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Gilles Belaud! and Xavier Litrico?

In their paper (Bryant et al., 2008) the authors use potential flow theory to study flow upstream
of orifices, and compare theoretical results to a large set of experimental data. As pointed
out previously by different authors among which Shammaa et al. (2005) and Belaud and
Litrico (2007,2008), potential flow assumptions give a quick and efficient method to estimate
the velocity field generated by an orifice and may be sufficient for many engineering applications
that do not require to take all the real fluid effects into account, such as vortices. This paper
therefore provides another interesting application of the potential flow theory to real cases.

However, there seems to be some confusion about the notions used in the paper, especially
the radial velocity and the velocity magnitude, and this discussion aims at bringing some com-
plements to clarify these points. We also clarify the way one should apply the principle of
superposition, and finally provide some theoretical background for the study of the velocity

distribution.
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Potential Flow in Polar Coordinates

The paper uses the potential method described in Shammaa et al. (2005). According to Bryant
et al. (2008), the application of this method gives a good description of the flow far from the
orifice but a rather bad description of the flow pattern near the orifice. The authors therefore
propose a so-called “new model” that better reproduces the flow pattern. This discrepancy
between the two models is surprising, since the method used by Bryant et al. (2008) to derive
the potential function is exactly the same as the one originally proposed by Shammaa et al.
(2005). In fact, the model proposed by the authors is obtained from the original model of
Shammaa et al. (2005) via a simple change of coordinates, which does not justify in our view
the denomination of “new model”.

Moreover, the discrepancy appears to be due to a misunderstanding of the original model of
Shammaa et al. (2005) which correctly represents the velocity pattern (see Fig. 3 in Shammaa
et al. (2005)).

First of all, let us recall that the flow potential ®, in the plane z — z (the same notation as
Bryant et al. is used), is a function of r and 6, contrarily to the notation used by the authors in
Eq. (1). The radial and transverse velocities are then obtained as follows (see e.g., Batchelor,

1967, pp.100, 600):

0P
G
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Vo= a6

and V = Vi€, + Vyey. We recall in Figure 1 the definition of the radial and transverse velocities
V, and Vj and the unit vectors €, and ¢€p.

In the vertical plane x — z, the velocity magnitude V' can be computed as follows:

Vo= V24V (1)
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Figure 1: Definition of velocity components in a vertical plane (z — z)

Assuming that the potential depends only on r leads to assume that Vp is zero, which in turn
gives V = |V;|. Note that V, should be negative in the case of a sink.

In fact, it is not clear which quantity is displayed in the figures of the paper. The legend
states V., i.e. the radial velocity, but the discussers think that the plot corresponding to the
“new solution” and the experimental results in fact represent the velocity magnitude, while the
“original solution” corresponds to the magnitude of the radial velocity.

Therefore, we think that the apparent discrepancy between the original and new solutions is
due to a confusion between radial velocity and velocity magnitudes. Provided the origin of the
polar coordinates is in the orifice, these two quantities are close to each other far from the orifice
as pointed out by the authors, but largely deviate as we approach the orifice.

We now use an analytical model derived by Belaud and Litrico (2007) to illustrate these con-

cepts.

Radial Velocity and Velocity Magnitude

Let us consider a square orifice of side 2c¢ centered in 0, and use potential flow theory to
express the velocity components in Cartesian coordinates. As shown by Belaud and Litrico
(2007) for any rectangular orifice, the potential flow solution can be expressed in closed-form

for the velocity components V, V;, and V,. To simplify the writing, we calculate the velocity



components in  — z plane. Due to symmetry, the component V,, is null. We introduce

Q

M = R (2)
o= VAE+a2+ (c—2z)?, (3)
ry = VE+a2+ (c+2)?, (4)
- x2+(c—;)2+(c—z)7 (5)
N = Va2 + (c+2)2 = (c+2)

2 = z ) (6)
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in which @ is the discharge through the orifice.
Using the results developed in Belaud and Litrico (2007), V,, and V, can be computed using the

following analytical expressions:

X X
Ve, = 2M [arctan()\le) — arctan <)\—1> — arctan(A2 X2) + arctan ()\_2>] (9)
! 2

_ (ri+c)(r2 — o
V. = Mlog |:(T‘1—C)(T’2—|-C):| . (10)

From this set of equations, we can compute the radial velocity V. and the velocity magnitude

V as follows:

_ —
V.OP  zV,+ 2V, (11)
0B] Va2

V o= VVZ+V2 (12)

V. =

These velocities are plotted at different distances from the orifice in Figure 2. The distances are
normalized by the equivalent diameter d = 24/4/mc which gives the same area for the square
orifice as for a circular orifice of diameter d. The plots are very similar to those of Bryant et al.

(2008) (Fig. 4). In the paper, the radial velocity is calculated using the method of Shammaa
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Figure 2: Velocity values along z coordinate at different distances = from the orifice plane.

et al. (2005), while the solution presented as the “new solution” appears to be the velocity
magnitude. Far from the orifice, the transverse component of the velocity becomes small and
both quantities become very close. Figure 3 shows the iso-velocity lines in the plane x — z and
can be compared to Figure 3 of Bryant et al. (2008): the dotted lines depict the radial velocity
V., while the plain lines depict the velocity magnitude. We can also point out that the orifice
shape has little influence in the domain of study.

As a side remark, we note that using Eq. (1), we have:

V2< V2 (13)

This inequality explains why, in Figures 3 and 4 of Bryant et al. (2008), the original solution is
always lower than the so-called new solution, in which the velocity magnitude V is calculated

from Eq. (12) of this discussion and Eqs. (5) to (7) of Bryant et al. (2008).

Principle of Superposition

According to the principle of superposition, the potential function, the stream function and the

velocity vectors can be added when superposing different sinks, but the velocity magnitudes
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Figure 3: Iso-velocity lines in x — z plane

can certainly not be added.
Let us illustrate this point in the case of the superposition of two velocity fields. We want to
find the resulting velocity fields by superposition of the fields Vi and V. The resulting field is
given by:

V=" +
This can be expressed in any coordinate system by adding the components of the velocity vector

along the coordinate basis. In Cartesian coordinates, we get:

V:c = le + ‘/éx

Vz = Vlz + ‘/22
In polar coordinates, we get:

‘/r = Vlr + ‘/ér

Vi = Vig + Vay.

Therefore, the radial velocity components can be added while superposing different sinks, but



the transverse component Vj is needed in order to compute the velocity vector. This is valid
only if the same coordinate system is used for all the superposed sinks. In the polar coordinates
case, it is important to check that the two systems are described using the same origin.

The expressions provided by Shammaa et al. (2005) in Eqgs. (10-11) are correct and lead to the
same results as in Cartesian coordinates. The discrepancy between the original solution and
the new solution in Figures 10, 12, 13 and 14 of Bryant et al. (2008) is again probably due to a
confusion between radial velocities and velocity magnitudes. According to the discussers’ calcu-
lations, these plots (“original solution”) may result from the addition of the velocity magnitudes

or from addition of radial velocities calculated with a different origin for both sources.

Effect of the Velocity Distribution

The authors used an empirical method to determine the limit when the velocity distribution
should be considered. The present discussion brings some theoretical elements consistent with
the experimental results. To simplify, we consider a square orifice of height 2¢. The effect of the
orifice size can be analyzed by considering that an orifice is composed of two parts, an upper
part of height ¢, centered in 4+c¢/2, and a lower part of height ¢, centered in —c/2.

The mean head above the upper orifice is hy — ¢/2, while the mean head above the lower orifice
is hg +¢/2. Since the orifice strength is proportional to its discharge and therefore to the square
root of the head, the mean error € on the strength between the lower and the upper orifices can

be estimated by :

_ V2l —c/2

14
Vho (14
which gives
c
~ 15
= (15)

for small values of ¢/hqg.



If d = 2c¢ is the height of the orifice and if we take € = 0.02 as the authors do in their paper,
corresponding to an error of 2%, we find a limit of hg/d = 12.5, which is exactly the result
obtained experimentally by the authors.

The same analysis conducted with a circular orifice would lead to a slightly different result, but
the analysis gives a rough and rapid estimation of the effect of the velocity distribution within
the orifice. This may be helpful to decide whether, or not, the velocity distribution should be
used in the potential flow solution. If not, we may use closed-form expressions for the velocity

field (see equations (9) and (10) of this discussion for the square orifice).
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