
HAL Id: hal-00454460
https://hal.science/hal-00454460v1

Submitted on 8 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semantic language for querying anonymous web
sources

François Pinet, Michel Schneider

To cite this version:
François Pinet, Michel Schneider. A semantic language for querying anonymous web sources. Lecture
Notes in Computer Science, 2008, 5178, p. 106 - p. 116. �hal-00454460�

https://hal.science/hal-00454460v1
https://hal.archives-ouvertes.fr

I. Lovrek, R.J. Howlett, and L.C. Jain (Eds.): KES 2008, Part II, LNAI 5178, pp. 106–116, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Semantic Language for Querying Anonymous Web
Sources

François Pinet1 and Michel Schneider1,2

1 Cemagref, 24 Avenue des Landais, 63172 Aubière Cedex, France
2 LIMOS, Complexe des Cézeaux, 63173 Aubière Cedex, France

{francois.pinet, michel.schneider}@cemagref.fr

Abstract. A great deal of work has been carried out in recent years to facilitate
access to data and information available on the Web. Proposals converge in
two additional areas which consist in providing the sources with semantic anno-
tations and in designing languages and tools that are capable of using these an-
notations. However, a large number of sources have not yet been annotated
suitably. Besides, languages and existing tools do not allow the user to formu-
late "blind" queries without knowing the sources. To overcome these two limi-
tations, in this paper we propose a flexible query language which allows a user
to query sources in an anonymous way without knowing their existence and
their structure. Queries can be solved by a system which in advance discovers
potential sources and memorizes their schemas. We clarify how such a system
can function.

1 Introduction

A large number of works in recent years have shown interest in the problem of re-
trieving data, documents, and knowledge available on the Web. The need to annotate
available resources in order to facilitate their search is now well recognized. Com-
plementary proposals have therefore been formulated, on one hand to annotate re-
sources in computable semantic forms, and on the other hand to implement languages
and systems capable of exploiting these annotations. Particular efforts have been
devoted to the retrieval of knowledge and meta-data by benefiting from W3C stan-
dards. A synthesis of this trend can be found in [1]. It can also be observed that a
certain number of works use these same standards for the retrieval of texts in docu-
ments [17]. Data retrieval from structured or semi-structured sources has also been
subject to numerous investigations notably with a view to integration and mediation
[3, 6, 15, 23]. The advantage of this type of approach is that it offers the user an inte-
grated view of the data through a global schema. Its main drawback is the difficulty in
maintaining the global schema when a source evolves or when a new source is inte-
grated. Blind interrogation (without a view of a schema) of separate sources is an
approach which has been investigated only to a lesser extent. Nevertheless such needs
do exist. A simple example is the search for bibliographical information about works
and authors among the different bibliographical sources available on the Web (e.g.
what is the price of the book "Introduction to relational Databases", one author of

 A Semantic Language for Querying Anonymous Web Sources 107

which is "Date"). It would be interesting to have a simple and structured language for
querying these sources without knowing what their schema is (or even their exis-
tence), only from the concept names of the domain and from their relationships.

The works concerned by data searches in XML sources from keywords are quite
close to our objective [2, 10, 14]. In these works it is a question of offering the user
simple access without having to use Xpath or Xquery. Therefore an interface based
on keywords is recommended. It is indeed a very simple device for the user but it
introduces ambiguities in the specification of relationships (between concepts) and
results. This problem of ambiguities is the source of interesting challenges for which
satisfactory solutions are not yet completely available. To a certain extent these pre-
occupations are similar to those aiming to improve the efficiency of Web search
engines [5, 7, 12, 13, 21, 22, 24].

We are convinced that it is possible to propose a simple and flexible language for
the end user to achieve this kind of objective. The language SemanticSQL, which we
present in this paper, interprets the intention of the user from the names of concepts
and their relationships. It does not require the user to know the schemas of the sources
or their existence. This language is qualified as flexible because it can adapt to badly
annotated sources as well as richly annotated sources. We further show that a query in
this language can be fairly matched with the schemas of relational sources or XML
sources. We then sketch the functioning of a system capable of interpreting and re-
solving a user query. Such a system must discover the potential sources available on
the Web in advance and memorize theirs schemas.

The paper is organized as follows. In section 2 we present the syntax of our
language. In section 3 we give some indications on how the user and the system can
co-operate. Section 4 defines the notion of valid query. In section 5 we explain the
general matching process between a query and a potential source. Section 6 sets out
details on how links matchings can be established. Section 7 provides comments on the
results of certain experiments. Section 8 concludes and suggests some perspectives.

2 Syntax of the SemanticSQL Query Language

The syntax of our query language is organised in the same fashion as SQL. The query is
divided up into three clauses with the reserved words "select", "from" and "where". As
in SQL the "select" clause specifies the result of the query and the "where" clause speci-
fies the condition which must be satisfied. The "from" clause has a different meaning.
Since in our approach the user does not know the schemas of the sources, it cannot
designate the structures from which the result must be extracted. So in the "from" clause
the user indicates the names of types which he thinks might exist in the sources. An
optional "on" clause makes it possible to restrict the query to certain sources.

The general form of a query is as follows:

Select list_of_variables from list_of_type_variable_pairs
[where list_of_conditions] [on list_of_sources]

list_of_variables: This is a list of variables introduced by the user. Names of vari-
ables are freely chosen by the user and are separated by commas. Names of variables
are not related to the semantics of the query

108 F. Pinet and M. Schneider

type_variable_pair: This is a pair separated by a space composed of a type name
and a variable name. It is used to allocate a variable to a type, so a variable marks an
instance of a given type. Names of types in this clause are of great importance. They
are directly related to the semantics of the query. Such pairs allow the user to specify
the meaning of the objects which he is looking for.

list_of_type_variable_pairs: This is a list of type_variable_pairs separated by
commas.

list_of_conditions: This is a list of conditions separated by commas where the
comma has a particular significance: it marks the "and" operator. So the global condi-
tion of the where “clause” is true if each separate condition in this list is true.

condition := valuation_condition | link_condition
valuation_condition := elementary_condition |

 (valuation_condition_1 or valuation_condition_2) |
 (valuation_condition_1 and valuation_condition_2) |

elementary_condition := variable_name op constant | variable_name_1 op vari-
able_name_2

op := > | < | >= | <= | <> | =
link_condition: := variable_name_1()variable_name_2 |

 variable_name_1(role_name)variable_name_2 |
 variable_name_1@variable_name_2

The first kind of conditions is used to constrain the values of a variable.
The second kind of conditions allows the user to specify the existence of links be-

tween query variables. This specification is made on a pair basis with the double
symbol (). For example a()u means that the two variables a and u must be connected
through some link. We can indicate the meaning of the link between the parentheses.
For example a(write)b means that a must be connected to b through a link which
means that "a writes b". The connection between a type and one of its attributes or
data type properties is specified by the notation a@n.

The notation a()b specifies a non oriented link. The other two notations correspond
to oriented links (from variable1 to variable2).

list_of_sources: This is a list of source names separated by commas.
The "where" and the "on" clauses are optional.

Example: Here is an example of a concrete query
Q1: Select n, t from book b, title t, author a, name n, university u where

a(write)b, a@n, b@t, a()u, u='Stanford'
Query Q1 can be paraphrased as follows: search for the tuples [n, t] where n is an

attribute which represents the name of an author a, t is an attribute which represents
the title of a book b, a wrote b, a is linked to a university, the value of which is 'Stan-
ford' (the semantics of the link does not matter).

Interpretation of a query: The interpretation of a query in our language is as follows:
give all possible values for the list_of_variables which satisfy the condition of
the where clause, each variable taking its values from among those of the type it
represents.

 A Semantic Language for Querying Anonymous Web Sources 109

3 Respective Responsibilities of the User and the System

In our approach we suppose that the user possesses some knowledge about the do-
main and its potential information (names of types, structures of these types). But it is
not required that he knows the schema of the sources. In this section we give some
indications on how the user and the system can cooperate in order to pose and to an-
swer a query.

Source names
The user does not need to know the source names or the existence of certain sources.
In such a case, the system should choose those that are the most suited to the user
query from among the sources of its directory. Further along the user can indicate to
the system sources concerned by its query.

Type names
The user chooses the most suitable names for each of the types concerned by his
query. The choice of these type names is particularly important because it induces the
interpretation of the query by the system. The user may be able to use an ontology of
the domain known from the system. The system can widen its interpretation to syno-
nyms and even to hyponyms of each of the names.

Link conditions
Even then, the user will fill in the links that he considers to be most plausible between
the types which he has specified in the "from" clause. A named link should be pre-
ferred in order to facilitate the resolution of the query. However names of links
(which correspond to names of properties or associations in the schemas of certain
sources) can show considerable variety. This variety can make it difficult for the sys-
tem to identify the sources which correspond best to the user's wish. Moreover links
are not always named (as in the case of relational and XML sources). In certain cases
it will be better to choose an anonymous link and to let the system identify the possi-
bilities offered with sources. If the number of possibilities is too great, a dialogue with
the user can make it possible to limit the search space. Usage of links such a@b can
be restrictive. Certain sources (notably XML sources) can treat attributes as standard
elements. So it will be necessary for the system to look for all the possible links which
can exist between a and b even though the user indicates an attribute.

Valuation conditions
By specifying a valuation condition of the form "variable_name_1 op constant" the
user supposes that type T associated to variable_1 is atomic and is compatible with the
type of the constant. If for a given source, this type T is not atomic, a correct compari-
son cannot occur. So the system may search, from among the attributes or the descen-
dants of this type, for some atomic type which can represent type T and whose value
can be compared with the constant. This atomic type must be representative of type T.
We can use the ontology to help in its identification. For example a non atomic type
can be represented by an atomic type whose name is: "name", "label", …. The same
problem arises for a valuation condition of the form "variable_name_1 op vari-
able_name_2". For each type associated to the two variables, atomic descendants will
need to be looked for whose values can be compared.

110 F. Pinet and M. Schneider

Form of the result
Depending on the sources, a type in the result can be atomic or structured. The display
of the value of a structured type can create problems. It can be agreed that the value is
the concatenation of the values of its atomic types. Alternatively, the system can dis-
play only the value of an element which identifies the result.

4 Valid Query

In order to be valid, a query has to respect certain constraints. We shall clarify these
constraints by representing the query by a graph.

A query graph is constructed as follows. Each type is represented with a node
which carries the name of the type. Each link between two variables is represented
with an edge between the two associated types. A link a()b is represented with a non
directed edge. A link a(role) b is represented with a directed edge from a towards b;
this edge is labelled by role. A link a@b is represented with a directed edge in a dot-
ted line from a towards b.

Definition (valid query): A query is valid if its graph is connected and with at most a
single edge between each pair of nodes.

These constraints are justified as follows. First, if the graph is not connected, there are
at least two separated components which each correspond to independent sub-queries.
If there are two edges between the same pair of nodes, then there is a redundancy or
incoherence in the meaning of the link which the user wishes to specify between the
corresponding types.

university

=’Stanford’

book author

title ? name ?

write

Fig. 1. Query graph of Q1

Query graph of Q1 is represented in figure 1 (the types are represented by ovals
and the attributes by rectangles). This graph respects the two validity constraints and
query Q1 is therefore valid.

5 General Principles for Matching a Query with Potential Sources

Answering the query means finding a correspondence between the query and each of
the schemas of the potential sources.

Since a query can be represented by a graph, a solution for this problem consists in
using a matching technique to establish this correspondence. Many matching algo-
rithms have been suggested [4, 8, 16, 19, 20]. However these algorithms are difficult

 A Semantic Language for Querying Anonymous Web Sources 111

to adjust. Besides, a query in our language is a very simple object compared to a
schema and it would be interesting to study specific approaches for establishing a
matching.

In this section we also provide a number of general indications on how the system
can answer a query expressed with our language.

The matchinghas to consider two kinds of element: the names of types and the
links between types. To obtain suitable answers for a query we suggest an approach
consisting in first establishing the matching between the type names. It is only when a
matching can be found for each type name that a source will be selected for the
matching of links.

The matching of names can be very difficult if names are constructed freely by the
users and the designers. We will suppose, in order to facilitate this stage, that the
names of types in queries respect a domain ontology. So the ontology can provide a
list of synonyms and a list of hyponyms for each type name of the query. The match-
ing of a name with a source is then tested first with the name itself, then with its
synonyms, then with its hyponyms. We do not require the names in the sources to
respect the ontology. So names in sources are previously transformed in order to fa-
cilitate matching. Different kinds of string transformations have been proposed [4]
and some of them are very efficient. For a given pair (a query, a schema), several
possibilities of matching can exist for each query name. It is necessary to consider all
the possibilities for the following stage of matching the links.

6 Some Guidelines for Matching the Links with XML Sources

In this section we provide a certain number of guidelines for matching links between
a query and the schema of a XML source. Similar guidelines can be drawn with rela-
tional sources.

To illustrate these guidelines we consider the XML source of figure 2 which is a
potential candidate for answering Q1.

The matching of type names gives the following correspondences:

 title → title (of book)
 name → name (of author), name (of grading_university, ofworking_university)
 book → book
 author → author
 university → grading_university, working_university

So each type name for the query has at most one correspondence in the source.
Subsequently we can try to match the links.

For the links book()title and author()name we can detect the correspondents easily
(link between an element and one of its son for the first, link between an element and
one of its attribute for the second). For the link author(write)book, it does not appear
in the source a direct link between "author" and "book". But we observe that the word
"writing" matches with "write" (the correspondence is established after lemmatiza-
tion). So, we can compose the author writing link (child-parent link) with the writ-
ing book link (parent-child link) to establish a correspondence. Another problem is

112 F. Pinet and M. Schneider

that there are two links between "author" and "university" with two different mean-
ings. In this case the system must propose the two possibilities and the user can then
choose one of them. The last problem is that of the valuation condition university =
"Stanford”. If we consider the first correspondence (university→ grading_university),
it is not possible to make the comparison directly. The system must detect that there is
an atomic type which can represent the grading_university type and which permits the
comparison. The attribute "name" can play this role. The automatic detection of such
a possibility in all the possible situations is a difficult problem. The ontology of the
domain can provide a certain number of indications. Otherwise, the system can dis-
play a partial schema of the source in order to ask for the user's opinion. For this
valuation condition, another alternative is possible by considering the other corre-
spondence university→ working_university. In this other case the comparison can be
made using also the attribute "name".

A matching can thus be established for each link. The solution is not unique be-
cause there are two variants for the valuation condition.

author

title

book

writing date

number

name

address

working_university

grading_university

name

cityname

city

isbn

publisher

attribute(s)

element

Fig. 2. XML tree for a source which matches with query Q1

In figure 3, we show the XML tree for another XML source with the same ele-
ments but organized differently. Although the link between book and author is not
semantically characterized, the system must select this source for a matching with
query Q1. The user will then confirm or not.

author

title

book
number

address

working_university

grading_university

name

city name

city

isbn

publisher

name

attribute(s)

element

Fig. 3. XML tree for a second source which matches with query Q1

 A Semantic Language for Querying Anonymous Web Sources 113

The XML source for which the element book would be a child of the element au-
thor (and not the parent as in figure 4) must also be selected by the system for the
same query.

We formalize the previous analysis by the following rules.

R1: The link a()b of the query matches with a source S if A is a correspondent of a in
the source, B is a correspondent of b and one of the following conditions holds:

i) it exists a direct link A,B or B,A in the source or B is an attribute of A or A is
an attribute of B

ii) there exist a direct link A,C or C,A in the source and a path C,…,B where C
and each intermediate node are in a relation of synonymy or hyperonymy or
hyponymy with B

iii) same as ii) by exchanging the roles of A and B.

R2: The link a(c)b of the query matches with a source S if A, B, C are respectively
correspondents of a, b, c in the source and one of the following conditions holds:

i) there exist a direct link A,C or C,A and a direct link C,B in the source or
(symmetric case) there exist a direct link B,C or C,B and a direct link C,A

ii) there exist a path A,…,C or C,…,A in the source and a path C,…, B where
each intermediate node is in a relation of synonymy or hyperonymy or hy-
ponymy with A (resp. B)

iii) same as ii) by exchanging the roles of A and B.

R3: The link a@b of the query matches with a sources S if A is a correspondent of a
in the source, B is a correspondent of b and one of the following conditions holds:

i) B is an attribute of A or a simple child of A
ii) it exists a path A,…,B in the source where each intermediate node is in a

relation of synonymy or hyperonymy or hyponymy with A and B is a simple
element

iii) it exists a path A,…,E in the source where each intermediate node and E are in
a relation of synonymy or hyperonymy or hyponymy with A and B is an at-
tribute of E.

R4: The condition a=v of the query matches with a source S if A is a correspondent of
a in the source and one of the following conditions holds:

i) A is a simple element or an attribute (the condition is tested with A)
ii) it exists a path A,…,D in the source where each node is in a relation of synon-

ymy or hyperonymy or hyponymy with A and D is a simple element (the con-
dition is tested with D)

iii) it exists a path A,…,E where each intermediate node and E are in a relation of
synonymy or hyperonymy or hyponymy with A and it exists an attribute of E
having a name like ("name", "label", "description") (the condition is tested
with this attribute.

Similar rules can be specified for relational sources.

114 F. Pinet and M. Schneider

7 Prototype and Experiments

To verify the ability of the language and the feasibility of our approach we have built
a small prototype and conducted a number of experiments with XML sources. We
used WORDNET [18] to help with the matching of names. Access to WORDNET
was made through the JAVA API Java WordNet Library [11]. The body of the
matcher was written in JAVA. For every link of the query, the various cases of match-
ings identified in section 5 are tested successively by considering all the possibilities
offered with synonyms and hyponyms (at most level 3) for names. However matching
of names is restricted to the domain (by using the ontology) to avoid meaning misun-
derstanding. We have only tested queries with links of the type a()b and conditions.

In the first stage, our experiments were conducted on six different XML sources
containing data on sales of products. Sources were built manually. They contained
from 8 to 14 elements. Every element had on average two attributes. We submitted
ten different queries to the system. The matchings performed quite well. 90% of the
total returned matchings were correct and 85% of the total correct matchings were
retrieved. The incorrect matchings resulted essentially from a bad detection of the
type replacement in the valuation conditions.

In the second stage we implemented a module in our prototype to discover poten-
tial sources in the same domain (sales of product) on the Web and to memorize their
DTD. After validation by the administrator, 10 different sources were then incorpo-
rated into the system. We submitted the same 10 queries and we observed that the
matchings performed badly. It appears in fact that several element names in the DTD
were abbreviations which cannot be handled correctly by our string transformations.
So we decided to create a specific dictionary for the management of these abbrevia-
tions and we significantly increased the efficiency of the matches. 80% of the re-
turned matchings were correct. Bad type replacements partially explained incorrect
matchings. Another cause of error was observed: a nonsense in the matching of
names. These sources were rather complex and it was difficult to list manually all the
correct matchings for each query. We estimated that the prototype had discovered
about 75 % of them.

From these experiments it appears that the approach is realistic. The main points
which condition its efficiency are the type replacement in valuation conditions and the
detection of the meaning of names.

8 Conclusion and Perspectives

In this paper we proposed a query language for a final user which allows blind ac-
cesses to Web data sources. The user formulates his query by specifying the names of
types and relationships between these types. It is not necessary for the user to know
the existence of sources or their schemas.

This language is flexible. It can adapt to sources whether well annotated or not.
We discussed how a system can analyze a query and elaborate the results. Such a

system must discover the potential sources in advance (for the considered domain)
and memorize their schemas. To answer a query it first has to look for the matchings
of names and then for the matchings of links. It proposes all the solutions and the user

 A Semantic Language for Querying Anonymous Web Sources 115

validates those with which he is interested. The system can then rewrite the query for
the corresponding sources.

We conducted experiments with XML sources which establish the efficiency of the
language and the feasibility of the approach. Matchings can be improved on two
points: type replacement in the valuation conditions and detection of the meaning of
names. Concerning this last point one can reduce the ambiguities by working in a
precise domain. It is possible also to take into account the profile of the user which
can be acquired through a dialogue or by observing the queries. One can also observe
how the user validates the solutions proposed by the system. Another way is to group
results according to their different meanings [9].

Others improvements can be envisaged. One could exploit the mappings which can
exist between sources to permit joins between these sources. The graph of a query is
very simple and expressive and it would be interesting to study how it can support a
graphical query interface. To improve the matching of links one also can ask the user
to indicate the cardinalities.

Such a system can be very useful for different applications. Incorporated into an
intranet system, it would allow a user to reach the data sources without knowing their
schemas, by being based only on the domain ontology. In a P2P system, it could be
installed on some peers or on super-peers to facilitate access to data by their semantics.

References

1. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Languages: A
Survey. Reasoning Web, 35–133 (2005)

2. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine for
XML. In: VLDB 2003, pp. 45–56 (2003)

3. Cui, Z., Jones, D., O’Brien, P.: Issues in Ontology-based Information Integration. In:
IJCAI, Seattle (2001)

4. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching
Approaches. In: VLDB 2002, pp. 610–621 (2002)

5. Duke, A., Glover, T., Davies, J.: Squirrel: An Advanced Semantic Search and Browse Fa-
cility. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 341–
355. Springer, Heidelberg (2007)

6. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.,
Vassalos, V., Widom, J.: The Tsimmis approach to mediation: Data models and languages.
Journal of Intelligent Information Systems 8(2), 117–132 (1997)

7. Goldschmidt, D.E., Krishnamoorthy, M.S.: Comparing keyword search to semantic search:
a case study in solving crossword puzzles using the GoogleTM API. Softw. Pract. Exper.
(SPE) 38(4), 417–445 (2008)

8. Hai Do, H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. Web,
Web Services, and Database Systems, pp. 221–237 (2002)

9. Hemayati, R., Meng, W., Yu, C.T.: Semantic-Based Grouping of Search Engine Results
Using WordNet. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) AP-
Web/WAIM 2007. LNCS, vol. 4505, pp. 678–686. Springer, Heidelberg (2007)

10. Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword Proximity
Search in XML Trees. IEEE Trans. Knowl. Data Eng (TKDE) 18(4), 525–539 (2006)

116 F. Pinet and M. Schneider

11. JWNL. Java WordNet Library,
http://sourceforge.net/projects/jwordnet

12. Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.: Avatar se-
mantic search: a database approach to information retrieval. In: SIGMOD 2006, pp. 790–
792 (2006)

13. Li, Y., Wang, Y., Huang, X.: A Relation-Based Search Engine in Semantic Web. IEEE
Trans. Knowl. Data Eng (TKDE) 19(2), 273–282 (2007)

14. Liu, Z., Walker, J., Chen, Y.: XSeek: A Semantic XML Search Engine Using Keywords.
In: VLDB 2007, pp. 1330–1333 (2007)

15. Lenzerini, M.: Logical Foundations for Data Integration. In: Vojtáš, P., Bieliková, M.,
Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 38–40.
Springer, Heidelberg (2005)

16. Madhavan, J., Bernstein, P.A., Rahm, R.: Generic Schema Matching with Cupid. In:
VLDB 2001, pp. 49–58 (2001)

17. Mangold, C.: A survey and classification of semantic search approaches. IJMSO 2(1), 23–
34 (2007)

18. Miller, G.: Wordnet: A Lexical Database for English. Communications of the ACM 38,
39–41 (1995)

19. Mohsenzadeh, M., Shams, F.: Teshnehlab M.: Comparison of Schema Matching Systems.
WEC (2), 141–147 (2005)

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

21. Royo, J.A., Mena, E., Bernad, J., Illarramendi, A.: Searching the Web: From Keywords to
Semantic Queries. In: ICITA 2005, pp. 244–249 (2005)

22. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-Based Interpretation of Keywords
for Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P.
(eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 523–536. Springer, Heidelberg
(2007)

23. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Com-
puter 25(3), 38–49 (1992)

24. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting Keyword Query to
Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P.
(eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg
(2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

