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AN ASYMPTOTICALLY PRESERVING SCHEME FOR

NONLINEAR SCHRÖDINGER EQUATION IN THE

SEMICLASSICAL LIMIT

RÉMI CARLES AND BIJAN MOHAMMADI

Abstract. We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung transform due
to E. Grenier. This approach is naturally asymptotically preserving. Even if
the mesh size and the time step do not depend on the Planck constant, we
recover the position and current densities in the semiclassical limit, with a nu-
merical rate of convergence in accordance with the theoretical results, before
shocks appear in the limiting Euler equation. By using simple projections, the
mass and the momentum of the solution are well preserved by the numerical
scheme, while the variation of the energy is not negligible numerically.

1. Introduction

We consider the cubic nonlinear equation

(1.1) iε∂tu
ε +

ε2

2
∆uε = |uε|2uε, (t, x) ∈ R+ ×Rd.

The goal is to compute the solution uε in such a way that for ε = 1, we solve the
nonlinear Schrödinger equation, and in the semiclassical limit ε → 0, we retrieve
the limit in terms of compressible Euler equation, as recalled below. This equation
appears in several contexts in Physics. For instance, in the case ε = 1, (1.1)
corresponds to an envelope equation in the propagation of lasers, a case where t
does not correspond to time, but to the direction of propagation; see e.g. [40] and
references therein. The semiclassical regime is present in the modeling of Bose–
Einstein condensation, where ε corresponds to the (rescaled) Planck constant; see
e.g. [37] and references therein. A remarkable property in the semiclassical regime
is that the limit is expressed in terms of a compressible, isentropic Euler equation.

A popular way to relate the semiclassical limit to fluid dynamics is the use of
the Madelung transform [29], which is essentially the polar decomposition: seek the
solution to (1.1) of the form

uε(t, x) =
√
ρ(t, x)eiS(t,x)/ε, ρ > 0, S ∈ R.

Plugging this expression into (1.1), and separating real and imaginary parts yields

(1.2)





√
ρ

(
∂tS +

1

2
|∇S|2 + ρ

)
=
ε2

2
∆ (

√
ρ) ,

∂t
√
ρ+∇S · ∇√

ρ+
1

2

√
ρ∆S = 0.
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2 R. CARLES AND B. MOHAMMADI

Two comments are in order at this stage: the first equation shows that S depends on
ε and the second equation shows that so does ρ in general. We shall underscore this
fact by using the notation (Sε, ρε). Second, the equation for Sε can be simplified,
provided that ρε has no zero. Introducing the velocity vε = ∇Sε, (1.2) yields the
system of quantum hydrodynamics (QHD), see also [19]:

(1.3)




∂tv

ε + vε · ∇vε +∇ρε = ε2

2
∇
(
∆
(√
ρε
)

√
ρε

)
,

∂tρ
ε + div (ρεvε) = 0.

The term on the right hand side of the equation for vε is classically referred to
as quantum pressure. In the limit ε → 0, this term disappears, and we find the
compressible Euler equation:

(1.4)

{
∂tv + v · ∇v +∇ρ = 0,

∂tρ+ div (ρv) = 0.

This approach was used recently to develop an asymptotic preserving scheme for
the linear Schrödinger equation (|uε|2uε is replaced with V (x)uε), see [15]. The goal
of an asymptotic preserving scheme is to have a unified way to compute the solution
as ε = 1, and to retrieve the limit as ε → 0, in such a way that the discretization
does not depend on ε; see e.g. [25, 16]. As pointed out in [15], the drawback of
Madelung transform is that it does not support the presence of vacuum (ρ = 0).
The point of view that we shall study numerically is due to E. Grenier [24], and
consists in seeking uε as

(1.5) uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε, aε ∈ C, φε ∈ R.

Allowing the amplitude aε to be complex-valued introduces an extra degree of
freedom, compared to the Madelung transform. The choice of Grenier consists in
imposing

(1.6)





∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = 0,

∂ta
ε +∇φε · ∇aε + 1

2
aε∆φε = i

ε

2
∆aε.

In terms of vε = ∇φε, this becomes

(1.7)





∂tv
ε + vε · ∇vε +∇|aε|2 = 0,

∂ta
ε + vε · ∇aε + 1

2
aε div vε = i

ε

2
∆aε.

In this model, the presence of vacuum (aε = 0) is not a problem. We will see that
this is so both on a theoretical level and in computational tests. In the limit ε→ 0,
we find formally

(1.8)





∂tv + v · ∇v +∇|a|2 = 0,

∂ta+ v · ∇a+ 1

2
a div v = 0.

We check that (ρ, v) = (|a|2, v) then solves (1.4): (1.8) corresponds to the nonlinear
symmetrization of (1.4) ([30, 12]).
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In this paper, we have chosen to focus on the defocusing cubic nonlinearity, for
which the relevance of (1.6) to study the semiclassical limit is proved (see §2.1).
It seems very likely that equivalent numerical results should be available for other
nonlinearities, as discussed in §2.3, even though in several cases, no theoretical
result is available concerning the natural generalization (2.5) of (1.7). Similarly, in
the linear setting considered in [15], this modified Madelung transformation should
overcome the problem of vacuum pointed out in [15].

We also stress the fact that the convergence of (1.7) towards (1.8) holds so long as
no singularity has appeared in the solution of (1.8) (or, equivalently, in (1.4)). Note
that except in the very specific case d = 1 (where the cubic Schrödinger equation
is completely integrable), no analytical result seems to be available concerning the
asymptotic behavior of uε as ε → 0 for large time (that is, after a singularity has
formed in the solution to the Euler equation). As pointed out in [10], the notion of
caustic seems to be different in the case of (1.1), compared to the linear case

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε,

where several computational results are available past caustics (see e.g. [22, 23] and
references therein).

1.1. Conserved quantities. Equation (1.1) enjoys a bi-Hamiltonian structure,
and therefore has two quantities which are independent of time:

Mass:
d

dt
‖uε(t)‖2L2(Rd) = 0.(1.9)

Energy:
d

dt

(
‖ε∇uε(t)‖2L2(Rd) + ‖uε(t)‖4L4(Rd)

)
= 0.(1.10)

A third important quantity is conserved, which plays a crucial role, e.g. in the
study of finite time blow-up in the case of focusing nonlinearities:

(1.11) Momentum:
d

dt
Im

∫

Rd

uε(t, x)ε∇uε(t, x)dx = 0.

Plugging the phase/amplitude representation (1.5) into these conservation laws,
and passing formally to the limit ε→ 0, we recover conservation laws associated to
the Euler equation (1.4) ([10]):

d

dt

∫

Rd

ρ(t, x)dx =
d

dt

∫

Rd

(
ρ|v|2 + ρ2

)
(t, x)dx =

d

dt

∫

Rd

(ρv) (t, x)dx = 0.

Setting Jε(t) = x+ iεt∇, two other evolution laws are available:

Pseudo-conformal:
d

dt

(
‖Jε(t)uε‖2L2(Rd) + t2‖uε‖4L4(Rd)

)
= t(2− d)‖uε‖4L4(Rd).

d

dt
Re

∫

Rd

uε(t, x)Jε(t)uε(t, x)dx = 0.

Passing formally to the limit ε→ 0, we infer:

d

dt

∫

Rd

(
|x− tv(t, x)|2 ρ(t, x) + t2ρ2(t, x)

)
dx = (2− d)t

∫

Rd

ρ2(t, x)dx.

d

dt

∫

Rd

(x− tv(t, x)) ρ(t, x)dx = 0.

We discuss this aspect further into details in §2.2.
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1.2. Semiclassical limit for NLS: numerical approach. The most reliable ap-
proach so far to study numerically the semiclassical limit for Schrödinger equations
seems to be the time-splitting spectral discretization (Lie or Strang splitting, see
[8]): one solves alternatively two linear equations,

iε∂tv
ε +

ε2

2
∆vε = 0, and iε∂tv

ε = |vε|2vε.

Despite the appearance, the second equation is linear, since in view of the gauge
invariance, ∂t

(
|vε|2

)
= 0, so the second equation boils down to i∂tv

ε = |vεI |2vε,
where vεI denotes the initial value for vε.

Note that from [31], usual finite-difference schemes for the linear Schrödinger
equation may lead to very wrong approximations. Instead, schemes based on the
fast Fourier transform (FFT) have been preferred. In [5], it was shown that the
time-splitting method, coupled with a trigonometric spectral approximation of the
spatial derivative, conserves the total mass, and is gauge-invariant, time-reversible.
Moreover, with this approach, the convergence of the scheme in L2 is proved, when
the nonlinearity in (1.1) is replaced by an external potential. This regime turns
out to be far less singular in the limit ε → 0 than the nonlinear case of (1.1), as
discussed below.

We briefly point out that the numerical study in [5, 6] shows that, contrary
to the case of the linear Schrödinger equation, to study the semiclassical limit
for (1.1) with time-splitting, it is necessary to consider mesh sizes and time steps
which are O(ε). This is due to the fact that the semiclassical regime is strongly
nonlinear (supercritical, in the terminology of [10]): we consider initial data which
are O(1) in L2 ∩ L∞, and there is no power of ε in front of the nonlinearity. As a
consequence, the semiclassical limit is a “strongly nonlinear” process, since starting
with a semilinear Schrödinger equation (for fixed ε > 0), we come up in the limit
ε→ 0 with a quasilinear equation (the compressible Euler equation).

In [6], it is shown that mesh sizes and time steps must be taken of order O(ε),
even to recover the behavior of two physically important quantities:

Position density: ρε(t, x) = |uε(t, x)|2 = |aε(t, x)|2.
Current density: Jε(t, x) = ε Im (uε(t, x)∇uε(t, x)) .

We refer to the numerical results in [6, Example 4.3], which show some important
instability in the numerical approximation for (1.1), at least if the time step is large
compared to ε: evidently, the position and current densities cannot be computed
correctly if mesh size and time step are independent of ε.

On the contrary, we obtain a good description of ρε and Jε as ε → 0 when
studying numerically the system (1.7), even if the time step is independent of ε.
Things would probably be similar in the case of the QHD system (1.3), up to the
important aspect that the presence of vacuum (ρε = 0) is not allowed in (1.3).
The idea to explain this difference is the following. To construct directly the wave
function uε solving (1.1), errors which are large compared to ε (say of order εα,
0 < α < 1) lead to instability of order O(1) on uε after a short time (of order ε1−α).
Among possible sources of errors, we can mention a simple space shift, which is
rather likely to occur in numerical studies. This can actually be proved thanks to
the approach of Grenier, see [9]. This is due to the strong coupling phase/amplitude
in (1.6): a small modification of the amplitude aε leads to a modification of the
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same order for φε. To recover uε, one has to divide φε by ε, which is small, so the
actual error for φε may be dramatically increased.

One can rephrase the above analysis as follows. The semiclassical limit for (1.1) is
“strongly nonlinear”: as ε→ 0, we pass from a semilinear equation (for fixed ε, the
Cauchy problem for (1.1) is handled by perturbative methods relying on properties
of the linear equation, see e.g. [11]), to a quasilinear one, the Euler equation
(1.4) (in which the nonlinear terms cannot be treated by perturbative methods,
see e.g. [41]). As a consequence, the asymptotic behavior of uε is very sensitive
to small errors [9]. In time splitting methods, one considers the nonlinearity as
a perturbation, while this is not sensible in the framework of (1.1), unless a high
precision in the space and time steps is demanded. It would be quite different with
some positive power — at least 1 — of ε in front of the nonlinearity; see [10] for
theoretical explanations, and [5, 6] for numerical illustrations.

If one is interested only in the position and current densities, small errors in (1.7)
are not so important, since one never has to divide the phase by ε (see Section 2 for
more details). This explains why we can obtain satisfactory results by considering a
mesh size h = ∆x independent of ε, and a time step given by the parabolic scaling,
that is, proportional to h2.

An extra step in the numerical analysis of nonlinear Schrödinger equations was
achieved in [7], where a semi-discrete scheme was introduced, which turns NLS
into an almost linear system, in the case ε = 1. It is based on a central-difference
approximation shifted by a half time-step. For tn = nδt and tn+1/2 = (n + 1

2 )δt,
let un be the approximation at t = tn. The scheme is given by





i
un+1 − un

δt
+

1

2
∆

(
un+1 + un

2

)
= ψn+1/2

(
un+1 + un

2

)
,

ψn+1/2 + ψn−1/2

2
= |un|2.

This approach has the advantage of preserving the mass (1.9) and an analogue of
the energy (1.10) of the solution [7]:

∫

Rd

|un|2 =

∫

Rd

|u0|2, and En = E0, where

En =

∫

Rd

(
|∇un|2 + 2|un|2ψn−1/2 −

(
ψn−1/2

)2)
.

It does not seem that there is also an analogue of the momentum which is conserved,
in the same fashion as (1.11). Note that to adapt this approach numerically in the
semiclassical regime, one would also have to consider mesh sizes and time steps
which are O(ε). Therefore, the approaches in [5, 6, 7] do not seem well suited for
asymptotic preserving schemes.

1.3. Outline of the paper. In Section 2, we recall the main theoretical results
established for the semiclassical analysis of (1.1). The main goal is to state some
results which can thereafter be tested numerically to validate the scheme. The
numerical implementation is presented in Section 3. Numerical experiments (based
on three examples) are discussed in Section 4. We conclude the paper in Section 5.
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2. The theoretical point of view

We will always consider initial data of the form

(2.1) uε(0, x) = a0(x)e
iφ0(x)/ε, a0 ∈ C, φ0 ∈ R,

where a0 and φ0 are smooth, say in Hs(Rd) for all s. In that case, (1.6) is supple-
mented with the Cauchy data

aε(0, x) = a0(x) ; φε(0, x) = φ0(x).

This implies that the Cauchy data for (1.7) are

(2.2) aε(0, x) = a0(x) ; vε(0, x) = ∇φ0(x).

2.1. Known results. A second advantage of the system (1.7) over (1.3), besides
the role of vacuum, is that it already has the form of an hyperbolic symmetric
system. Separate real and imaginary parts of aε, aε = aε1+ ia

ε
2, (1.7) takes the form

∂tu
ε +

n∑

j=1

Aj(u
ε)∂ju

ε =
ε

2
Luε ,

with uε =




aε1
aε2
vε1
...
vεd



, L =




0 −∆ 0 . . . 0
∆ 0 0 . . . 0
0 0 0d×d


 ,

and A(u, ξ) =

d∑

j=1

Aj(u)ξj =




v · ξ 0 a1

2
tξ

0 v · ξ a2

2
tξ

2a1 ξ 2a2 ξ v · ξId


 .

The matrix A is symmetrized by a constant diagonal matrix S such that SL = L.
We note that L is skew-symmetric, so it plays no role in energy estimates in Sobolev
spaces Hs(Rd). The main results in [24] can be summarized as follows:

Theorem 2.1 (From [24]). Let d > 1, s > 4 + d/2, and a0,∇φ0 ∈ Hs(Rd).
1. There exist T > 0 and a unique solution (ρ, v) ∈ C([0, T ];Hs(Rd))2 to (1.4) such
that ρ(0, x) = |a0(x)|2 and v(0, x) = ∇φ0(x).
2. For the same T , (1.7) has a unique solution (aε, vε) ∈ C([0, T ];Hs−2(Rd))2 such
that aε(0, x) = a0(x) and vε(0, x) = ∇φ0(x).
2′. For the same T , (1.8) has a unique solution (a, v) ∈ C([0, T ];Hs(Rd))2 such
that a(0, x) = a0(x) and v(0, x) = ∇φ0(x).
3. As ε→ 0, we have:

‖aε − a‖L∞([0,T ];Hs−2) + ‖vε − v‖L∞([0,T ];Hs−2) = O (ε) .

Remark 2.2 (Periodic case). The same result holds in the periodic setting (x ∈ Td

instead of x ∈ Rd), with exactly the same proof.

Once vε is constructed, there are at least two ways to get back to φε. Either
argue that vε remains irrotational, or simply define φε as

(2.3) φε(t) = φ0 −
∫ t

0

(
1

2
|vε(s)|2 +∇|aε(s)|2

)
ds,
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and check that ∂t (v
ε −∇φε) = ∂tv

ε −∇∂tφε = 0. So for t ∈ [0, T ], that is so long
as the solution to the Euler equation (1.4) remains smooth, the solution to (1.1)
with initial data uε|t=0 = a0e

iφ0/ε is given by uε = aεeiφ
ε/ε.

Note that even if φ0 = 0, φε (as well as vε and v) must not be expected to be
zero (nor even small), because of the strong coupling in (1.6). Typically, if φ0 = 0,
(1.6) yields ∂tφ

ε
|t=0 = −|a0|2 6= 0.

In addition, in the limit ε→ 0, we recover the main two quadratic observables:

ρε = |aε|2 −→
ε→0

|a|2 = ρ in L∞([0, T ];L1(Rd)),

Jε = Im (εuε∇uε) = |aε|2vε + ε Im (aε∇aε)−→
ε→0

|a|2v = J in L∞([0, T ];L1(Rd)).

We have more precisely:

(2.4) ‖ρε − ρ‖L∞([0,T ];L1∩L∞) + ‖Jε − J‖L∞([0,T ];L1∩L∞) = O (ε) .

We can also prove the convergence of the wave function ([24]). In the particular
case which we consider where the initial amplitude aε(0, x) does not depend on ε,
we have (with an obvious definition for φ):

‖uε − aeiφ/ε‖L∞([0,T ];L2∩L∞) = O(ε).

In general, a modulation of a must be taken into account to have such an approx-

imation of the wave function ([10]): uε ≈ aeiφ
(1)

eiφ/ε. In the framework of this
paper, we have φ(1) = 0 (see [10, Section 4.2]).

As pointed out in the introduction, no analytical result seems to be available
concerning the semiclassical limit of (1.1) when the solution of the Euler equation
(1.4) has become singular. Theorem 2.1 gives a rather complete picture for the
asymptotic behavior of uε for t ∈ [0, T ], that it before the solution to (1.4) becomes
singular. Note that if for instance a0 and φ0 are compactly supported, then no
matter how small they are, (a, v) develops a singularity in finite time ([30, 12, 43]).
On the other hand, for fixed ε > 0, we know that the solution to (1.1) with initial
data uε|t=0 = a0e

iφ0/ε ∈ Hs(Rd), s > 1, is global in time with the same regularity,

at least if d 6 4: uε ∈ C([0,∞[;Hs(Rd)). See [21] (or [11]) for the case d 6 3, and
[38] for the case d = 4 (which is energy-critical).

A natural question is then: what happens to uε as the solution to the Euler
equation (1.4) becomes singular? In the linear setting,

iε∂tu
ε
lin +

ε2

2
∆uεlin = 0 ; uεlin|t=0 = a0e

iφ0/ε,

the question is rather well understood: when the solution to the corresponding
Burger’s equation (for the phase) becomes singular, a caustic is formed, which is
a set in (t, x)-space (see e.g. [17, 33]). Near the caustic, the amplitude of uεlin is
amplified, like a negative power of ε. For instance, if φ0(x) = −|x|2/2, then

uεlin(t, x) ∼
ε→0





1

(1− t)d/2
a0

(
x

1− t

)
ei|x|

2/(2ε(t−1)) if t < 1,

1

εd/2
â0

(x
ε

)
if t = 1,

where â0 denotes the Fourier transform of a0; see [10] for several developments
around this example. Such a concentration is ruled out in the case of (1.1), since
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the conservation of the energy (1.10) yields the uniform bound

‖uε(t)‖L4(Rd) 6 C independent of ε ∈]0, 1] and t ∈ R.

2.2. Conserved quantities. In the one-dimensional case d = 1, the cubic nonlin-
ear Schrödinger equation (1.1) has infinitely many conserved quantities [45] (it is
completely integrable, see [44]). We shall not emphasize this particular case in this
paper, and rather consider the case of a cubic nonlinearity in arbitrary dimension.
Numerical experiments are presented in the two-dimensional case d = 2.

In this general case, we retain the three standard conservations: mass (1.9),
momentum (1.11), and energy (1.10). Writing the solution to (1.1) as uε = aεeiφ

ε/ε,
we infer three corresponding conversation laws for the solution to (1.7):

Proposition 2.3. Let d > 1 and (aε, vε) ∈ C
(
[0, T ];H1 ∩ L∞(Rd)

)2
solve (1.7).

The following three quantities do not depend on time:

(1) The L2-norm of aε:
d

dt
‖aε(t)‖2L2(Rd) = 0.

(2) The momentum:
d

dt

∫

Rd

(
|aε(t, x)|2vε(t, x) + ε Im (aε(t, x)∇aε(t, x))

)
dx = 0.

(3) The energy: if vε|t=0 is irrotational, ∇ ∧ vε|t=0 = 0, then

d

dt

∫

Rd

(
|ε∇aε(t, x) + iaε(t, x)vε(t, x)|2 + |aε(t, x)|4

)
dx = 0.

Sketch of proof. This result can be proved by using the standard regularizing pro-
cedure and suitable multipliers. We shall just indicate the formal procedure.

The conservation of mass is proved by multiplying the second equation in (1.7)
by aε, integrating in space, and taking the real value.

The conservation of the momentum is obtained as follows. Multiply the equation
for vε by |aε|2, and integrate in space. Multiply the equation for aε by iε∇aε+aεvε,
integrate in space and consider the real value. Summing these two relations yields
the conservation of the momentum.

For the energy, the procedure is similar. Note that

∂tv
ε = −∇

( |vε|2
2

+ |aε|2
)
, hence ∂t (∇ ∧ vε) = 0.

Therefore, if ∇ ∧ vε|t=0 = 0, then we can find φε such that (φε, aε) solves (1.6).

Multiply the equation in φε by −∂t|aε|2, the equation for aε by iε∂ta
ε + aε∂tφ

ε.
Sum up the two equations, integrate in space, and take the real part. �

2.3. About other nonlinearities. Equation (1.1) is the defocusing cubic nonlin-
ear Schrödinger equation. Other nonlinearities are physically relevant too: focusing
or defocusing nonlinearities are considered, as well as other powers, in the context
of laser Physics (see e.g. [40]) or in the context of Bose–Einstein Condensation (see
e.g. [14, 26]), for instance.

The (short time) semiclassical limit for nonlinear Schrödinger equations has been
studied rigorously for other nonlinearities. Typically, for defocusing nonlinearities

iε∂tu
ε +

ε2

2
∆uε = |uε|2σuε, σ ∈ N,

a result similar to Theorem 2.1 is available; see [3, 13]. However, the analysis does
not rely on an extension of (1.6) where |aε|2 would be replaced with |aε|2σ: for
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ε = 0 (corresponding to the limiting Euler equation in the case σ ∈ N too), one
uses a nonlinear symmetrizer (the “good” unknown is (∇φ, aσ)), and for ε > 0,
this change of variable affects the skew-symmetric term iε∆aε in such a way that
apparently the analysis of [24] cannot be directly adapted.

For focusing nonlinearities, typically

iε∂tu
ε +

ε2

2
∆uε = −|uε|2σuε, σ ∈ N,

the limiting equation in the system analogous to (1.4) is elliptic (as opposed the
hyperbolic system (1.4)). It turns out that in this case, the “elliptic Euler sys-
tem” is ill-posed in Sobolev spaces ([34]): working with analytic regularity becomes
necessary [34], and sufficient [20, 42] in order to justify the semiclassical analysis.

An hybrid nonlinearity (neither focusing, nor defocusing) also plays a role in
physical models: the cubic–quintic nonlinearity,

iε∂tu
ε +

ε2

2
∆uε = |uε|4uε + λ|uε|2uε,

with λ ∈ R possibly negative. This model is mostly used as an envelope equation
in optics, is also considered in BEC for alkalimetal gases (see e.g. [18, 1, 35]), in
which case λ < 0. The cubic term corresponds to a negative scattering length,
and the quintic term to a repulsive three-body elastic interaction. Justifying the
semiclassical analysis was achieved in [4] by a slight modification of the approach
of [24] (in a different functional framework).

To rephrase the above discussion, the approach in [24] to study the semiclassical
limit for

iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε

relies on the assumption f ′ > 0. However, the analysis has been carried out in
several other situations, without considering the natural generalization of (1.7),

(2.5)





∂tv
ε + vε · ∇vε +∇f

(
|aε|2

)
= 0,

∂ta
ε + vε · ∇aε + 1

2
aε div vε = i

ε

2
∆aε.

It seems reasonable to believe that even though no rigorous study for this system is
available in general (for ε > 0), this system can be used for numerical simulations.

Finally, the approach of [24] was generalized to the case where an external po-
tential is introduced (which may model a confining trap in the framework of Bose–
Einstein Condensation), see [10], and to the case of Schrödinger–Poisson system
[2, 27, 28, 32].

3. Numerical implementation

One expects the oscillatory nature of the solutions to be difficult to capture
numerically. We would like to use a stable numerical scheme with the time step
independent of ε but function of h. The scheme solves system (1.6) on coarser
meshes than what necessary to capture all wavelengths. Therefore, the solution
has inevitably error in it. Still we give a great deal of effort on conservation issues
for the density, energy and momentum. The time step and mesh size being both
independent of ε, one can tackle very small ε values and the scheme also works for
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ε = O(1). Obviously, if all scales are aimed at being captured, then the space grid
size need be of order of ε or less and so the time step.

Present results show that the scheme being conservative and stable macroscopic
quantities remain observable even when the spatial-temporal oscillations are not
fully resolved numerically because the mesh is not enough fine to capture wave-
lengths below h. Typically, one uses h = 0.01 for all ε in a square domain of side
one.

In our approach, conservation is ensured by projection steps to guarantee a
correct behavior for total position, energy and current (momentum) densities. The
aim is also to show that basic numerical methods [39, 36] can be used which permits
the adaptation of generic PDE solvers. We also point out that we have privileged
projections which are rather cheap computationally, since they are obtained by a
simple rescaling.

The implementation has been done in two dimensions in space but extension to
third dimension does not appear being a difficulty. Periodic boundary conditions
and initial data with compact support have been considered.

Let us start with system (1.7) which we rewrite as:

(3.1) ∂tU
ε + F (Uε) = 0,

Uε(x ∈ Ω, t = 0) = U0(x), U
ε(∂Ω, t) = periodic.

where Uε = (aε, vε). Ωh is a discrete two dimensional square domain of side L.
U0(x) is a regular initial condition. For all the simulations presented in this paper
we consider

U0(x) = (a0(x), αf(x), αg(x))
t ,

with a0(x) a complex function independent of ε with compact support. α is real and
f and g are real functions with compact support. The initial pattern is therefore
periodic of period L in both space directions. Together with the periodicity, oscil-
lations in space can be introduced through a0, f and g. Below we show numerical
results with two values of α.

We consider second order finite difference discretizations of partial differential
operators. But, the periodic boundary conditions permit the implementation of
high order spatial discretizations as well as spectral methods. One notices that
despite the presence of first order space derivatives, no numerical viscosity is nec-
essary to stabilize the system both in the hydrodynamic limit and for ε 6= 0. We
therefore keep the numerical viscosity to zero for all simulations which means no
upwinding has been used. This leads to a consistent scheme with truncation error
in h2:

F (Uε) = Fh(U
ε) +O(h2).

We consider a simple first order explicit time integration scheme:

(3.2)
1

k
(Uε

h,n+1/2 − Uε
h,n) + Fh(U

ε
h,n) = 0,

Uε
h,0 = U0(xh), U

ε
h,n+1/2(∂Ωh) = periodic.

n+1/2 denotes an intermediate state, before projection, where conservation is not
guaranteed for mass and momentum. It is interesting that the approach appears
stable even for explicit time integration. With a first order scheme in time, and
a time step in h2, the time integration error will be comparable to the truncation
error in space.
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Once Uε
h,n+1/2 is computed, one needs to project it over the admissible space to

get Uε
h,n+1 based on enforcing mass, energy and momentum conservation constraints

(see Proposition 2.3):

J1,2,3(U
ε
h,n+1/2, U

ε
h,0) =

I1,2,3(U
ε
h,n+1/2)

I1,2,3(Uε
h,0)

= 1,

where

I1(U
ε
h,n+1/2) =

∫

Ωh

|aεh,n+1/2|2dx,

I2(U
ε
h,n+1/2) =

∫

Ωh

(
|aεh,n+1/2|4 +

∣∣∣ε∇ha
ε
h,n+1/2 + iaεh,n+1/2v

ε
h,n+1/2

∣∣∣
2
)
dx,

I3(U
ε
h,n+1/2) =

∫

Ωh

(
|aεh,n+1/2|2vεh,n+1/2 + ε Im

(
aεh,n+1/2∇aεh,n+1/2

))
dx.

J3 is a vector of the size d of the space dimension. This problem is overdetermined
with essentially two variables (aε and vε). This overdetermination is maybe one
reason why no numerical scheme is available for these equations verifying all con-
servation constraints. With aε complex, there are as many variables as constraints.
Still we did not manage to enforce at the same time the mass J1 and energy J2
constraints. We have chosen here to enforce J1 and J3.
J1 can be easily enforced in aεh,n+1 by simply defining:

aεh,n+1 = aεh,n+1/2

(
I1(U

ε
h,0)

I1(Uε
h,n+1/2)

)1/2

.

The projection aims at looking for a particular equilibrium for the constraints
after a splitting of the variables. The above scaling suggests an a priori but natural
splitting of the variables to be modified by each constraint. More precisely, J1
defines the corrections for aεh,n+1/2 and the vector J3 the ones for the components

(vεh,n+1/2)j of the velocity through:

(3.3) (Ĩ3)
j =

∫

Ωh

(
|aεh,n+1|2(vεh,n+1/2)j + ε Im

(
aεh,n+1∂ja

ε
h,n+1

))
dx, j = 1, . . . , d.

Because we are looking for a cheap projection based on scaling, we adopt the
following corrections for each component of vεh,n+1/2:

(vεh,n+1)j = (vεh,n+1/2)j

(
Ij3(U

ε
h,0)

Ĩj3

)
, j = 1, . . . , d.

Through the numerical examples below we see that these scalings are efficient in
conserving mass and current densities.

4. Numerical experiments

We show the application of our projection schemes for several initial conditions.
In the first case the current density is nearly zero and not in the second. A third case
shows the robustness of the approach with initial vanishing aε. We show the impact
of the projection on the conservation of mass, energy and momentum through J1,
J2 and J3. We will see that mass and energy cannot be both conserved at the same
time.
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4.1. Nearly zero initial current. We consider L = 0.5, a0(x) = exp(−80((x1 −
L/2)2 + (x2 − L/2)2))(1 + i) and α = 10−10 (hence vε|t=0 ≈ 0).

Figures 1 shows the initial position and current densities. Figures 2 and 4 show
the solutions at T = 0.1 sec for ε = 0, 0.001, 0.01 and 0.1 without and with the
projection steps.

Figures 3 and 5 show the evolution of the constraints with time for different
values of ε without and with the projection steps. The original scheme can be
seen being not conservative and dissipative. Of course, less dissipative numerical
schemes could be used, but this does not remove the necessity for the projection
step. Relative momentum constraint values appear being large, but one should
keep in mind that these are in fact very close to zero. What is most important is
that mass and energy constraints cannot be satisfied at the same time. This can
also be seen in the next case with initial current density.

An interesting indicator for the behavior of the solver is by checking if the fol-
lowing quantity is linear in ε at a given time T independent of ε (see (2.4)):

(4.1) ‖ρεh,T − ρh,T ‖L1(Ωh) + ‖Jε
h,T − Jh,T ‖L1(Ωh).

This is shown in Figure 6 at T = 0.1 sec. The slope grows with time.
In the same way, Figure 7 shows the dependency with respect to ε for the fol-

lowing quantity (see Theorem 2.1):

(4.2) ‖aεh,T − ah,T ‖L2(Ωh) + ‖vεh,T − vh,T ‖L2(Ωh).

Again, the dependency is linear for small ε at T = 0.1 sec.

4.2. Non zero initial current. This is the same case as before but with α = 10−2

and

(4.3)

{
f(x) = exp(−80((x1 − L/2)2 + (x2 − L/2)2)) sin(10x1),

g(x) = exp(−80((x1 − L/2)2 + (x2 − L/2)2)) cos(10x1).

Figure 8 shows the initial position and current densities. Figure 9 shows the solution
at T = 0.1 sec for ε = 0, 0.001, 0.01 and 0.1. Figure 10 shows the evolution of the
position density, energy and current density constraints with time for different
values of ε when only mass through I1 and the current density through vector I3
have been maintained.

Figures 11 and 12 show that indicators (4.1) and (4.2) are still linear with respect
to ε but on a shorter range close to zero.

4.3. aε changing sign. To introduce a changing sign initial data for aε, we consider
an initial condition given by a0(x) = (exp(−80((x1 − L/2)2 + (x2 − L/2)2)) −
exp(320((x1−L/2)2+(x2−L/2)2)))(1+i). The initial current is as for the previous
case with f and g given in (4.3). Figure 13 shows the initial position and current
densities. Figure 14 shows the solution at T = 0.1 sec for ε = 0, 0.001, 0.01 and 0.1.
Figure 15 shows the evolution of the position density, energy and current density
constraints with time for different values of ε when only mass through I1 and the
current density through vector I3 have been maintained. Figures 16 and 17 show
indicators (4.1) and (4.2).
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Figure 1. Initial position (left) and norm of the current density
vector (right) with α = 10−10.

5. Conclusion

We have presented a numerical implementation to compute the solution of the
system (1.7), which is a way to solve the nonlinear Schrödinger equation that is
asymptotically preserving in the semiclassical limit. To reconstruct the wave func-
tion uε, the phase φε can be computed by a simple time integration, in view of
(2.3). The scheme used in this paper is explicit, and is therefore rather cheap on
the computational level. It preserves the L2-norm of the solution to the nonlinear
Schrödinger equation, and can be adapted in order to conserve the momentum as
well, thanks to simple projections based on rescaling. On the other hand, the en-
ergy is not conserved. With mesh sizes and time steps which are independent of
the Planck constant ε, we retrieve moreover the main two quadratic observables
(position and current densities) in the semiclassical limit ε → 0, and before sin-
gularities are formed in the limiting Euler equation, up to an error of order O(ε),
as predicted by theoretical results. The presence of vacuum (zeroes of the position
density) is not a problem in this approach.
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12. J.-Y. Chemin, Dynamique des gaz à masse totale finie, Asymptotic Anal. 3 (1990), no. 3,
215–220.

13. D. Chiron and F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger
equations, Comm. Math. Phys. 288 (2009), no. 2, 503–546.

14. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensa-
tion in trapped gases, Rev. Mod. Phys. 71 (1999), no. 3, 463–512.
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Figure 14. Position (left column) and current density (right col-
umn) at T = 0.05 sec for (resp. from the top) ε = 0, 0.001, 0.01
and 0.1 with α = 0.01.
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Figure 15. Evolution in time (sec) of the constraints on the
position density, energy and sum of both components of the current
density (resp. from the top) for ε = 0, 0.001, 0.01 and 0.1 for an
initial condition having sign variation in aε.
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Figure 16. Linear dependency of (4.1) at T = 0.05 sec with
respect to ε with an initial condition having sign variation in aε.
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Figure 17. Linear dependency of (4.2) at T = 0.05 sec with
respect to ε with an initial condition having sign variation in aε.
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