 2π
0

∣

∣

∣
dN (ϕj

n(t) − c)
∣

∣

∣

p
dt ≤ Cp/n.

Proof i) Let s ∈ [0, t], we have

n
∫ s
0 d1,2

N,n(s, u)2g(s, u)du = n
∫ s
ϕ1

n(s) d1,2
N,n(s, u)2g(s, u)du + n

∫ ϕ1
n(s)

0 d1,2
N,n(s, u)2g(s, u)du

= V 1
N,n(s) + V 2

N,n(s).

Now if u ∈ [ϕ1
n(s), s], |ϕ1

n(s) − ϕ2
n(s)| = π/n and then d1,2

N,n(s, u) = dN (π/n). This gives

V 1
N,n(s) = ndN (π/n)2

∫ s

ϕ1
n(s)

g(s, u)du,

and finally

lim
N,n

∫ t

0
V 1

N,n(s)ds = π
sin2(aπ)

(aπ)2

∫ t

0
g(s, s)ds.
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To compute the limit of V 2
N,n(s), we make the change of variable v = ϕ1

n(s)+2π/n−u. One can easily

check that ϕ2
n(u + 2kπ/n) = ϕ2

n(u) + 2kπ/n and that ϕ2
n(−u) = −ϕ2

n(u)− 2π/n, du a.e., if |u| ≥ π/n.

This leads to

V 2
N,n(s) = n

∫ ϕ1
n(s)+2π/n

2π/n
d2

N (ϕ2
n(v))g(s, ϕ1

n(s) + 2π/n − v)dv.

Now since ϕ1
n(s) + 2π/n ≤ t < 2π, we have for all ε > 0 :

lim
N,n

n

∫ ϕ1
n(s)+2π/n

ε
d2

N (ϕ2
n(v))g(s, ϕ1

n(s) + 2π/n − v)dv = 0.

But we can establish for 0 < ε < π

lim
N,n

n

∫ ε

2π/n
d2

N (ϕ2
n(v))dv = π

(

2(η(a) − η(2a)) − sin2(aπ)

(aπ)2

)

, (51)

it yields that

lim
N,n

V 2
N,n(s) = π

(

2(η(a) − η(2a)) − sin2(aπ)

(aπ)2

)

g(s, s),

and finally

lim
N,n

∫ t

0
(V 1

N,n(s) + V 2
N,n(s))ds = 2π(η(a) − η(2a))

∫ t

0
g(s, s)ds = γ1(a)

∫ t

0
g(s, s)ds.

It remains to establish (51) to finish the proof of i). Let ϕ2
n(ε) = (2kε + 1)π/n. We have

lim
N,n

n

∫ ε

2π/n
d2

N (ϕ2
n(v))dv = lim

N,n

∫ ϕ2
n(ε)−π/n

2π/n
d2

N (ϕ2
n(v))dv, (52)

but

n
∫ ϕ2

n(ε)−π/n
2π/n d2

N (ϕ2
n(v))dv = n

∑kε−1
k=1

∫ 2π(k+1)/n
2πk/n d2

N (ϕ2
n(v))dv

= nπ/n
∑kε−1

k=1

(

d2
N ((2k − 1)π/n) + d2

N ((2k + 1)π/n)
)

.

By dominated convergence, we have

lim
N,n

kε−1
∑

k=1

(

d2
N ((2k − 1)π/n) + d2

N ((2k + 1)π/n)
)

=
∑

k≥1

(

sin2(aπ(2k − 1))

(aπ(2k − 1))2
+

sin2(aπ(2k + 1))

(aπ(2k + 1))2

)

.

Now recalling that η(a) =
∑

k≥1
sin2(aπk)
(aπk)2

we deduce

∑

k≥1

sin2(aπ(2k − 1))

(aπ(2k − 1))2
= η(a) − η(2a),

and consequently (51) is proved.
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We prove ii) on the same way by introducing the decomposition

n
∫ s
0 d2,1

N,n(s, u)2g(s, u)du = n
∫ s
ϕ2

n(s) d2,1
N,n(s, u)2g(s, u)du + n

∫ ϕ2
n(s)

0 d2,1
N,n(s, u)2g(s, u)du

= V 1
N,n(s) + V 2

N,n(s).

As previously it is easy to see that

lim
N,n

∫ t

0
V 1

N,n(s)ds = π
sin2(aπ)

(aπ)2

∫ t

0
g(s, s)ds.

To compute the limit of V 2
N,n(s), we set v = ϕ2

n(s) + π/n − u. We observe that ϕ1
n(u + 2kπ/n) =

ϕ1
n(u) + 2kπ/n and that ϕ1

n(−u) = −ϕ1
n(u) − 2π/n, du a.e. This gives

V 2
N,n(s) = n

∫ ϕ2
n(s)+π/n

π/n
d2

N (ϕ1
n(v) + π/n)g(s, ϕ2

n(s) + π/n − v)dv.

We conclude as in i) remarking that for 0 < ε < π

lim
N,n

n

∫ ε

π/n
d2

N (ϕ1
n(v) + π/n)dv = π

(

2(η(a) − η(2a)) − sin2(aπ)

(aπ)2

)

.

We turn now to iii). We have

n
∫ s
0 d1,2

N,n(s, u)d2,1
N (s, u)g(s, u)du = n

∫ s
ϕ1

n(s) d1,2
N,n(s, u)d2,1

N (s, u)g(s, u)du

+n
∫ ϕ1

n(s)
0 d1,2

N,n(s, u)d2,1
N (s, u)g(s, u)du,

= V 1
N,n(s) + V 2

N,n(s).

As in i) and ii)

lim
N,n

∫ t

0
V 1

N,n(s)ds = π
sin2(aπ)

(aπ)2

∫ t

0
g(s, s)ds.

It remains to identify limN,n V 2
N,n(s). Let v = ϕ1

n(s) + 2π/n − u, we have

V 2
N,n(s) = n

∫ ϕ1
n(s)+2π/n

2π/n
dN (ϕ1

n(v) + ϕ2
n(s) − ϕ1

n(s))dN (ϕ2
n(v))g(s, ϕ1

n(s) + 2π/n − v)dv,

Now for 0 < ε < π and ϕ1
n(ε) = 2πkε/n,

lim
N,n

n

∫ ε

2π/n
dN (ϕ1

n(v) + ϕ2
n(s) − ϕ1

n(s))dN (ϕ2
n(v))dv = π lim

N,n

kε
∑

k=1

dN ((2k + δn(s))π/n) (dN ((2k − 1)π/n)

+dN ((2k + 1)π/n)) , (53)

where δn(s) = 1 if 2kπ/n + π/n ≤ s < 2(k + 1)π/n and δn(s) = −1 otherwise. We deduce then that

lim
N,n

∫ t

0
V 2

N,n(s)ds =
π

2

∑

k≥1

(

sin((2k + 1)πa)

(2k + 1)πa
+

sin((2k − 1)πa)

(2k − 1)πa

)2 ∫ t

0
g(s, s)ds. (54)
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A tedious calculation gives

∑

k≥1

sin((2k + 1)πa)

(2k + 1)πa
.
sin((2k − 1)πa)

(2k − 1)πa
= −1

2

sin2(πa)

(πa)2
+

sin(2πa)

8πa2
(1]0,1/2[(r(a)) − 1]1/2,1[(r(a))), (55)

and putting this together we obtain

lim
N,n

∫ t

0
V 2

N,n(s)ds = π

(

(η(a) − η(2a)) − sin2(πa)

(πa)2
+

sin(2πa)

8πa2
(1]0,1/2[(r(a)) − 1]1/2,1[(r(a)))

)

,

and finally

lim
N,n

∫ t

0
(V 1

N,n(s) + V 2
N,n(s))ds = π(η(a) − η(2a)) +

sin(2πa)

8a2
(1]0,1/2[(r(a)) − 1]1/2,1[(r(a))) = γ2(a).

iv) This property easily follows by simple computations with the condition N/n → a > 0. ⋄

4.3 Numerical results

We study the behaviour of the estimator on simulated data with a Monte Carlo method.

We first consider the framework of Section 3 and assume, for simplicity, that Xt = Bt. The data

are collected at the instants i2π/n with i = 0, . . . , n− 1 and the estimator is Γ1,1
N,n := Γ1,1

N,n(h) given by

(25) with h ≡ 1. Hence, we are estimating the integrated volatility 1
2π

∫ 2π
0 Σ1,1

s ds which is equal, here,

to the constant 1. The figure 1 shows the mean value and the standard deviation of the estimator in

the case n = 100 and for values of N ranging from N = 20 to N = 1000. We made 10000 replications.

It is clear that the estimator has no bias whatever is the choice for N . According to theorem 2 the

optimal choices of N , for minimizing the variance, are such that 2a ≈ 2N/n ∈ N∗. We see that if

N < n/2 = 50, the standard deviation increases while N decreases. This is natural since the variance

in theorem 2 ii) explodes as a → 0, actually we know that when N is too small (a ≈ 0) the right rate

of estimation is 1/
√

N (see remark 1). The choice N = 50 corresponds to a = 1/2 and is optimal,

moreover, on the figure 1 the standard deviation seems almost constant for N > n/2 = 50. In graph

2 we plot the variance of the estimator multiplied by n for N = 50 to N = 1000. We, now, clearly see

that 2N/n ∈ N∗ give minimal variances and the deviations are a bit higher otherwise. However, as

N/n becomes very large, the variance of the estimator tends to the optimality, which is natural since

the estimator becomes similar to the quadratic variation estimator (recall (26)).

We now consider the case of asynchronous data studied in section 4.2. We focus on the simple case,

X1
t = Bt and X2

t = Bt for t ∈ [0, 2π], yielding to a constant integrated covolatility 1
2π

∫ 2π
0 Σ1,2

t dt = 1.

The process X1 (respectively X2) is observed at the instants 2iπ/n (resp. (2i+1)π/n). The estimator
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Γ1,2
N,n := Γ1,2

N,n(h) given in (41)–(42) with h ≡ 1 is biased by theorem 4, thus we define a corrected

version:

Γunbiased
N,n =

(

sin(πN/n)

πN/n

)−1

Γ1,2
N,n

when sin(πN/n) 6= 0. If N/n → a > 0 and a /∈ N then, by theorem 4, Γunbiased
N,n is a consistent estimator

of the covolatility. Moreover the theorem 5 with simple computations implies that,
√

n(Γunbiased
N,n −

1)
n→∞−−−→ N (0, v(a)) where

v(a) =
3π2

4 sin(πa)2
(

r(a)1{r(a)∈(0,1/2]} + (1 − r(a))1{r(a)∈(1/2,1)}
)

+
π

8

sin(2πa)

sin(πa)2
(1{r(a)∈(0,1/2)}−1{r(a)∈(1/2,1)}).

The variance of the estimator, v(a), is a 1-periodic function of a and it is easy to check that v(a) ∼a→0

1/a, which reflects that
√

n is not the right rate of convergence for a = 0. As a → 1−, we readily

have v(a) ∼ 1/(1 − a), which shows that the divergence of the factor πa
sin(πa) is partially compensated

by the cancellation of γ1(a) and γ2(a) for a = 1 (recall (48)–(49)). In figure 3, we plot the graph of

the function v for a ∈)0, 1(. Numerically, the variance is minimized for a ≃ 0.42 and a ≃ 0.58 where

v(a) ≃ 3.52. This is very close to the theoretical variance, 7/2, of the ’non synchronous covariance

estimator’ introduced by Hayachi and Yoshida [6] [7]. Contrarily to the synchronous case, the choice

a = 1/2 does not yield to the minimum variance, however v(1/2) = 3π2/8 ≃ 3.70 remains close to the

optimal choice.

In figure 4 we show the empirical mean and standard deviation of the estimator for n = 100 and

with N ranging from 10 to 90. It is clear that the estimator is unbiased and the standard deviation

remains low on all this range of choice for N . In figure 5, we plot the variance multiplied by n for

N = 10 to N = 90. The graph shows a good concordance with the theoretical values shown in figure

3. On the whole, it appears that the estimator performs well for estimating the integrated co-volatility

and is not very sensitive to the choice of N ∈ {30, . . . 70}.
An other conclusion of this case study is that using the non-corrected version of the estimator (42)

would give poor results. Indeed, keeping the bias low would yield to a choice of the ratio N/n close

to zero, which in turn deteriorates the variance of estimation, since
√

n is not any more the rate of

estimation for a = 0.
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Figure 1: Mean (solid line) and standard deviation (dashed line) of Γ1,1
N,n.
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Figure 2: Variance of Γ1,1
N,n multiplied by n as a function of N .
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Figure 3: Plot of the function v
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Figure 4: Mean (solid line) and standard deviation (dashed line) of Γunbiased
N,n as a function of N . Non

synchronous case.
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Figure 5: Variance of Γunbiased
N,n multiplied by n as a function of N . Non synchronous case.
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