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Abstract

Mullon  et  al.  (2004)  proposed  a  dynamical  model  of  biomass  evolution  in the  Southern 

Benguela ecosystem, including five different groups (detritus, phytoplankton,  zooplankton, 

pelagic fish and demersal fish).  They studied this model in a viability perspective, trying to 

assess,  for  a  given  constant  yield,  whether  each  species  biomass  remains  inside  a  given 

interval, taking into account the uncertainty on the interaction coefficients. Instead of studying 

the healthy states of this marine ecosystem with a constant yield, we focus here on the yield 

policies which keep the system viable. Using the mathematical concept of viability kernel, we 

examine how yield management might guarantee viable fisheries. One of the main practical 

difficulties up to now with the viability theory was the lack of methods to solve the problem 

in large dimensions. In this paper, we use a new method based on SVMs, which gives this 

theory a larger practical potential. Solving the viability problem provides all yield policies (if 

any)  which guarantee a perennial  system.  We illustrate  our main findings  with numerical 

simulations.

Key  words:  Viability  theory,  marine  ecosystem,  fisheries  management,  Support  Vector 

Machines.
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Introduction

The viability theory (Aubin, 1991) aims at controlling dynamical systems with the goal to 

maintain them inside a given set of admissible states, called the viability constraint set. Such 

problems are frequent in ecology or economics, when systems die or badly deteriorate if they 

leave some regions of the state space. For instance Béné et al. (2001) studied the management 

of a renewable resource as a viability problem. They pointed out irreversible overexploitation 

related to the resource extinction. Bonneuil (2003) studied the conditions the prey-predator 

dynamics must satisfy to avoid extinction of one or the other species as a viability problem. 

Cury et al. (2005) consider viability theory to advise fisheries. 

Mullon  et  al.,  (2004)  proposed  a  dynamical  model  of  biomass  evolution  of  the  Southern 

Benguela ecosystem, involving five different groups (detritus, phytoplankton, zooplankton, 

pelagic fish and demersal fish). They studied this model in a viability perspective (Aubin, 

1991),  trying to assess,  for a given constant  yield,  whether each species biomass remains 

inside a given interval, taking into account the uncertainty on the interaction coefficients. The 

aim was to identify constant yield values that allow persistence of the ecosystem. We extend 

the problem and we focus here on the yield policies which keep the system viable, instead of 

considering a constant yield. 

Using the mathematical concept of viability kernel, we examine how yield management might 

guarantee viable fisheries.  The viability kernel designates the set of all viable states, i.e. for 

which there exists a control policy maintaining them within the set of constraints. Outside the 

viability  kernel,  there  is  no  evolution  which  prevents  the  system from collapsing.  Aubin 

(1991) proved the viability theorems which enable to determine the viability kernel, without 

considering  the  combinatorial  exploration  of  control  actions  series.  These  theorems  also 

provide the control functions that maintain viability.
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This general approach shows several interesting specific aspects:

- It can take into account the uncertainties on the parameters which are generally high in 

ecosystem modelling. Here, we manage the uncertainties like in (Mullon et al. 2004). 

- The  viability  kernel  can  define  a  variety  of  different  policies,  which  respect  the 

viability  constraints.  Therefore,  it  offers  more  possibilities  for  negotiations  and 

discussions among the concerned stakeholders than techniques which propose a single 

optimal policy. 

The main limitation of the viability approach is its computational complexity. The existing 

algorithm  for  viability  kernel  approximation  (Saint-Pierre,  1994)  supposes  an  exhaustive 

search in the control space at each time step. This makes the method impossible to use when 

the control space is of a 51 dimensions like in our problem. Mullon et al. (2004) solved this 

problem with a method which is only adapted to linear equations of evolution. Here, we use a 

new method, based on support vector machines, which can be applied to non-linear models as 

well (Deffuant et al. 2007). 

We present the viability model of the Southern Benguela ecosystem and we recall the main 

concepts of the viability theory. Then, we describe our main numerical results. We show the 

shape of the found viability kernel, and the corresponding possible yield policies. Finally, we 

discuss the results and draw some perspectives.

The viability model of the Southern Benguela ecosystem

Following a classical approach (Walters and Pauly, 1997), we suppose that the variation of 

the  biomass  of  species  i due  to  its  predation  by  other  species  j depends  linearly  on  the 

recipient and donor biomasses (Bj and Bi), with respective coefficients rji and dji. The biomass 

lost by species i due to the predation by the other species is expressed by equation (1):
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∑ +−=
→

j
ijijji

i BdBr
dt
idB

)(
)(

. (1)

The  variation  of  the  donor  biomass  Bi due  to  this  interaction  takes  into  account  the 

assimilation of the biomass of other species  j, multiplied by a growth efficiency coefficient 

(denoted below by gi). Therefore, the biomass gained by species i, because of its consumption 

of other species, is expressed by:

∑ +=
←

j
jijiiji

i BdBrg
dt
idB

)(
)(

. (2)

For the detritus, the variation of the biomass follows the same principle, but it also integrates 

the non-assimilated biomass of the other species, except phytoplankton, which is added to the 

detritus biomass B1 (multiplied by its growth efficiency g1):

∑ ∑
>

+−=
−

٢
١

١ ))(١(
)(

j k
kklllkl BdBrgg

dt
dassimilatenondB

. (3)

The model  of the Southern Benguela  ecosystem considers  trophic  interactions  (predation, 

consumption  and  catch)  among  5  components:  detritus  (i  =  1),  phytoplankton  (i =  2), 

zooplankton (i = 3), pelagic fish (i = 4), demersal fish (i = 5). In total, the biomass evolution 

can be written as follows:

١
١١١١ )()١()١( Y

dt
dassimilatenondB

dt
dB

dt
dB

dt
dB −−+→−←=

i
iii Y
dt
idB

dt
idB

dt
dB

−
→

−
←

=
)()(

.

(4)

where gi is the growth efficiency of species i, Yi is the yield of species i. Figure 1 shows the 

structure of the ecosystem.

Mullon  et  al. (2004) take into account  the uncertainty on parameters  rij and  dij,  which  is 

expressed by: 
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[ ]ijijijijij rrrrr δδ +−∈ ,  , [ ]ijijijijij ddddd δδ +−∈ , (5)

They consider this model in a viability perspective, in order to study the persistence of the 

ecosystem and to  define  the  impact  of  the  fisheries.  Given a  constant  yield,  they  define 

scenarios which result is a “healthy” system. 

Extending the work of (Mullon  et al., 2004), we incorporate the fisheries in this study as a 

control variable of the system, in order to find the yield policies which allow keeping the 

system viable. To guarantee a perennial system, the viability constraints are defined by:

٠ i i im B M≤ ≤ ≤ ,

maxmin٠ yYy i ≤≤≤ , [ ]yyYi δδ +−∈′ , , i = 4,5,
(6)

where mi is the minimum level for the resource, Mi the maximal biomass that can be contained 

in the ecosystem, ymin is the minimum level for yield for demersal and pelagic fish, and ymax 

the maximum level. The parameter yδ limits the evolution of the fisheries between two time 

steps. We suppose that the levels of yields of pelagic fish and demersal fish are the same. 

These constraints, which attain critical values of a “healthy” system allow one to link yield 

objectives with the principle of ecosystem persistence.

The viability analysis control problem and viability kernel approximation

In the viability problem, the controls are the yields on pelagic fish (Y4), demersal fish (Y5), and 

the uncertainty on coefficients rij and dij. This means that for any state of the system located in 

the viability kernel, there exist values of these parameters for which the system remains in the 

viability kernel at the next time step. Adding the constraints on the derivatives of Y4 and Y5 

implies to add two dimensions to the state space, which would then be 7. This reaches the 

current computational limits, therefore, we supposed that  Y4 = Y5 =  Y. This hypothesis is of 

course not realistic, but we thought it would nevertheless be an interesting first step.  

The viability control problem is to determine a control function:

)('),('),(),( ٥٤ tYtYtdtrt ijij→   with i,j = 1,2,3,4,5 (7)
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which enables to keep the viability constraints (6) satisfied indefinitely. Solving this problem 

requires to determine the viability kernel, which is the set of states for which such a control 

function exists. 

Saint  Pierre  (1994)  proposed  an  algorithm  to  approximate  the  viability  kernel  from  the 

problem defined on a grid but the result is a set of points that is viable and it requires an 

exhaustive search in the control space, which is not possible in our case because the control is 

in the dimension 51.

To  approximate  the  viability  kernel  of  the  Southern  Benguela  ecosystem,  we use  a  new 

algorithm (Deffuant  et al.,  2007) (see Appendix 1) which is built  on previous work from 

Saint-Pierre (1994), using a discrete approximation of the viability constraint set K  by a grid. 

Its  main  characteristic  is  to  use  an  explicit  analytical  expression  of  the  viability  kernel 

approximation, in order to make it possible to use standard optimization methods to compute 

the control. This analytical expression is provided by a classification procedure, the support 

vector machines (SVMs) (Vapnik, 1998, Cristianini and Show-Taylor,  2000).  This algorithm 

is interesting in the case we study, because the analytical expression of the viability kernel 

allows to use optimization techniques in order to find the best evolution in high dimensional 

control spaces.

Numerical simulations

The donor and recipient control coefficients are derived from a mass-balanced Ecopath model 

for the ecosystem (Shannon, 2003).  We use the evaluation  of the parameters  provided in 

(Mullon  et al.,  2004).  Table  1 gives the values of the viability  constraint  set  and we put 

٠min =y  tons/km² (no catches at all),  maxy = 5 tons/km² (the minimal level of the biomass of 

pelagic and demersal fish, corresponding on the maximum constant value tested by Mullon et  

al. (2004)), yδ = 0.5 (which represents a variation of 10% of the maximal yield). The yield for 
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others species has been set to 0, except for detritus ( ١٠٠٠١ −=Y tons/km², which correspond of 

an import of detritus). 

The following figures present some results for given values of biomasses of each species. The 

boundaries  of  the  axes  are  the  constraints  defined  on  the  species  represented.  The 

approximation of the viability kernel is represented in grey. Inside the viability kernel, there is 

at  least  one  viable  path  which  allows  keeping  a  healthy  system and outside,  there  is  no 

evolution which prevents the system from collapsing.  We focus here on values of detritus 

biomass = 2000 tons/km² because this ensures the existence of a viability kernel for almost all 

the values of the others compartments. For a level of detritus biomass = 1600 tons/km², given 

values of zooplankton and phytoplankton are necessary to guarantee a viable path. For lower 

detritus  biomass,  there  is  no viable  path: a threshold of detritus  biomass  is  necessary for 

ensuring a perennial system.

In the algorithm used to approximate the viability kernel (Deffuant  et al., 2007), we used a 

grid  with  6  points  per  dimension  (46000  points  in  total)  and  1642  support  vectors  are 

necessary to define the boundary of the kernel.

We focus on the effects of fisheries on demersal and pelagic fish.

Effects of fisheries on demersal fish

Figure 2 presents a 2D slices of the viability kernel where detritus biomass = 2000 tons/km², 

phytoplankton = 100 tons/km², zooplankton = 90 tons/km² and for different values of pelagic 

fish biomass. Horizontal axis represents demersal fish and vertical one the fisheries.

The levels of pelagic fish, demersal fish and yield have an influence on the boundary of the 

viability kernel: 
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- For low values of pelagic fish biomass, the demersal fish biomass must not be too high 

and consequently intensive fishery must  be avoid (see the circle  at  the top left  of 

Figure 2, Pelagic 5);

-  In the same way, when the biomass of pelagic fish is high, the value of demersal fish 

biomass must not be too low to guarantee a perennial system and some low levels of 

catch must be avoided (see the circle at the bottom of Figure 2, Pelagic 60);

- For mean values of pelagic fish biomass, there is no restriction about the fisheries.

Figure 3 presents a 2D slice of the viability kernel, when detritus biomass = 2000 tons/km², 

phytoplankton = 400 tons/km² and zooplankton = 130 tons/km². We note that the viability 

kernel is smaller: a high level of pelagic fish represents a non-viable situation. Again, some 

high and low levels of fisheries must be avoided. In general, when the value of zooplankton is 

higher, the viability kernel is smaller and there is no viable path starting from pelagic fish 

biomass = 60 tons/km².

Effects of fisheries on pelagic fish

We explore now the impact of fisheries on pelagic fish, keeping the same values for others 

species.

Figure 4 presents the viability kernel where detritus biomass = 2000 tons/km², phytoplankton 

= 90 tons/km², zooplankton = 100 tons/km² and for demersal fish = 5, 15, 30 tons/km². 

We notice that fisheries affect the boundary of the viability kernel only when the demersal 

fish biomass is too low: the more the pelagic biomass is, the more the catch can be important. 

However, whatever the level of demersal fish, the level of fisheries must be controlled to 

guarantee a healthy system. For mean values of demersal fish, the system is not viable for low 

and high values of pelagic fish. For high values of demersal fish, the pelagic biomass must not 

be too low to guarantee the persistence of the ecosystem.
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For high values of zooplankton (see Figure 5), the viability kernel is smaller: some values of 

demersal fish and fisheries are necessary to ensure a viable path:

- For low values of demersal fish, the level of fisheries must be carefully set; lower and 

higher values of catch represent non-viable situation;

- For mean value of demersal fish, the system is not viable for high values of pelagic 

fish;

- Fisheries have an influence for high biomass of demersal and pelagic fish: a minimum 

level of yields is necessary to ensure ecosystem persistence (area surrounded in Figure 

5). 

Main results

Our study illustrates the potential utility of the viability kernel to help the definition of viable 

fishery policies: given values of the biomass of the five species, the viability kernel provides 

the levels of catch to avoid. In addition, the viability kernel defines some conditions in which 

the  fisheries  can  be  increased  without  compromising  the  viability.  We  notice  that  the 

maximum thresholds for fisheries used by Mullon et al. (2004) can also be increased.

Discussion and conclusion

Solving the viability problem provides all yield policies (if any) which guarantee a perennial 

system. This study shows that it is possible and interesting to integrate fisheries as a control 

parameter  of a viability problem. We made strong simplifications:  we supposed the same 

yield for the two species, and we should obviously take other parameters into account, like 

social  and economics  issues  (Mullon  et  al.,  2004).  Nevertheless,  we think  that  this  work 

illustrates the potential of the viability approach to help the definition of fishery policies.   

One of the main practical  difficulties up to now with the viability theory was the lack of 

methods  to  solve  the  problem  in  a  large  number  of  dimensions.  The  use  of  learning 
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procedures such as SVMs gives this theory a larger practical potential. However, to deal with 

a problem of six dimensions with the current algorithm can only be done with a very rough 

precision and several improvements are necessary to get more reliable and accurate results. 

Moreover, it  will be interesting to define yield strategies which allow the system to come 

from a non-viable state back to a viable state in minimum time, or minimizing some cost. This 

relates to the definition of the resilience proposed in (Martin, 2004).
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Appendix 1: Algorithm of SVM viability kernel approximation

We consider a given time interval dt and we define the set-value map XXG →:

(8) { dtG ),()( uxxx ϕ+=  for })(xu U∈

Considering the compact viability constraint set  K, the viability kernel of  K under  G is the 

largest set included in K such that, for any x in Viab(K):

(9) ∅≠∩ )()( KViabG x  

We define a grid hK as a finite set of K  such that:

(10) hh KK ∈∃∈∀ xx ,  such as  )(hh β<− xx

At each step n , we define a discrete set h
n
h

n
h KKK ⊂⊂ − ١  and a continuous set )( n

hKL  which 

is a generalization of the discrete set and which constitutes the current approximation of the 

viability kernel.  The boundary of this  set is define thanks to a particularly procedure, the 

support vector machines (SVM), which is a method for data classification.  Given a set of 

examples  ( ){ } n
iii y ١, =x  where  ix  is a real vector and  { }١,١−∈iy , SVM define a function  f

which separates examples of each labels:

(11) bkyf ii

n

i
i += ∑

=

),()(
١

xxx α

with ٠≥iα  and 




 −−
= ٢٢

²
exp),(

σ
xx

xx i
ik .

In (Deffuant  et al., 2007), we show that it is possible to find an optimal control vector  u*, 

which defines the position the most inside the current approximation of the kernel among all 

possibilities in G(x) (we use a gradient algorithm).  

The steps of the algorithm are the following:

• Initialize the sets hh KK =٠ and KKL h =)( ٠ .

• Iterate:
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o Define the discrete set ١+n
hK  from n

hK  and nf  as follows:

{ n
hh

n
h KK ∈=+ x١  such that ( ) ١*),( −≥+ dtf hhn uxx ϕ

              and ( ) }Kdthh ∈+ *),( uxx ϕ

o If n
h

n
h KK ≠+ ١  then run the SVM on the learning sample obtained with the points 

hx of the grid  hK , associated with the labels  ١+  if  ١+∈ n
hh Kx , and with labels 

١−  otherwise.  Let  ١+nf  be  the  obtained  classification  function.  )( ١+n
hKL  is 

defined as follows:

{ KKL n
h ∈=+ x)( ١  such that }١)(١ +=+ xnf

o Else stop and return )( n
hKL .
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Tables

Compartment im (tons/km²) iM (tons/km²)

Detritus 100 2000

Phytoplankton 30 400

Zooplankton 20 200

Pelagic fish 5 60

Demersal fish 5 30

Tab 1 - Estimation of the minimal and maximal biomasses (Bi) for the five species.
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Figures

Figure 1 - Components and structure of the Southern Benguela ecosystem. Arrows represent the flux 
between compartments (from Mullon et al., 2004).

Pelagic: 5 Pelagic: 30 Pelagic: 60

Figure 2 - Approximation of viability kernel. The horizontal axis represents demersal fish, vertical axis 
fisheries, detritus = 2000 tons/km², zooplankton = 90 tons/km² and phytoplankton = 100 tons/km².

Pelagic: 5 Pelagic: 30 Pelagic: 60

Figure 3 - Approximation of viability kernel. The horizontal axis represents demersal fish, vertical axis 
fisheries, detritus = 2000 tons/km², zooplankton = 130 tons/km² and phytoplankton = 400 tons/km².
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Demersal: 5 Demersal: 15 Demersal: 30

Figure 4 - Approximation of viability kernel. The horizontal axis represents pelagic fish, vertical axis 
fisheries, detritus = 2000 tons/km², zooplankton = 90 tons/km² and phytoplankton = 100 tons/km².

Demersal: 5 Demersal: 15 Demersal: 30

Figure 5 - Approximation of viability kernel. The horizontal axis represents pelagic fish, vertical axis 
fisheries, detritus = 2000 tons/km², zooplankton = 130 tons/km² and phytoplankton = 400 tons/km².
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