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Abstract  

An experimental study of a flat plate heat pipe (FPHP) is presented. Temperature fields in the FPHP are 

measured for different filling ratios, heat fluxes and vapour space thicknesses. The system is hermetically 

sealed with a transparent plate for meniscus curvature radius observations by confocal microscopy. 

Experimental results show that the liquid distribution in the FPHP - and thus its thermal performance - 

depends strongly on both the filling ratio and the vapour space thickness. A small vapour space thickness 

induces liquid retention and thus reduces the thermal resistance of the system. Nevertheless, the vapour space 

thickness influences the level of the meniscus curvature radii in the grooves and hence reduces the maximum 

capillary pressure. As a result, it has to be carefully optimised to improve the performance of the FPHP. In 

all the cases, the optimum filling is in the range one to two times the total volume of the grooves. A 

theoretical approach, in non working conditions, has been developed to model the distribution of the liquid 

inside the FPHP in function of the filling ratio and the vapour space thickness.  
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Nomenclature  

a capillary constant, m 

fr filling ratio, - 

g gravitational acceleration, m s-2 

H  thickness, m 

Hc  critical vapour space thickness, m  

K constant, - 

l width, m 

L length of the FPHP, m 

N number of grooves, - 

P pressure, Pa  

q heat flux, W m-2 

Q  heat transfer rate, W 

r meniscus curvature radius, m 

r0 meniscus curvature radius for z = 0, m 

R  thermal resistance, K W-1 

T temperature, K 

V  volume, m3 

V*  dimensionless load of liquid, - 

x coordinate along the FPHP length, m 

y coordinate across the FPHP width, m 

z vertical coordinate, m 
 

Subscripts 

cap capillary 

cond condenser 

evap evaporator 

g  grooves 

l liquid 

max maximum 

min minimum 

sat saturation 

tot total 

v vapour 

 

 

Greek symbols 

 contact angle, rad 

 angle, rad 

 central angle, rad 

 density, kg m-3 

 surface tension, N m-1 
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1. Introduction 
 

Flat plate heat pipes (FPHP) and vapour chambers are micro-fluidic devices, that are usually 

designed for thermal management of electronic components [1,2]. They are used for their heat 

transfer capacity as well as their capacity of homogenizing the temperature. A FPHP is a cavity of 

small thickness partially filled with a two-phase working fluid. Heat sources and heat sinks are 

located anywhere on the cavity with the other parts being insulated. Vapour is generated at the heat 

source level (evaporator) and it condenses at the heat sink level (condenser). The liquid returns from 

the evaporator to the condenser through a capillary structure made of micro-grooves, meshes or 

sintered powder wicks. For the cooling of electronic devices, the more common working fluids are 

water, methanol, ethanol, acetone or n-pentane.  

Since the nineties, a lot of works have been published on those systems and several numerical 

or analytical models have been proposed in order to predict their thermal performances and/or their 

capillary limit. These models are generally based on previous works on micro heat pipes (MHP) [3-

5]. Hydrodynamic models of MHP are based on the balance equations and the Young-Laplace law 

[3,5], which connects liquid and vapour pressures to the meniscus curvature radius in the corners of 

a MHP. Heat transfer is taken into account by heat conduction in both the wall and the liquid and 

phase change at the liquid-vapour interface. Interfacial phenomena in the very small region at the 

junction between the meniscus and the wall are although taken into account [4]. 

Similar models have been developed for grooved FPHP [6,7], but axial heat conduction in the 

wall is neglected, whereas it could affect thermal performances [8]. In a previous work [9], we have 

coupled a hydrodynamic model to a thermal model including both axial heat conduction in the wall 

and heat transfer by phase change in the evaporator and the condenser. For more complicated 

capillary structures (mainly meshes, sintered powder wicks or crossed grooves), such an approach is 

not possible and the flow in the capillary structure is modelled by the Darcy’s law in 2D [8] or 3D 

[10]. 

Although there is an important literature on FPHP, experimental papers are relatively rare 

and do not provide measurements inside these systems, but only surface temperature measurements 

[11-12]. Furthermore, theoretical works are abundant, but generally focus on capillary-driven flows 

[6-10] and thermal models in ideal conditions, i.e. the system being optimally filled with liquid. 

Recently [9,13], we have presented and validated such a model with both surface temperature 

measurements and meniscus curvature radius measurements inside a grooved capillary structure. 

Confocal microscopy was used to visualize menisci in the grooves through a transparent plate. The 
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FPHP under investigation was made of copper and filled with methanol. It had a wide evaporating 

area (190×90 mm2) compared to the condenser area (30×90 mm2). As a result the capillary limit 

was observed for a rather small heat flux (0.9 Wcm-2). In this paper, we show that a parameter is not 

known and has to be determined experimentally to solve the numerical model: the value of the 

meniscus curvature radius at the end of the condenser. There is a lack of predicting models in the 

literature to calculate this parameter.  

In a more recent paper [14], a similar experiment was developed for a smaller FPHP, made of 

copper and filled with methanol, with characteristics close to typical FPHPs for electronic cooling. 

Nucleate boiling was observed for relatively small heat fluxes (3 Wcm−2). In this paper, we have 

shown that the onset of nucleate boiling improves the thermal performance of the flat heat pipe, and 

does not constitute an operation limit as it is generally stated. The dry out of the evaporator is 

observed for heat fluxes much higher than the heat flux of onset of nucleate boiling. These 

experimental results show that a better understanding of these phenomena is necessary, particularly 

in order to theoretically predict the operation limit in case of nucleate boiling.  

In this communication, we present new experimental results that show the combined effects of 

the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe. We 

show that these parameters act on both the capillary limit and the thermal resistance of the system. 

The FPHP under investigation is similar to the one studied in [14]: a transparent plate allows 

visualization inside the device. Temperature measurements are obtained for different liquid charges 

and vapour space thicknesses. A confocal microscope is used to measure the menisci curvature radii 

in the grooves. A theoretical model, developed in non working conditions, is presented and 

validated with the experimental data.  

2. Experimental set-up 
 

The flat heat pipe under investigation is shown in figure 1. It has already been described in a 

previous article [14] that can be read for further details. Its capillary structure, covering an area of 

70×90 mm², is made of 88 longitudinal micro-grooves, machined in a copper plate. The grooves are 

connected at the condenser. Each groove has a rectangular cross-section of height and width equal 

to 400 μm. The distance between two grooves is equal to 400 μm. The wall thickness under the 

grooves is equal to 3 mm.  

The FPHP is hermetically sealed on its upper face with a transparent plate, which allows the 

observation of the liquid/vapour menisci in the grooves. A nitrile ring is placed between the copper 

and the transparent plates to ensure tightness. The vapour space thickness is changed using rings of 
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different thicknesses. In this article, three vapour space thicknesses are studied: Hv = 1 mm, 

Hv  = 2 mm and Hv  = 5 mm. A filling copper pipe closed by a valve is sealed on the grooved plate at 

the extremity of the condenser. The heat source is located on the copper wall. It is a heated copper 

block of dimensions 70 × 20 mm2 supplied by a 0 - 220 V AC power supply. Electric power is 

obtained by measuring the voltage drop across the heating resistor and the current, thanks to a 

calibrated resistance. Thus, the uncertainty due to the power measurement is negligible. The heat 

sink is a water heat exchanger of dimensions 30 × 70 mm2. The water flow rate is constant and the 

inlet temperature is controlled by means of a thermostatic bath in order to have a constant working 

temperature when the heat input increases. The heat source and the heat sink are separated by an 

adiabatic area of length equal to 40 mm. Two series of nine calibrated thermistors (uncertainty 

lower than 0.2 K) are located symmetrically along the FPHP wall. They are fixed thanks to silver 

lacquer in small grooves that were machined in the wall in order to reduce the contact resistance 

(figure 1). The value of their resistance is recorded by a Keithley 2700 multimeter. The working 

temperature of the FPHP is the saturation temperature Tsat, which is determined as the mean 

temperature of the six thermistors located in the middle of the adiabatic zone.  

The FPHP is thermally insulated during thermal tests. Before thermal tests, the FPHP has to 

be degassed and filled. In order to promote surface wetting, the copper plate is first cleaned. The 

FPHP and the working fluid n-pentane are degassed carefully to eliminate non-condensable gases. 

The method of evacuating the non-condensable gases from the working fluid is based on fluid 

solidification under vacuum. The fluid contained in a heated vessel vaporizes, releases non-

condensable gases and solidifies in a second vessel dipped into liquid nitrogen. The non-

condensable gases are evacuated by vacuum pumps. The FPHP is degassed by heating during 

vacuum pumping at 10-5 mbar.  

In working conditions, vapour is generated at the evaporator and it condenses at the 

condenser. The liquid returns from the evaporator to the condenser through the capillary structure 

made of micro-grooves. In the grooves the liquid makes a meniscus, which curvature radius varies 

from the evaporator to the condenser due to the pressure drop inside the system. Thus measuring the 

meniscus curvature radius is a way of measuring a hydrodynamic parameter inside the capillary 

structure. 

A confocal microscope is used to measure the meniscus curvature radius in the grooves, the 

FPHP being in horizontal orientation. The confocal microscope is a STIL Micromesure 2 system. 

The optical sensor has a nominal measuring range of 350 µm. The working distance is about 13 

mm. The maximum measuring angle for specular reflection is equal to 27.4°. The optical sensor 
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velocity is about 1 mm s-1, which is fast enough for not thermally disturbing the measurement. Once 

the top of the groove is located by the sensor, the surface profile is recorded. The resulting data are 

used to estimate through a least square method the radius and the coordinates of the centre of a 

circle that fits at best the experimental data. More details about confocal microscopy applied to 

characterization of FPHP can be found in [9,15]. 

3. Experimental results 
  

The FPHP, filled with n-pentane, has been tested in horizontal orientation at a saturation 

temperature equal to 40°C. Temperatures are measured in steady state at successively decreasing 

filling ratios for a given heat flux. Thermal characterizations have been performed with three 

different heat fluxes and with three different vapour space thicknesses. Meniscus curvature 

measurements by confocal microscopy are presented to complete temperature measurements.  

Although the FPHP is thermally insulated, thermal losses lead to experimental uncertainties. In 

the present experimental conditions, they have been estimated to be lower than 3 W for a saturation 

temperature of 40°C. As a consequence, the relative uncertainty is low: about 5% for a heat flux of 

5 W/cm². 

3.1. Determination of an optimal filling ratio for a constant vapour 
space 

 

In this section, the vapour space is constant and equal to 2 mm. Temperature fields in the FPHP 

have been recorded for three different heat fluxes and for different filling ratios. The filling ratio fr 

is the ratio between the volume of liquid and the internal volume of the FPHP. For fr = 0, the FPHP 

is empty and for fr = 1, the FPHP is full of liquid. Experimentally, fr is determined by measuring the 

liquid height in the FPHP in vertical position at 40°C. Results obtained for a heat flux of 7.5 W/cm² 

are presented in figure 2, which shows the temperature profile as a function of location along x axis 

(as defined in figure 1).  

 

 

The thermal performance of the flat heat pipe can be characterized by the overall thermal 

resistance Rtot = (Tmax − Tmin)/Q, as well as by the condenser and the evaporator thermal resistances 

Rcond = (Tsat − Tmin)/Q and Revap = (Tmax − Tsat)/Q respectively. The overall thermal resistance results 

from the combination of both the condenser and the evaporator thermal resistances. 
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Figures 3 to 5 show the condenser, evaporator and overall thermal resistances versus the filling 

ratio for different heat fluxes. Thermal resistances depend strongly on the filling ratio: for small fr, 

dryout of the evaporator occurs and for high fr, the condenser is flooded. In both cases, heat transfer 

coefficients at the evaporator and the condenser are small. As a result, there exists an optimal filling 

ratio that optimises the thermal performance i.e. that minimizes the overall thermal resistance. For a 

vapour space thickness Hv = 2 mm, optimal values of fr are in the range 10 % to 25 %, which 

corresponds to a liquid quantity inside the system equal to 1. to 2.5 times the total volume of the 

grooves.  

The increase of the heat flux does not affect the condenser thermal resistance (figure 3), which 

depends only of the percentage of area which is flooded by the liquid. On the contrary, the increase 

of the heat flux decreases the range of filling ratio for which the evaporator thermal resistance is the 

lowest. Indeed, at high heat fluxes a higher filling ratio is necessary to prevent dry out: the distance 

between the evaporator and the liquid stored at the condenser decreases when the filling ratio 

increases. Optimal filling ratios are similar at the evaporator and the condenser for small heat fluxes 

(q  7.5 Wcm-2), but not for q = 10 Wcm-2. As a result, the overall thermal resistance is higher for q 

= 10 Wcm-2 (figure 5) than for low heat fluxes. 

3.2. Effect of the vapour space thickness on the thermal resistance 

 

In this section, we present Revap and Rcond versus the filling ratio for three vapour space 

thicknesses (Hv = 1 mm, Hv = 2 mm and Hv = 5 mm) and three heat fluxes (q = 5 Wcm-2, q = 7.5 

Wcm-2 and q = 10 Wcm-2). Figures 6 and 7 present the condenser thermal resistance for these 

parameters. For small vapour space thicknesses, the increase of Hv does not noticeably modify Rcond 

until a limit thickness is reached (this limit is discussed in part 3). For higher vapour space 

thicknesses, the condenser characteristics change: the decrease of the thermal resistance towards its 

optimal value is much stiffer than for high Hv. In other words, an only very small range of filling 

ratios provides small thermal resistances. These two different characteristics are linked to liquid 

location inside the system. For small vapour spaces, capillary effects are important and the liquid in 

excess is confined between the upper and lower plates of the FPHP. Thus, the liquid is not 

homogeneously distributed on the copper plate, but is located on the corners of the system and in 

the grooves. For high vapour spaces, gravity forces are preponderant and if the volume of liquid 

inside the FPHP exceeds the volume of the grooves, the liquid is homogeneously distributed on the 

copper plate, which induces higher thermal resistances. As a conclusion, a thick vapour space is 
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interesting to reduce the vapour pressure drop (because of lower vapour velocities), but it prevents 

the liquid retention effects that are useful to limit the condenser thermal resistance.  

Figures 8 and 9 present Revap for Hv equal to 1 and 2 mm, and 5 mm, respectively. For 

Hv = 5 mm, the evaporator thermal resistance is very similar to the condenser thermal resistance: 

the liquid distribution in the FPHP is mainly induced gravitational forces. For vapour spaces of 1 

and 2 mm, the optimal filling ratio strongly depends on the heat flux and on the vapour space. 

Indeed, the increase of the heat flux increases pressure drops in the liquid and vapour phases, which 

can lead to the dry out of the evaporator. Furthermore, the maximum capillary pressure in the 

capillary structure strongly depends on the filling ratio and the vapour space thickness as it is shown 

by confocal microscopy measurements in next section.  

For a vapour space thickness Hv = 5 mm, optimal values of fr are in the range 4 % to 8 %, 

which corresponds to a liquid quantity inside the system equal to 1. to 2. times the total volume of 

the grooves. For Hv = 1 mm, optimal values of fr are above 17 %, the value of fr for which the liquid 

quantity is equal to the volume of the grooves. A similar remark was made for Hv = 2 mm with 

optimal filling ratio in the range 1. to 2.5 times the total volume of the grooves. Thus, a slight 

overfilling (until 2. times the total volume of the grooves) is necessary to obtain the best thermal 

performance. Compare to micro heat pipes, in which the liquid quantity can be calculated easily 

with the hydrodynamic equations [4], in FPHP such models [6,7,9] would underestimate the liquid 

quantity inside the system. Indeed, a part of the liquid is trapped on the four sides of the FPHP 

because of the capillary forces.    

3.3. Combined effects of the filling ratio and the vapour space 
thickness on the maximum capillary pressure 

 

The meniscus curvature radii in the grooves vary from the condenser to the evaporator 

because of pressure drops in both liquid and vapour flows. However, it has to be noticed that for a 

given total pressure drop, an infinity of meniscus curvature radius profiles can be found. The value 

of the curvature radius at the condenser (at x = 0) determines the mean level of the meniscus 

curvature radii all along the grooves. The higher the meniscus curvature radius at the condenser is 

and the higher the meniscus curvature radii all along the grooves are. In the next sections, we call 

“level of curvature radius” the mean value of the curvature radii in the groove due to the value of 

the curvature radius at the condenser. The level of curvature radius has important consequences on 

the FPHP performance. Small radii at the condenser lead to thin liquid films in the grooves and thus 
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reduce thermal resistances. Nevertheless, it reduces the maximum capillary pressure inside the 

system and thus the maximum heat transfer rate, as it is shown in this section. 

Meniscus curvature radii are measured with the confocal microscope along the grooves, the 

FPHP being in horizontal location. Measurement standard deviation of the radii in different grooves 

at a given x location is typically 100 µm. Hence, the presented results are the average measurements 

in 13 grooves. FPHP extremities cannot be observed, because the FPHP enclosure prevents the 

optical sensor positioning. Thus, the grooves can only be observed from x = 15 mm to x = 75 mm. 

Figures 10 and 11 present meniscus curvature radii along the grooves for filling ratios of 9 % 

and 13 % respectively. The vapour space thickness is equal to 2 mm and results are obtained with 

heat fluxes varying from 0 Wcm-2 to 6.3 Wcm-2. The level of meniscus curvature radii increases 

with the increase of the filling ratio. In non working conditions, the meniscus curvature radius is 

about 1.5 mm for fr = 9% and it reaches 2.2 mm for fr = 13%. Thus, the filling ratio has to be taken 

into account to model meniscus curvature variations along the grooves and the resulting 

temperature field. The dependency to the level of the meniscus curvature radius with the filling ratio 

is theoretically studied in part 3. For a fixed filling ratio, it appears that there is a location in the 

FPHP where the meniscus curvature radius is constant whatever the heat flux. This particular 

position is close to the middle of the condenser in this experiment. In [13], Rulliere et al. found a 

similar particular position that was located in the adiabatic zone.  

Figure 12 presents meniscus curvature radii along the grooves for vapour spaces of 1 mm and 

2 mm respectively. The liquid load is similar in both cases and equal to 1.1 ml. Thus, fr is higher for 

Hv = 1 mm than for Hv = 2 mm and equal to 18 % and 9 % respectively. The vapour space thickness 

has a strong influence on the level of the meniscus curvature radius inside the system. Indeed, for 

small Hv, the liquid is confined between the two FPHP plates and forms a meniscus whose 

curvature radius decreases with the decrease of Hv. As a result, a small meniscus curvature is 

imposed at the condenser. Although this effect is interesting from a thermal point of view, it 

strongly reduces the maximum capillary pressure inside the capillary structure as it is shown in part 

3. This result explains the dry out observed for smaller heat fluxes when Hv decreases (figure 8). 

Thus, the liquid retention effects that occur for small vapour spaces and limit the condenser thermal 

resistance also lead to a smaller capillary pressure difference in a FPHP.    

4. Theoretical analysis of vapour space thickness and filling 
ratio effects on FPHP performance 
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As shown previously, both the vapour space thickness and the filling ratio have a strong 

influence on the thermal performances of the FPHP. In order to analyse these phenomena, 

theoretical models have to be developed to calculate the liquid distribution in the FPHP. 

4.1. Effect of the filling ratio on the liquid distribution 

 

The distribution of the liquid inside a FPHP is the result of capillary forces, gravitational 

forces and pressure gradients in the liquid and vapour phases due to the fluid flow. In non working 

conditions, the fluid is at rest, and thus only capillary and gravitational forces act on the liquid 

distribution.  

Figure 13 shows various theoretical liquid distributions in a FPHP at rest as a function of the 

liquid charge, in a 2D cross section. Boundary effects are neglected and the liquid wettabillity is 

supposed to be high (contact angle lower than 45 °, which is the case for methanol or n-pentane on 

a copper plate, otherwise configurations (a) and (b) are different). For a low filling ratio, the liquid 

remains in the corner of the grooves: the meniscus curvature radii are small (a). Increasing the 

filling ratio increases the curvature radius of the two menisci in the groove corners until a single 

meniscus is formed (b). Then, the curvature radius remains constant until the meniscus reaches the 

top of the grooves (c) and a meniscus is formed on both sides of the FPHP (d). If the vapour space 

is small enough, the meniscus reaches the upper plate (e). Then, for higher filling ratios, the volume 

of liquid increases, and the curvature radius remains constant (f). But if the vapour space is too 

high, gravitational effects induce a homogeneous distribution of the liquid in the FPHP until the 

distance between the liquid and the upper plate is small enough to have a meniscus in touch with the 

upper plate (e’ and f’).  

When a meniscus is formed between the two plates of a FPHP, it acts on both the condenser 

thermal performance and the capillary limit. Its shape is a function of the vapour space thickness, 

and can be determined by considering both capillary and gravitational forces.  

4.2. Shape of the meniscus between the two plates of the FPHP  

 

The shape of the meniscus between the two plates of a FPHP at rest is governed by 

gravitational and capillary forces. The Young-Laplace law introduces capillary pressure versus the 

curvature radius r(z) at each point of the meniscus. By neglecting the meniscus curvature along the 

x axis, we have:  
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where Pl and Pv are the liquid and vapour pressures respectively,   the surface tension, and z the 

vertical coordinate. The intercept point z = 0 is located at the bottom of the plate, above the grooves 

(Figure 14). Gravitational forces induce: 
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where  is the density and g the gravity acceleration. At z = 0, the meniscus curvature radius is 

equal to the meniscus curvature radius in the grooves r0, which is constant in all the grooves 

because they are connected at the condenser. Thus:  
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By introducing equations (1) and (3) in equation (2), capillary and gravitational forces are linked 

together:  
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Equations (4) can be written:  
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where a is the so called capillary constant of the fluid. 

Let us introduce the angle φ between the tangent to the meniscus and the y axis. The meniscus 

curvature radius can be expressed: 
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By introducing equation (5) in equation (6), we obtain: 
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The integration of equation (7) leads to: 
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where K is a constant depending on α0 (i.e. the contact angle between the liquid and the bottom 

plate: K = cos α0), which is assumed to be equal to the wetting angle between the fluid and the wall. 

By introducing K into equation (8), we obtain the equation of the meniscus shape: 
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whose physical solution is: 
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In equation (10), the meniscus curvature radius r0 is an unknown, which can be obtained by 

considering the contact angle α1 between the meniscus and the upper plate at z = Hv:  
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As a result, r0 depends of the vapour space thickness, the contact angles between the meniscus and 

the bottom and upper plates, and the fluid capillary number. 

Figure 15 presents the shape of the meniscus between the two plates of the FPHP for 

different vapour spaces. The shape is calculated numerically by introducing equation (11) into 

equation (10). Thus, z is a function of Hv and, the angle between the meniscus and the y axis. The 

fluid is n-pentane. Its capillary number is about 2 mm and the contact angles are assumed to be 

equal to 2°. For small vapour spaces, gravitational effects are negligible and the shape of the 

meniscus is half a circle. For thicker vapour spaces, gravitational forces act on the shape of the 

meniscus until a critical vapour space thickness Hc for which the capillary forces are not sufficient 

to maintain the meniscus between the two plates. Hc is obtained when r0 tends to an infinite value: 

10 coscos   aHc  (12) 

 

If the contact angles are equal to zero, 2aH c  . For increasing contact angles, the critical vapour 

space thickness decreases.  

Thermal consequences of the presence of the meniscus between the two plates of a FPHP 

are noticeable as is has been shown in part 2. Indeed, for a vapour space smaller than the critical 

vapour space, the liquid is drained to the FPHP sides, which reduces the thermal resistance at both 

the evaporator and the condenser. For a vapour space thicker than Hc, if the volume of liquid is 

higher than the volume of the grooves, the capillary structure is flooded, which increases the overall 

thermal resistance. 

As a conclusion, if the vapour space is small enough (Hv < Hc), fr can be increased to a certain 

extent without increasing to much the thermal resistance. On the contrary, if Hv > Hc, an increase of 
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fr is an abrupt increase of the thermal resistance. Nevertheless, we will show in the next sections 

that a too small vapour space leads to a low maximal capillary pressure, which is not desirable.  

4.3. Meniscus curvature radius in the grooves in non working 
conditions  

 

As indicated previously, the grooves are linked together at the condenser end. As a result, in 

non working conditions, r0 is constant all over the capillary structure. In cases of figure 13 (e) and 

(f), the value of r0 is linked to the vapour space thickness, the contact angles between the meniscus 

and the two plates, and the fluid capillary number (equation (5)). Figure 16 presents r0 versus the 

vapour space thickness, for n-pentane, with contact angles equal to 2°. This curve has two 

asymptotes:  

For small vapour spaces, gravity forces are negligible and r0 is constant along the z axis: 

 
10

0
coscos  

 vH
zr  

The second asymptote is vertical and corresponds to Hv = Hc (equation (12)). 

When a meniscus exists between the two plates of the FPHP (figure 13 (e) and (f)), the 

meniscus curvature radius in the grooves does not depend on the filling ratio and is equal to r0. For 

smaller filling ratios (figure 13 (a) to (d)), it depends on the filling ratio and is lower than r0. 

Geometrical considerations allow calculating its value as a function of the liquid volume Vl in the 

FPHP. 

For r < lg/2, two menisci are located in the corner of the grooves (Figure 13 (a) and (b)), and 

thus the volume of the liquid is calculated geometrically by considering a wetting angle equal to 

zero. Note that the wetting angle could be introduced easily in the model. The two menisci located 

on each side of the FPHP are taken into account similarly for the liquid volume calculation. Thus, Vl 

is expressed as:  

2)
4

1)(22( rNLVl
  (13) 

where lg  is the groove width, N is the number of grooves and L the FPHP length. 

 

For lg/2 < r < r0 (Figure 13 (c)and (d)), the meniscus curvature radius is attached to the top 

of the groove and varies from a value equal to lg/2 to an infinite value. Vl is calculated considering 

these geometrical considerations: 
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where hg is the groove height and 2  the central angle formed by the arc of circle of radius r (i.e. 

the meniscus) in the groove.  

Figure 17 presents the evolution of the meniscus curvature radius in the grooves as a 

function of the dimensionless volume of liquid V* inside the FPHP for different vapour space 

thicknesses. V*
 is the ratio between the volume of liquid in the FPHP and the volume of the grooves. 

Theoretical results, obtained with the above equations, are represented by continuous lines. 

Experimental data, obtained by confocal microscopy in non working conditions are plotted with 

crosses and squares on the same figure. A relatively good agreement is observed between 

theoretical and experimental results. For Hv > 2 mm and V* > 1, r0 increases slightly with an 

increase of V* from V* = 1 to V* = 5, and crosses the predicted value (i.e. r0 = 2 mm, which is 

supposed to be constant) for V* = 3. Nevertheless, as r0 is relatively high in that case, this variation 

does not lead to a big variation of the capillary pressure, which is inversely proportional to r0.  

It has to be noticed that these results are not useful in working conditions for V* < 1. Indeed, we 

have seen in the previous parts that the best performance where obtained for filling ratios higher 

than the volume of the grooves (i.e. V* > 1). In working conditions V* < 1 leads to a dry out of the 

evaporator for small heat fluxes. Nevertheless, results of figure 17 validate our assumptions and 

derivations. 

4.4. Consequences on the maximum capillary pressure 

 

Capillary limit is the principal limit encountered in a FPHP in usual conditions. It appears 

when the sum of the liquid and vapour pressure drops exceeds the maximum capillary pressure that 

a capillary structure can sustain. In general, the maximum capillary pressure in a grooved system is 

given by [16]:  

min)( evap
cap r

P   (15) 

assuming an infinite meniscus curvature radius at the condenser and where (revap)min is the minimum 

curvature radius at the evaporator. We have shown in previous sections that a small vapour space 

thickness leads to a reduced meniscus curvature radius in the system in non working conditions. In 

working conditions, it leads to a reduced maximal meniscus curvature radius at the condenser and 

thus lowers the maximal capillary pressure:  
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condevap
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Measurements presented in figure 12 confirm these assumptions. Indeed, with a vapour 

space equal to 1 mm, the level of curvature radii inside the capillary structure is much smaller than 

that obtained for Hv = 2 mm.  

As a result, the optimal liquid load in a FPHP is the lowest load which leads to the maximum 

meniscus curvature radius at the condenser. Indeed, excess liquid induces a partial flooding of the 

FPHP and as a consequence increases the thermal resistance, whereas a lack of liquid induces a 

decrease of the maximum capillary pressure. Equation (16) can be written as: 
















max

min

min )(

)(
1

)( cond

evap

evap
cap r

r

r
P   (17) 

 

with 
max

min

)(

)(

cond

evap

r

r
, the depreciation factor of the maximum capillary pressure due to the vapour space 

thickness. 

In a FPHP with rectangular grooves 
0

min cos2
)(



g

evap

l
r   [16]. (rcond)max is given by equation 

(11) in non working conditions. In working conditions, this equation is slightly modified by 

condensation phenomena and liquid flow in the grooves. Nevertheless, equation (11) is a good 

approximation of (rcond)max. Thus, we obtain: 
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 (18) 

 

For contact angles equal to zero, this equation becomes: 
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g

cond

evap
 (19) 

 

Two non-dimensional parameters appear in this expression: the first is the ratio lg/Hv which 

represents the relative effects of capillary forces on the sides of the FPHP compared to the capillary 

forces in the grooves. The second term is 2/ aH v  and illustrates the confinement of the liquid 

between the upper and the bottom plates of the FPHP. 

The depreciation factor must be minimized to optimise a FPHP. As an example, with our 

geometry and assuming contact angles equal to 2°, a vapour space of 1 mm leads to a 35 % 

decrease of the maximum capillary pressure with respect to an infinite vapour space thickness. 
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Conclusion 
 

A FPHP with rectangular micro-grooves and filled with n-pentane has been studied in horizontal 

position. Experimental results show that the vapour space thickness and the heat flux have 

important consequences on the thermal performances of a FPHP. Two different liquid distributions 

in a FPHP can be observed, depending on the size of the vapour space. A small vapour space 

thickness induces liquid retention in the FPHP sides and corners and thus reduces the thermal 

resistance of the system even for a liquid quantity greater than the optimum value. On the contrary, 

if the vapour space is higher than a critical value, gravitational forces dominate and the capillary 

structure can be easily flooded if the filling ratio is too high. In that case, the thermal resistance will 

be high, and thus, the range of optimal liquid charge is very small.  

The vapour space thickness influences the level of the meniscus curvature radii in the grooves and 

hence modifies the maximum capillary pressure. Indeed, a narrow vapour space induces a low 

maximum meniscus curvature radius at the condenser, which reduces the maximum capillary 

pressure. The filling ratio and the vapour space thickness have to be carefully optimised in order to 

improve the thermal and hydrodynamic performances of the system. A theoretical model has been 

developed in non working conditions to analyse these experimental data. A perspective of this paper 

is to extend this model in working conditions. 
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Figure captions 

 

Figure 1: Schematic of the FPHP 

Figure 2: Temperature field along the FPHP (Hv = 2 mm, q = 7.5 W/cm²) 

Figure 3: Condenser thermal resistance versus the filling ratio (Hv = 2 mm) 

Figure 4: Evaporator thermal resistance versus the filling ratio (Hv = 2 mm) 

Figure 5: Overall thermal resistance versus the filling ratio (Hv = 2 mm) 

Figure 6: Condenser thermal resistance versus the filling ratio (Hv = 1 mm and Hv = 2 mm) 

Figure 7: Condenser thermal resistance versus the filling ratio (Hv = 5 mm) 

Figure 8: Evaporator thermal resistance versus the filling ratio (Hv = 1 mm and Hv = 2 mm) 

Figure 9: Evaporator thermal resistance versus the filling ratio (Hv = 5 mm) 

Figure 10: Meniscus curvature radii along the FPHP ; Hv = 2 mm and fr = 9% 

Figure 11: Meniscus curvature radii along the FPHP ; Hv = 2 mm and fr = 13% 

Figure 12: Meniscus curvature radii along the FPHP Hv = 1 or 2 mm  

Figure 13: Distribution of the liquid inside a FPHP 

Figure 14: Schematic of the meniscus 

Figure 15: Meniscus shape on both sides of the FPHP for different vapour spaces (a = 2 mm; α0 = 

α1  = 2°) 

Figure 16: Meniscus curvature radius in the grooves versus Hv 

Figure 17: Theoretical and experimental meniscus curvature radii versus V* for different vapour 

space thicknesses  
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Figure 1: Schematic of the FPHP 
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Figure 2: Temperature field along the FPHP (Hv = 2 mm, q = 7.5 W/cm²) 
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Figure 3: Condenser thermal resistance versus the filling ratio (Hv = 2 mm) 
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Figure 4: Evaporator thermal resistance versus the filling ratio (Hv = 2 mm) 
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Figure 5: Overall thermal resistance versus the filling ratio (Hv = 2 mm) 
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Figure 6: Condenser thermal resistance versus the filling ratio (Hv = 1 mm and Hv = 2 mm) 
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Figure 7: Condenser thermal resistance versus the filling ratio (Hv = 5 mm) 
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Figure 8: Evaporator thermal resistance versus the filling ratio (Hv = 1 mm and Hv = 2 mm) 
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Figure 9: Evaporator thermal resistance versus the filling ratio (Hv = 5 mm) 
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Figure 10: Meniscus curvature radii along the FPHP ; Hv = 2 mm and fr = 9% 
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Figure 11: Meniscus curvature radii along the FPHP ; Hv = 2 mm and fr = 13% 
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Figure 12: Meniscus curvature radii along the FPHP  

 Hv = 1 or 2 mm  
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Figure 13: Distribution of the liquid inside a FPHP 
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Figure 14: Schematic of the meniscus 
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Figure 15: Meniscus shape on both sides of the FPHP for different vapour spaces  

(a = 2 mm ; α0 = α1  = 2°) 
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Figure 16: Meniscus curvature radius in the grooves versus Hv 
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Figure 17: Theoretical and experimental meniscus curvature radii  

versus V* for different vapour space thicknesses 

 


