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Abstract

We consider asynchronous message-passing systems in whichsome links are timely and processes
may crash. Each run defines atimeliness graphamong correct processes:(p, q) is an edge of the time-
liness graph if the link fromp to q is timely (that is, there is bound on communication delays fromp to
q). The main goal of this paper is to approximate this timeliness graph by graphs having some properties
(such as being trees, rings,... ). Given a familyS of graphs, for runs such that the timeliness graph
contains at least one graph inS then using anextraction algorithm, each correct process has to converge
to the same graph inS that is, in a precise sense, an approximation of the timeliness graph of the run. For
example, if the timeliness graph contains a ring, then usingan extraction algorithm, all correct processes
eventually converge to the same ring and in this ring all nodes will be correct processes and all links will
be timely.

We first present a general extraction algorithm and then a more specific extraction algorithm that is
communication efficient (i.e., eventually all the messages of the extraction algorithm use only links of
the extracted graph).

1 Introduction

We consider here partially synchronous models like in [6] or[5] in which some processes may crash. In
such systems some links are timely, meaning that the communication delays are bounded [2], and some
other are not. Generally, these timeliness properties of links have been used to enable to solve the consensus
problem as in [6] or to implement failure detectors likeΩ that realizes an eventual election of a correct
process (e.g., [9, 1, 3, 10, 8]). In this paper we are more specifically interested in detecting the timeliness
of the links in order to approximate the timeliness relationon links in each run. If processes are able to
eventually determine which links are timely, then avoidingto use non timely links could help to improve the
efficiency of the communication that can be particularly interesting for routing algorithms.

More precisely, each run of the system eventually convergesto a timeliness graphwhose the nodes
are the correct processes and directed edges are the timely edges among correct processes, and anextrac-
tion algorithm is an algorithm such that all correct processes eventually agree on an identical graph that
approximates the timeliness graph.

For example assume the system ensures that there is at least one correct process that communicates in
a timely way with all other processes, such a process is aneventual source[2] and it could be interesting
for the processes to choose and agree on such a eventual source. This way, we not only realize an eventual
leader election but also the chosen leader is able to communicate in a timely way with all the rest of correct
processes.



If we assume now that instead of an eventual source there is aneventualroot in the system, that is
a correct process that may communicate with every process bya communication path using only timely
links, then choosing and agreeing one such eventual root realizes an eventual leader election (the root is the
eventual leader) but this also enable to ensure a routing of all messages from the root to any other processes
using only timely links.

In the same way, if the system ensures that there is always a cycle containing all correct processes in
the timeliness graph of the run, then choosing and agreeing on one such cycle enables to eventually build a
ring between all correct processes that use only timely links. Note that in this case the processes eventually
agree on the list of all correct processes too, as a consequence we obtain a failure detector♦P [4].

More precisely, consider some structural propertyP of graphs (like being a star, a ring, a tree, a complete
graph...). An algorithmextractinga graphG verifying P has to ensure that (1) all the correct processes
eventually agree onG, (2) all the correct processes are nodes ofG and (3)G is an “approximation” of
the timeliness relation of the run. Actually, “approximation” means that the subgraph ofG induced by the
correct processes is obtained from a directed cut (dicut)1 of G and is a subgraph of the timeliness graph.

Contributions. In this paper, we first introduce and specify the problem of extraction of graphs in some
setX . We consider only systems in which a solution may exist: in all run there is at least one graph inX
that is compatible with the run.

We prove that this problem cannot be solved for some set of graphs and we give a sufficient condition
on the set of graphs to be extracted. This condition is rathersimple: the set of graphs has to be closed by
directed cut reduction. Then, we give an extracting algorithm for every set of graphs verifying this property.

Moreover, if the graphs inX are all strongly connected, the algorithm gives an exact extraction, that is,
the set of nodes of the extracted graph is exactly the set of correct processes of the run. Reciprocally, we
show that there exists sets of graphs that admit extraction but no exact extraction.

Beside, we show that finding an approximation is even so interesting: in the extracted graph any path
between pair of correct processes is only constituted of timely links. Hence, the approximation can be used
to timely route messages,e.g., in the previous example with a root, the approximation willgive us a tree
whose the root is a correct process and with a path containingonly correct processes from the root to every
correct process.

One drawback of this algorithm is the fact that forever all correct processes have to send messages on all
links. Hence ifk is the number of processesk(k− 1) links will be used forever by the extraction algorithm.
We are then interested in communication efficient implementations of the extraction problem. That is,
eventually all correct processes only send messages along the edges of the extracted graph. For example,
consider the example of a system with a timeliness ring, eventually onlyk − 1 links of the system are used.
We propose an efficient extraction algorithm for set of graphs containing at least one correct process with
directed paths from this process to all correct process.

Roadmap. In the next section, we define the model used in this paper. In Section 3, we characterize some
properties of the extraction problem. Our two algorithms are presented in Sections 4 and 5, respectively.
Finally, we make some concluding remarks in Section 6.

1A directed cut(X,Y ) of directed graphG = 〈N,E〉 is a partition ofN such that there no directed edge fromY toX.
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2 Informal Model

2.1 Distributed Systems

We begin this subsection with some definitions and notationsconcerning graphs. For a directed graph
G = 〈N,E〉, Node(G) andEdge(G) denoteN andE, respectively. Given a graphG and a setM ⊆
Node(G), G[M ] is thesubgraphof G induced byM , i.e., G[M ] is the graph〈M,Edge(G)[M ]〉 where
(p, q) ∈ Edge(G)[M ] if and only if p, q ∈ M and(p, q) ∈ Edge(G).

The tuple(X,Y ) is a directed cut(dicut for short) ofG if and only if X andY define a partition of
Node(G) and there is no directed edge(y, x) ∈ Edge(G) such thatx ∈ X andy ∈ Y . We say thatG′

is adicut reductionfrom G if there exists a dicut(X,Y ) of G such thatG′ = G[X]. A setS of graphs is
dicut-closedif and only if it is closed under dicut reduction, namely ifG ∈ S then all the graphs obtained
by a dicut-reduction ofG are inS.

Processes and Links. We consider distributed systems composed ofn processes which communicate by
message-passing through directed links. We denote the set of processes byΠ = {p1, ..., pn}. We assume
that the communication graph is complete,i.e., for each pair of distinct processes(p, q), there is a directed
link from p to q.

A process may fail by crashing, in which case it definitively stops its local algorithm. A process that
never crashes is saidcorrect, faulty otherwise.

The (directed) links arereliable, i.e. every message sent through a link(p, q) is eventually received by
q if q is correct and if a messagem from p is received byq, m is received byq at most once, and only ifp
previously sentm to q.

The links being reliable, an implementation of thereliable broadcast[7] is possible. A reliable broadcast
is defined with two primitives:rbroadcast〈m〉 andrdeliver〈m〉. Informally, after a correct process
p invokesrbroadcast〈m〉, all correct processes eventuallyrdeliver〈m〉; after a faulty processp in-
vokesrbroadcast〈m〉, either all correct processes eventuallyrdeliver〈m〉 or correct processes never
rdeliver〈m〉.

Timeliness. To simplify the presentation, we assume the existence of a discrete global clock. This is
merely a fictional device: the processes do not have access toit. We take the rangeT of the clock’s ticks to
be the set of natural numbers.

We assume that every correct processp is timely, i.e., there is a lower and an upper bound on the
execution rate ofp. Correct processes also have clocks that are not necessarily synchronized but we assume
that they can accurately measure intervals of time.

A link (p, q) is timely if there is a boundδ such that no message sent byp to q at timet may be received
by q after timet+ δ.

A timeliness graphis simply a directed graph whose set of nodes are a subset ofΠ. The timeliness graph
represents the timeliness properties of the links. Intuitively, for timeliness graphG, Node(G) is the set of
correct processes and(p, q) is inEdge(G) if and only if the link(p, q) is timely.

Runs. An algorithmA consists ofn deterministic (infinite) automata, one for each process; the automaton
for processp is denotedA(p). The execution of an algorithmA proceeds as a sequence of processsteps. In
a step a process atomically may send and/or receive some messages and changes its state.

A run r of algorithmA is a tupler = 〈T, I,E, S〉 whereT is a timeliness graph,I is the initial state
of the processes inΠ, E is an infinite sequence of steps ofA, andS is a list of increasing time values
indicating when each step inE occurred. A run must satisfy usual properties concerning sending and
receiving messages. Moreover, we assume that (1) all correct processes make an infinite number of steps:
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p ∈ Node(G) if and only if p makes an infinite number of steps inE and (2) the timeliness of links is
deduced from the timeliness graph:(p, q) ∈ Edge(G) if and only if the link(p, q) is timely inE.

In the following for runr = 〈T, I,E, S〉, T (r) denotesT the timeliness graph ofr, andCorrect(r)
is the set of correct processes for the runr, namely,Correct(r) = Node(T (r)). Note that by definition,
(p, q) is a timely link if and only if(p, q) ∈ Edge(T ).

Remark that in the definition given here a link may be timely even if no message is sent on the link.
If link (p, q) is FIFO (i.e., messages fromp to q are received in the order they are sent) andp regularly
sends messages toq, then the timeliness of these messages implies the timeliness of the link itself. So in the
following we always assume that links are FIFO.

2.2 Some Systems

We say that timeliness graphG is compatible with timeliness graphG′ if and only if (1) Node(G) =
Node(G′) and (2)Edge(G) ⊆ Edge(G′). By extension, timeliness graphG is compatible with runr if G
is compatible withT (r), the timeliness graph ofr. Hence, timeliness graphG is compatible with runr if
Node(G) is the set of correct processes inr and if (p, q) is an edge ofG then(p, q) is timely in r.

A systemX is defined as a set of timeliness graphs. The set of runs of systemX denotedR(X ) is the
set of all runsr such that there exists a timeliness graphG in X compatible withr.

Below, we define the systems considered in this paper:

• ASYNC is the set of all timeliness graphsG such thatEdge(G) = ∅. In ASYNC there is no
timeliness assumption about links andR(ASYNC) is the set of all runs in an asynchronous system.

• COMPLET E is the set of all complete graphs whose nodes are the subsets of Π.

• ST AR is the set of all timeliness graphs with asource, i.e.,G ∈ ST AR if and only ifNode(G) ⊆ Π
and there existsp0 ∈ Node(G) (the center of the star or the source) such thatEdge(G) = {(p0, q)|q ∈
Node(G) \ {p0}}. Clearly a runr is in R(ST AR) if and only if there is at least onesourcein r.

• T REE is the set of all timeliness graphsG that are rooted directed trees,i.e., |Edge(G)| = |Node(G)|−
1 and there existsp0 in Node(G) such that∀q ∈ Node(G), there is a directed path ofG from p0 to q.
Clearly a runr is in R(T REE) if and only if there is at least one timely path from a correct process
to all correct processes.

• RING is the set of all timeliness graphsG such thatG is a directed cycle (a ring). Clearly a runr is
in R(RING) if and only if there is a timely (directed) cycle over all correct processes.

• SC is the set of all timeliness graphs that are strongly connected. Clearly, a runr is in R(SC) if and
only if there exists a (directed) timely path between each pair of distinct correct processes.

• BIC is the set of all timeliness graphsG such that for allp, q ∈ Node(G), there exist at least two
distinct paths fromp to q. BIC corresponds to the set of 2-strongly-connected graphs. Clearly, a runr
is inR(BIC) if and only if there exists at least two distinct timely pathsbetween each pair of distinct
correct processes.

• PAIR is the set of all timeliness graphsG such thatEdge(G) = {(p0, p1), (p1, p0)} with p0, p1 ∈
Node(G) andp1 6= p0. Clearly, a runr is inR(PAIR) if and only if there exists two distinct correct
processesp0 andp1 such that(p0, p1) and(p1, p0) are timely links.
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2.3 Extraction Algorithm

Given a systemX , the goal of anextraction algorithmis to ensure that in each runr in X , all correct
processes eventually agree on the same element ofX and that this element is, in some precise sense, an
approximation of the timeliness graph of runr.

For example, inRING, all processes have to eventually agree on some ring and thisring has to be
compatible with the timeliness graph of the run. In particular this ring contains all the correct processes.
However, the compatibility relation may be too strong: In many systems, it is not possible to distinguish
between a crashed process and a correct one, so the graphG on which the processes eventually agree may
contain crashed processes and then the graph is not exactly compatible with the run. Then we weaken the
compatibility and impose only that the subgraph ofG induced by the set of correct processes of the run is a
dicut reduction of the timeliness graph of the run.

We now formally define what is an extraction algorithm. First, in such an algorithm, every processp
maintains a local variableGp which contains a timeliness graph. Then, we say that an algorithm extracts a
timeliness graph inX if and only if for every runr in X there is a timeliness graphG (called theextracted
graph) such that:

• Convergence:for all correct processesp there is a timet after whichGp = G

• Compatibility:G[Correct(r)] is compatible withT (r)

• Closure:G[Correct(r)] is a dicut reduction ofG or is equal toG

• Validity: G is in X

Remark that for all systems that containASYNC there is a trivial extraction algorithm: for each run
processes extract the graphG such thatNode(G) = Π andEdge(G) = ∅.

A more constrained version of the extraction problem is the following: an algorithmA extracts exactly
timeliness graphs inX if for every runr in systemX , the extracted graphG is compatible withT (r). In
this case, all correct processes eventually know the exact set of correct processes: it is the set of nodes of
the extracted graph.

3 Some Results about Extraction Algorithms

We begin this section by showing that an extraction algorithm allows to deduce some information about
failures.

First we show that an extraction algorithm may help to route messages using only timely links.

Lemma 3.1 LetG be a graph extracted from runr, if (p, q) is in Edge(G) andq is a correct process then
p is correct.

Proof. By contradiction, assume thatp is not correct, then(Correct(r), Node(G) − Correct(r)) is not a
dicut because(p, q) ∈ Edge(G), p ∈ Node(G) − Correct(r) andq ∈ Correct(r), which contradicts the
Closure property. ⊓⊔

From this lemma and the Compatibility property, we deduce directly:

Proposition 3.2 If (p = p0, . . . , pi, . . . , q = pm) is a path in the extracted graph andp andq are correct
processes, then for everyi such that0 ≤ i < m the link(pi, pi+1) is timely and processpi is correct.
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From a practical point of view, this proposition shows that the extracted graph may be used to route
messages between processes using only timely links: the route fromp to q is a path in the extracted graph
(if any). All intermediate nodes are correct processes and agree on the extracted graph and then on the path.

For example withT REE , the tree extracted by the algorithm enables to route messages from the root of
the tree to any other processes and the routing uses only timely links.

Generally, the main goal of the extraction algorithm is not only to extract a graphG in X but also to
ensure thatG[Correct(r)] is in X (even if the processes do not know the set of correct processes). In
particular, this property is ensured ifX is dicut-closed: the Closure property implies thatG[Correct(r)] is
in X .

Among the systems we consider, only systemPAIR is not dicut-closed:H = 〈{p}, ∅〉 is a dicut
reduction ofG = 〈{p, q, r}, {(q, r), (r, q)}〉 but is not inPAIR. It is easy to verify that every other
previously introduced system is dicut-closed. For these systems we obtain:

Proposition 3.3 Consider any extraction algorithm for the systemX .

• If X = ST AR, then the center of the extracted star is a correct process.

• If X = T REE , then the root of the extracted tree is a correct process.

• If X ∈ {SC, COMPLET E ,RING,BIC}, then the extraction is exact.

Proof. ForST AR andT REE , all the dicut reductions of the extracted graph contain at least respectively
the center and the root, then the restriction of the extracted graph contains at least these nodes, proving that
they are correct processes.

There is no dicut for a strongly connected graph. Hence inSC, there is no dicut reduction then by the
Closure property the subgraph induced by the set of correct processes of the extracted graph is the extracted
graph itself.COMPLET E , RING, andBIC are particular cases of systems only composed of strongly
connected timeliness graphs. ⊓⊔

An immediate consequence of Proposition 3.3 is that any extraction algorithm gives an implementation
of eventual leader election (failure detectorΩ) for systemsST AR andT REE as well as an implementation
of failure detector♦P for systemsCOMPLET E , RING, SC andBIC.

Due to the lack of space, the proofs of the two following propositions have been moved in the appendix.
In the first proposition we show that extraction is not alwayspossible. Actually, in the proof we exhibit

some non dicut-closed systems, namelyPAIR, where no extraction algorithm can be implemented.

Proposition 3.4 There exists some systemsX for which there is no extraction algorithm.

In the next section we show that for all dicut-closed systemsthere is an extraction algorithm. For systems
like ST AR, T REE andPAIR, there exists noexactextraction algorithm.

Proposition 3.5 There exists some systemsX for which there is an extraction algorithm and there is no
exact extraction algorithm.

4 An Extraction Algorithm

The aim of this section is to show that the dicut-closed property of a system is sufficient to solve the extrac-
tion problem. To that end, we propose in Figure 1 an extraction algorithm, calledA(X ), for dicut-closed
systemX .
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The basic idea of AlgorithmA(X ) is to make processes select a graph that is compatible with the
timeliness graph of the run. For this, each process maintains for each graphx in X anaccusation counter
Acc[x]. This counter infinitely grows if some correct process is notin x or if some directed edge ofx is not
timely. Then,Acc[x] is bounded if and only ifx contains all correct processes and all timely links between
pairs of correct processes.

We implement accusation counters as follows. A process regularly blames all the graphs inX in which
it is not a node: it increments the accusation counters of allthese graphs. Note that if the process is correct
this accusation is justified and if the process is not correct, after some time the process being dead stops
to increment the accusation counters. Moreover, each process regularly sends on its outgoing linksalive
messages. Each process maintains an estimate of the communication delays for each incoming link (∆[q]
for the incoming link(q, p)). If it does not receivealive messages within these estimates on some incoming
link it blames all timeliness graphs inX containing this link (i.e., increments the accusation counter for
these graphs). As the estimate of the communication delay may be too short, each time it is exceeded the
process increases it for the link. In this way, if the link is timely, at some time the estimate will be greater
than the bound on communication delay.

The accusation counters are broadcast by reliable broadcasts. Each time a process receives a new value
of accusation counter it updates its own accusation counterto the maximum of the received values and its
current values. Hence, if some timely graph stops to be blamed then all correct processes eventually agree
on the value of its accusation counter.

By selecting the graphg with the lowest accusation value (to break ties, we assume a total order among
the graphs ofX ) if any, correct processes eventually agree on the same timeliness graph ofX , moreover we
can prove that this graph contains (1) all the correct processes, and (2) all edges that are timely links between
correct processes. As a consequence, the Convergence, the Compatibility and the Validity properties of the
extraction algorithm are ensured. Nevertheless, this graph can also contain faulty processes and edges
between correct and faulty processes.

Consider now the Closure property. Ifg contains only correct processes then the Closure property
is trivially satisfied. Otherwise,g containsCorrect(r) and a setF of faulty processes. In this case,
(Correct(r), F ) is a dicut reduction ofg: Indeed if there is an edge ing from a faulty processq to a
correct processp, eventually the processp stops to receive messages fromq and the accusation counter ofg
grows infinitively often. Hence, in all cases, the Closure property is satisfied.

Hence, ifX is dicut-closed, (1) AlgorithmA(X ) extracts a graph inX . Moreover from Property 3.3, if
all the graphs ofX are strongly connected then the algorithm exactly extractsa graph inX .

In the algorithm, each processp uses local timers, one per process. The timer ofp dedicated toq is
set (by settingsettimer(q) to a positive value) to a time interval rather than absolutetime. The timer is
decremented until it expires. When the timer expirestimerexpire(q) becomestrue. Note that a timer
can be restarted before it expires.

In the algorithm, we denote by≺ the total order relation onX and by≺lex (see Line 2) the total order
relation defined as follows:∀x, y ∈ X , ∀cx, cy ∈ N, (cx, x) ≺lex (cy, y) ≡ [cx < cy ∨ (cx = cy ∧ x ≺ y)].

A sketch of the correctness proof ofA(X ) is given below. In this sketch, we consider a runr of A(X )
in dicut-closed systemX . We will denote byvartp the value ofvar of processp at timet.

We first notice that all variablesAccp[x] are monotonically increasing :

Lemma 4.1 For all timest and t′ such thatt ≥ t′, for all processesp, for all graphsx in X , Acctp[x] ≥

Acct
′

p [x].

Let sup(Accp[x]) be the supremum fort of theAcctp[x], we say thatAccp[x] is unbounded ifsup(Accp[x])
is equal to∞ and bounded otherwise. AsAcc[x] is updated by reliable broadcast we have:
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Code for each process p

1: ProcedureupdateExtractedGraph()
2: G← x such that(Acc[x], x) = min≺lex

{(Acc[x′], x′) such thatx′ ∈ X}

3: On initialization:
4: for all x ∈ X do Acc[x]← 0
5: for all q ∈ Π \ {p} do
6: ∆[q]← 1
7: settimer(q)← ∆[q]
8: updateExtractedGraph()
9: start tasks 1 and 2

10: task 1:
11: loop forever
12: send〈alive〉 to everyq ∈ Π \ {p} everyK time
13: rbroadcast〈ACC,⊥,p〉 everyK time /∗ to accuse graphs that do not containp ∗/

14: task 2:
15: upon receive〈alive〉 from q do
16: settimer(q)← ∆[q]

17: upon timerexpire(q) do
18: rbroadcast〈ACC, q, p〉 /∗ to accuse graphs that contain the link(q, p) ∗/
19: ∆[q]← ∆[q] + 1
20: settimer(q)← ∆[q]

21: upon rdeliver〈ACC,q,h〉 do /∗ information fromh ∗/
22: for all x ∈ X do
23: if q =⊥ then
24: if h /∈ Node(x) then Acc[x]← Acc[x] + 1
25: else
26: if (q, h) ∈ Edge(x) then Acc[x]← Acc[x] + 1
27: updateExtractedGraph()

Figure 1: AlgorithmA(X ) extracts a graph inX

Lemma 4.2 For all correct processesp andq, for all graphsx in X , sup(Accp[x]) = sup(Accq[x])

Let sup(Acc[x]) be the supremumsup(Accp[x]) for any p correct ofAccp[x], thensup(Acc[x]) is well-
defined. If there is a least onex ∈ X such thatsup(Acc[x]) is bounded, thenmin{sup(Acc[x])|x′ ∈ X} is
finite, henceG the graph such that(Acc[G], G) = min≺lex

{(Acc[x′], x′)|x ∈ X} is well defined. Then all
correct processes converge to the same graph:

Lemma 4.3 If there existsx in X such thatsup(Acc[x]) is bounded then there is a time after which for
every correct processp, Gp isG.

MoreoverG is clearly inX ensuring the Validity property. Now prove the Compatibility property.
Consider any timeliness graph compatible withT (r), and assume thatx ∈ X , then there is a timet0 after

which all faulty processes are dead and the estimates of communication delays are greater than the bounds
of communication delays of timely links of the run. After time t0, (1) asx contains all correct processes, no
process will blamex because it is not a node ofx, and (2) as all edges ofx are timely, no process will blame
x for one of its edges then:

Lemma 4.4 If x in X is compatible withT (r), thensup(Acc[x]) is bounded.

Reciprocally, letx be a timeliness graph ofX that is not compatible with the run. If processp is not
correct there is a timet after which it does not send anyalive message, and there is a time after the timers on
p expire forever for all correct processes, then ifp is a node of somex ∈ X ,Accp[x] is incremented infinitely
often andsup(Acc[x]) = ∞. In the same way if(p, q) is not timely, by the fifo property of the link, the
timer for p expires infinitely often for processq and if (p, q) is an edge ofx thenAccq[x] is incremented
infinitely often andsup(Acc[x]) = ∞.
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Then:

Lemma 4.5 For everyx in X , if sup(Acc[x]) is bounded thenx[Correct(r)] is compatible withT (r).

Hence:

Lemma 4.6 (Compatibility)G[Correct(r)] is compatible withT (r).

It remains to prove thatG satisfies the Closure property :G[Correct(r)] is a dicut reduction ofG or is
equal toG.

AsG[Correct(r)] is compatible withT (r), we have:

Lemma 4.7 Correct(r) ⊆ Node(G).

LetF = Node(G)−Correct(r). If F is empty the Closure property is trivially ensured. Consider now the
case whereF is not empty.F contains only faulty processes and(Correct(r), F ) is a partition ofG(Node).
If there is an edge inEdge(G) from a faulty processq to a correct processp, eventually the processp never
receives a message fromq and the accusation counter ofG will be unbounded, contradicting the choice of
G. So, we have:

Lemma 4.8 If F 6= ∅ thenEdge(G) ∩ (F × Correct(r)) = ∅.

Hence,(Correct(r), F ) is a dicut ofG.
Lemma 4.3 and Lemma 4.4 prove the Convergence property, Lemma 4.6 proves the Compatibility prop-

erty and Lemma 4.8 proves the Closure property. Moreover,G is clearly inX proving the Validity. Propo-
sition 3.3 shows the exact extraction when all graphs ofX are strongly connected. Hence, we can conclude
with the following theorem:

Theorem 4.9 Let X be a dicut-closed system. AlgorithmA(X ) extracts a graph inX . Moreover if all
graphs ofX are strongly connected, AlgorithmA(X ) exactly extracts a graph inX .

5 An Efficient Extraction Algorithm

In this section, we propose another extraction algorithm called AF(X ) (Figures 2 and 3). This algorithm is
efficient meaning that the (correct) processes eventually only send messages along the edges of the extracted
graph.

AF(X ) (exactly) extracts a timeliness graph from systemX , where (1)X is dicut-closed and (2) for all
graphsg ∈ X there is some processp, calledroot, such that there is a directed path fromp to every node of
g. For example,T REE andRING systems have this property.

In the following, we refer to these systems asdicut-closed systems with a root. For every graphg in X ,
the functionroot(g) returns a root ofg.

In the algorithm, every processp stores several values concerning the graphsx ∈ X such thatroot(x) =
p: (1) Acc[x] is the accusation counter ofx whose goal is the same as in Algorithm 1, (2)Prop[x] is a
proposition counterwhose goal will be explained later, and (3)∆[x] gives the expected time for a message
to go fromp (the root of thex) to all the nodes ofx.

Every process also maintains a set variableCandidates. Each element of this set is a 4-tuple composed
of a graphx of X and the freshest values ofAcc[x], Prop[x], and∆[x] known by the process (the exact
values are maintained atroot(x)). Each element in this set is calledcandidateand each process selects its
extracted graph among the graphs in the candidate elements.

As in Algorithm 1:
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(1) Each processp sendsalive messages on its outgoing links and monitors its incoming links. However,
we restrain here thealive message sendings: processp sendsalive messages on its outgoing link
(p, q) only if (p, q) is in a graph candidate.

(2) A graph candidate is blamed if (a) a correct process is notin the graph or (b) a process receives an out
of date message through one of its incoming links. In both cases the candidate is definitively removed
from theCandidates sets of all processes. To achieve this goal the process sendsan accusation
message (ACC) using a reliable broadcast and uses an arrayHeard that ensures that an identical
candidate (that is, the same graph with the same accusation and proposition values) can never be added
again. Moreover, upon deliver of an accusation message for graphx, root[x] incrementsAcc[x].

We now present different mechanisms used to obtain the efficiency.
For all graphsx ∈ X , only the processroot(x) is allowed to proposex as a candidate to the rest. Each

processp stores its better candidate in its variableme, that is, the less blamed graphx such thatroot(x) = p.

• If a process finds inCandidates a better candidate thanme, it removesme from Candidates.

• If a process finds thatme is better, it addsme in Candidates and sends anew message containing
me (1) to all processes that are not inNode(me), and (2) to immediate successors ofp in me. The
immediate successors inme addme to theirCandidates set and relay thenew message, and so on.
By the reliability of the links, every correct process that is not inme eventually receives this message
and blamesme.

These mechanisms are achieved by the procedureupdateExtractedGraph(). This procedure is called
each time a graph candidate is blamed or a new candidate is proposed. Note that theCandidates set is
maintained with the setOtherCand (the candidates of other processes), a booleanLocal that is true when
the process has a candidate, andme, the graph candidate.

A processp may give up a candidate without this candidate has been blamed: in this case,p is the root
of the candidate, it finds a better candidate inOtherCand, and removesme from Candidates. Then,p
must not incrementAcc[me] when it receives accusations caused by this removing, indeed these accusations
are not due to delayed messages. That is the goal of the proposition counter (Prop): in Prop[x], root(x)
counts the number of times it proposesx as candidate and includes this value in each of itsnew messages (to
inform other process of the current value of the counter). Hence, whenq wants to blamex, it now includes
its own view ofProp[x] in the accusation message. This accusation will be considered as legitimate by
root[x] (that is, will provoke an increment ofAcc[x]) only when the proposition counter inside the message
matchesProp[x]. Also, wheneverroot[x] removesx from Candidates, root[x] incrementsProp[x] and
does not send the new value to the other processes. In this wayaccusations due to this removing will be
ignored.

For any timely candidate, the accusation counter will be bounded and its proposition counter increased
each time it is proposed. In this way the graph with the less accusation and proposition values eventually
remains forever in theCandidates set of all correct processes and it is chosen as extracted graph. (This is
done in the procedureupdateExtractedGraph().) Moreover, eventually all other candidates are given up
and it remains only this graph inCandidates. In this way, onlyalive messages are sent and they are sent
along the directed edges of the extracted graph ensuring theefficiency.

A sketch of the correctness proof ofAF(X ) is given in the appendix. Then, we can conclude with the
following theorem:

Theorem 5.1 LetX be a dicut-closed system with a root. AlgorithmA(X ) efficiently extracts a graph in
X . Moreover if all graphs ofX are strongly connected, AlgorithmA(X ) efficiently and exactly extracts a
graph inX .
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Code for each process p

1: ProcedureupdateExtractedGraph()
2: Let (amin,min) = min≺lex

{(acc, c) such that(c, acc,−,−) ∈ OtherCand} ∪ {(∞,∞)}
3: if (amin,min) < (Acc[me],me) ∧ Local then /∗ Give upme ∗/
4: rbroadcast〈ACC,me,Acc[me],Prop[me],∆[me]〉
5: Prop[me]← Prop[me] + 1
6: Local← false
7: Candidates ← OtherCand
8: me← x such that(a, x) = min≺lex

{(acc, c) such thatc ∈ X ∧ root(c) = p}
9: if (Acc[me],me) < (amin,min) ∧ Local = false then /∗ Proposeme ∗/

10: Local← true
11: Candidates ← Candidates ∪ {(me,Acc[me], P rop[me],∆[me])}
12: send〈new,me,Acc[me],Prop[me],∆[me]〉 to every process not inNode(me)
13: for all h ∈ Π \ {p} do
14: if (h,p)∈ Edge(me) then
15: ∆[h]←max(∆[h],∆[me])
16: settimer(h)←∆[h]
17: if (p,h)∈ Edge(me) andh 6= root(me) then
18: send〈new,me,Acc[me], P rop[me],∆[me]〉 to h
19: G← x such that(a, x)min≺lex

{(a′, x′) such that(x′, a′, p′, d′) ∈ Candidates}

Figure 2: Procedure updateExtractedGraph of AlgorithmAF(X )

6 Conclusion

In this paper we introduced the extraction problem. The problem can be declined in two versions: extraction
and exact extraction.

We have shown some properties on the extraction algorithms.In particular, in any extracted graph, any
path between a pair of correct processes is only constitutedof timely links. This property is particulary
interesting to solve the routing efficiently.

We have given an extraction algorithm for dicut-closed set of timeliness graphs. Moreover, we prove
that the extraction is exact when all the timeliness graphs are also strongly connected.

Given dicut-closed timeliness graphs that contains a root,we show how to efficiently extract a graph
from it. By efficiency we mean giving a solution where eventually messages are only sent through the links
of the extracted graph.

It is important to note that the only purpose of the algorithms we proposed is to show the feasability of
the extraction in some conditions. So, the complexity of ouralgorithms was not the main focus of this paper.
Moreover, we have to underline that our solutions are based on already existing mechanisms [2, 3].

As a consequence, our algorithms are somehow unrealistic because of their high complexity. Giving
more practical solutions will be the purpose of our future works.
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Code for each process p

20: On initialization:
21: for all x ∈ X such thatroot(x) = p do
22: Acc[x]← 0; Prop[x]← 0; ∆[x]← n
23: for all x ∈ X such thatroot(x) 6= p doHeard[x]← (−1,−1)
24: for all q ∈ Π \ {p} do∆[q]← 1
25: OtherCand← ∅
26: Local← false
27: me← min{x such thatx ∈ X ∧ root(x) = p}
28: updateExtractedGraph()
29: start tasks 1 and 2

30: task 1:
31: loop forever
32: send〈alive〉 to every processq such that∃(x,-,-,-)∈ Candidates and(p, q) ∈ Edge(x) everyK time

33: task 2:
34: upon receive〈alive〉 from q do
35: settimer(q)←∆[q]

36: upon timerexpire(q) do /∗ Link (q, p) is not timely, blame all candidates that contains(q, p) ∗/
37: for all (x, a, pr, d) ∈ OtherCand such that(q, p) ∈ Edge(x) do
38: rbroadcast〈ACC,x,a,pr,d〉
39: if (q, p) ∈ Edge(me) then
40: rbroadcast〈ACC,me,Acc[me],Prop[me],∆[me]〉

41: upon receive〈new,x, a, pr, d〉 from q do /∗ Proposition of a new candidate∗/
42: if p /∈ Node(x) then /∗ Blamex that does not containp ∗/
43: rbroadcast〈ACC,x,a,pr〉
44: else
45: newCand← false
46: if (x,−,−,−) /∈ OtherCand andHeard(x) < (a, pr) then /∗ New candidate∗/
47: newCand← true
48: if ∃(x, ac, prc, dc) ∈ OtherCand with (ac, prc) < (a, pr) then /∗ New candidate∗/
49: OtherCand← OtherCand \ (c, ac, prc, dc)
50: newCand← true
51: if newCand then
52: OtherCand← OtherCand ∪ (x, a, pr, d)
53: updateExtractedGraph()
54: Heard[x]← (a, pr)
55: for all h ∈ Π \ {p} do
56: if (h,p)∈ Edge(x) then
57: ∆[h]←max(∆[h], d)
58: settimer(h)← ∆[h]
59: if (p,h)∈ Edge(x) andh 6= root(x) then send〈new, x, a, pr, d〉 to h

60: upon rdeliver〈ACC,x,a,pr,d〉 do
61: if root(x) = p then
62: if x = me ∧ a = Acc[me] ∧ pr = Prop[me] then /∗ Check if the accusation is up to date∗/
63: Acc[me]← Acc[me] + 1; ∆[me]← ∆[me] + 1
64: Local← false
65: else
66: OtherCand← OtherCand \ (x, a, pr, d)
67: if Heard[x] < (a, pr) then Heard[x]← (a, pr)
68: updateExtractedGraph()

Figure 3: AlgorithmAF(X ) that efficiently extracts a graph inX
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A Appendix

A.1 Proof of Proposition 3.4

Proposition 3.4There exists some systemsX for which there is no extraction algorithm.

Sketch of Proof.
Assume there is an extraction algorithmA for PAIR with 5 processes.
Consider a runr of A in systemPAIR with T (r) = 〈{p1, p2, p3, p4, p5}, {(p1, p2), (p2, p1), (p3, p4), (p4, p3)}〉.

To satisfy the properties of the extraction,〈{p1, p2, p3, p4, p5}, {(p1, p2), (p2, p1)}〉 or 〈{p1, p2, p3, p4, p5}, {(p3, p4),
(p4, p3)}〉must be extracted from the runr. There is a timet1 after whichr converges for example to〈{p1, p2, p3, p4, p5},
{(p1, p2), (p2, p1)}〉.

Consider now runr′ of A in systemPAIR with T (r′) = 〈{p3, p4, p5}, {(p3, p4), (p4, p3)}〉 such thatr andr′

are indistinguishable until timet1 andp1 andp2 crash inr′ at timet1 + 1. There is a timet2 after whichr′ converges
to a graph with the directed edges{(p3, p4), (p4, p3)}.

Consider now that inr all messages fromp1 and p2 to {p3, p4, p5} sent after timet1 are delayed after time
t2. For p5, the runsr andr′ are indistinguishable untilt2. So, at timet2, p5 outputs a graph with directed edges
{(p3, p4), (p4, p3)}.

Now consider runr′′ of A in systemPAIR with T (r′′) = 〈{p1, p2, p5}, {(p1, p2), (p2, p1)}〉 such thatr andr′′

are indistinguishable until timet2 andp3 andp4 crash inr′′ at timet2+1. There is a timet3 after whichr′′ converges
to a graph with the directed edges{(p1, p2), (p2, p1)}.

Consider again that in the runr all messages fromp3 andp4 to {p1, p2, p5} sent after timet2 are delayed af-
ter t3. For p5 the runsr and r′′ are indistinguishable. So, at timet3, p5 outputs a graph with directed edges
{(p1, p2), (p2, p1)}.

Inductively, we can construct the runr in such a way thatp5 alternates forever between a graph with directed
edges{(p1, p2), (p2, p1)} and a graph with directed edges{(p3, p4), (p4, p3)} and never converges definitively. This
contradicts the existence of an algorithm that extracts a graph inPAIR. ⊓⊔

A.2 Proof of Proposition 3.5

Proposition 3.5There exists some systemsX for which there is an extraction algorithm and there is no exact extraction
algorithm.

Sketch of Proof. Consider the systemT REE with 3 processes. We prove in the next section that there is anextraction
algorithm for this system. Assume there is anexactextraction algorithmA for this system.

Consider a runr of A in this system withT (r) = 〈{p1, p2, p3}, {(p1, p2), (p1, p3)}〉. To satisfy the properties of
the exact extraction, there is a timet1 after which the graph〈{p1, p2, p3}, {(p1, p2), (p1, p3)}〉 is extracted.

Consider now runr′ of A in systemT REE with T (r′) = 〈{p1, p2}, {(p1, p2)}〉 such thatr and r′ are in-
distinguishable until timet1 and p3 crashes inr′ at time t1 + 1. There is a timet2 after whichr′ converges to
〈{p1, p2}, {(p1, p2)}〉 .

Consider now that inr all messages fromp3 to {p1, p2} sent after timet1 are delayed after timet2. For p1, the
runr andr′ are indistinguishable untilt2. So, at timet2, p1 outputs〈{p1, p2}, {(p1, p2)}〉.

Inductively, we can construct the runr in such a way thatp1 alternates forever between a graph〈{p1, p2, p3},
{(p1, p2), (p1, p3)}〉 and a graph〈{p1, p2}, {(p1, p2)}〉 and never converges definitively. This contradicts the existence
of an algorithm that exactly extracts a graph inT REE . ⊓⊔

A.3 Proof of Theorem 5.1

In this section, we propose a sketch of the correctness proofof the efficient extraction algorithmAF(X ) (Figures 2
and 3). In this sketch, we consider a runr of AF(X ) in dicut-closed system with a root,X . We will denote byvartp
the value ofvarp at timet.

We first notice that all variablesAcc[x] andProp[x] can only be modified by the processroot(x) and are increas-
ing:
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Lemma A.1 For all time t andt′, t ≥ t′, for all processesp, for all graphsx in X such thatp = root(x), Acctp[x] ≥

Acct
′

p [x] andProptp[x] ≥ Propt
′

p [x].

Consider a graphx such that its rootp crashes. Eventually, every processq such thatx ∈ OtherCand and
(p, q) ∈ Edge(x) reliably broadcasts an accusation forx. This way,x is removed from theOtherCand set of any
correct process and never more added (becausep is crashed), hence:

Lemma A.2 If p is faulty, there exists a timet such that for all graphsx of X with root(x) = p, for all correct
processesq in r, for all t′ ≥ t: x /∈ OtherCandt

′

q .

As r is a run ofX , there exists some timeliness grapho in X such thato is compatible withT [r]. In this case,
Nodes(o) = Correct(r) and the processroot(o) is a correct process:

Lemma A.3 There exists a timeliness grapho of X such thato is compatible withT (r) and root(o) is a correct
process.

Moreover:

Lemma A.4 Let o be a timeliness graph ofX such thato[Correct(r)] is a compatible withT (r) and root(o) is a
correct process:Accroot(o)[o] is bounded.

For all correct processesp, for all graphsx in X with root(x) = p, letA[x]p be the largest value ofAcc[x]p in r
(∞ if Acc[x]p is unbounded). Letg to be the graph with the smallestA[g]p (break ties by the total order on graphs).
LetC be the value ofA[g]p.

Note that from Lemma A.3 and Lemma A.4,C < ∞. Moreover, by construction ofg, root(g) is a correct process,
root(g) eventually electsg forever (meroot(g) = g), and as a consequenceProp[g]root(g) becomes constant:

Lemma A.5 There exists a time after whichmeroot(g) = g.

Lemma A.6 There exists a time after whichProp[g]root(g) stops changing.

Let P be the largest value of the proposition counter ofg (Prop[g]). The following three lemmas are immediate
consequences of Lemma A.5:

Lemma A.7 For every correct processp 6= root(g), there exists a time after whichg ∈ OtherCandp.

Lemma A.8 There exists a time after whichmeroot(g) = g andLocalroot(g) = true andOtherCandroot(g) = ∅.

Lemma A.9 For every correct processp 6= root(g), there exists a time after whichOtherCandp = {g} and
Localp = false.

From Lemmas A.8 and A.9, the algorithm converges to a graph ofX :

Lemma A.10 There exists a timeliness graphx ∈ X (actuallyg) such that every correct processq outputsx forever.

From Lemma A.8 and Lemma A.9, we can deduce that the algorithmis efficient:

Lemma A.11 There is a time after which every correct processp sends messages only to the processq such that there
is a directed edge(p, q) in Edge(g).

From the Lemma A.10, we deduce the Convergence and the Validity properties.
It remains to prove thatg satisfies the properties of the approximation: (1)g[Correct(r)] is compatible withT [r],

and (2)g[Correct(r)] is a dicut reduction ofg or is equal tog.
Whenroot(g) setsLocal to true andme to (g, C, P,−), it sends a messagenew to all processes (recall thatC the

final value of the accusation counter ofg andP the final value of its the proposition counter.). As the linksare reliable,
all correct processes eventually receives this message. Ifa correct processq is not inNode(g), it reliably broadcasts
an accusation messageACC. When processroot(g) delivers such a broadcast, it increments the accusation counter
of g contradicting the fact thatAcc[g] is bounded byC, hence:
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Lemma A.12 Correct(r) ⊆ Node(g).

When a correct process receives thisnew message, it sends〈alive〉 to every processq such that(p, q) in Edge(g).
And it monitors all incoming links(q, p) such that(q, p) in Edge(g). If there is a link(a, b) of Edge(g) between two
correct processesa andb, thena sends regularlyalive message tob. By construction ofg, b never blamesg, thenb
receives no out of date message. By the FIFO property of the link, the link is timely:

Lemma A.13 g[Correct(r)] is compatible withT [r].

By Lemma A.12,Node(g) = Correct(r) ∪ F .
If F is empty the Closure property is trivially ensured. We now consider the case whereF is not empty. F

contains only faulty processes. If there is an edge inEdge(g) from a faulty processq to a correct processp, eventually
the processp stops receiving messages fromq and the accusation counter ofg will be incremented, which contradicts
the fact that the accusation counter ofg remains equal toC forever. So we have:

Lemma A.14 If F 6= ∅ thenEdge(g) ∩ (F × Correct(r)) = ∅.

We showed the Convergence (Lemma A.10), the Validity (LemmaA.10), the Compatibility (Lemma A.13), the
closure (Lemma A.14), and the Efficiency (Lemma A.11). Moreover, Proposition 3.3 shows the exact extraction when
all graphs ofX are strongly connected. Hence, we can conclude with the following theorem:

Theorem 5.1LetX be a dicut-closed system with a root. AlgorithmA(X ) efficiently extracts a graph inX . Moreover
if all graphs ofX are strongly connected, AlgorithmA(X ) efficiently and exactly extracts a graph inX .
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