N

N
N

HAL

open science

Algorithms For Extracting Timeliness Graphs

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Mikel Larrea

» To cite this version:

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Mikel Larrea. Algorithms For Ex-

tracting Timeliness Graphs. 2010. hal-00454388v1

HAL Id: hal-00454388
https://hal.science/hal-00454388v1

Preprint submitted on 4 Mar 2010 (v1), last revised 25 Mar 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00454388v1
https://hal.archives-ouvertes.fr

Algorithms For Extracting Timeliness Graphs

Carole Delporte-Gallet Stéphane Devismes
University Paris Diderot University Joseph Fourier (Grenoble)
Carole.Delporte@liafa.jussieu.fr Stephane.Devismes@imag.fr
Hugues Fauconnier Mikel Larrea
University Paris Diderot University of the Basque Country
Hugues.Fauconnier@liafa.jussieu.fr Mikel.Larrea@ehu.es
Abstract

We consider asynchronous message-passing systems in sdmehlinks are timely and processes
may crash. Each run definesimeliness graplamong correct processe3,) is an edge of the time-
liness graph if the link fromp to ¢ is timely (that is, there is bound on communication delagsfp to
q). The main goal of this paper is to approximate this timedgigraph by graphs having some properties
(such as being trees, rings,...). Given a fanfilpf graphs, for runs such that the timeliness graph
contains at least one graph$hthen using aextraction algorithmeach correct process has to converge
to the same graph ifi that is, in a precise sense, an approximation of the timgtigeaph of the run. For
example, if the timeliness graph contains a ring, then uaimgxtraction algorithm, all correct processes
eventually converge to the same ring and in this ring all sadi# be correct processes and all links will
be timely.

We first present a general extraction algorithm and then armjpecific extraction algorithm that is
communication efficientife., eventually all the messages of the extraction algorithenardy links of
the extracted graph).

1 Introduction

We consider here partially synchronous models likgjn [6]B}in which some processes may crash. In
such systems some links are timely, meaning that the conuation delays are boundef [2], and some
other are not. Generally, these timeliness propertiesk§ Ihave been used to enable to solve the consensus
problem as in[[6] or to implement failure detectors liethat realizes an eventual election of a correct
process€.g, [B,[1,3.[IP[B]). In this paper we are more specifically ies¢ed in detecting the timeliness
of the links in order to approximate the timeliness relatoonlinks in each run. If processes are able to
eventually determine which links are timely, then avoidiogise non timely links could help to improve the
efficiency of the communication that can be particularlerasting for routing algorithms.

More precisely, each run of the system eventually convetgestimeliness graptwhose the nodes
are the correct processes and directed edges are the tidggdg among correct processes, anedrac-
tion algorithmis an algorithm such that all correct processes eventugligeaon an identical graph that
approximates the timeliness graph.

For example assume the system ensures that there is atheasbiwect process that communicates in
a timely way with all other processes, such a process isvantual sourc¢]] and it could be interesting
for the processes to choose and agree on such a eventuad.sdhis way, we not only realize an eventual
leader election but also the chosen leader is able to conwamenin a timely way with all the rest of correct
processes.

If we assume now that instead of an eventual source there éveamtualroot in the system, that is
a correct process that may communicate with every process dymmunication path using only timely
links, then choosing and agreeing one such eventual rolizesan eventual leader election (the root is the
eventual leader) but this also enable to ensure a routinly wiessages from the root to any other processes
using only timely links.

In the same way, if the system ensures that there is alwaysla cgntaining all correct processes in
the timeliness graph of the run, then choosing and agreeirane such cycle enables to eventually build a
ring between all correct processes that use only timelyslitNote that in this case the processes eventually
agree on the list of all correct processes t0o, as a consegwenobtain a failure detectorP [H].

More precisely, consider some structural propétgf graphs (like being a star, aring, a tree, a complete
graph...). An algorithnextractinga graphG verifying P has to ensure that (1) all the correct processes
eventually agree o6, (2) all the correct processes are nodes>0énd (3)G is an “approximation” of
the timeliness relation of the run. Actually, “approxintati means that the subgraph Gfinduced by the
correct processes is obtained from a directed cut (dffoft)G and is a subgraph of the timeliness graph.

Contributions. In this paper, we first introduce and specify the problem dfaetion of graphs in some
setX. We consider only systems in which a solution may exist: imwa there is at least one graph.dn
that is compatible with the run.

We prove that this problem cannot be solved for some set ghgrand we give a sufficient condition
on the set of graphs to be extracted. This condition is ratimeple: the set of graphs has to be closed by
directed cut reduction. Then, we give an extracting alporifor every set of graphs verifying this property.

Moreover, if the graphs iiX’” are all strongly connected, the algorithm gives an exactetion, that is,
the set of nodes of the extracted graph is exactly the setrofatgporocesses of the run. Reciprocally, we
show that there exists sets of graphs that admit extractibndoexact extraction.

Beside, we show that finding an approximation is even soéstary: in the extracted graph any path
between pair of correct processes is only constituted aljiinks. Hence, the approximation can be used
to timely route messages,g, in the previous example with a root, the approximation gille us a tree
whose the root is a correct process and with a path contaorihgcorrect processes from the root to every
correct process.

One drawback of this algorithm is the fact that forever attect processes have to send messages on all
links. Hence ifk is the number of processé$k — 1) links will be used forever by the extraction algorithm.
We are then interested in communication efficient implemigoms of the extraction problem. That is,
eventually all correct processes only send messages diengdges of the extracted graph. For example,
consider the example of a system with a timeliness ring, tedlg only &£ — 1 links of the system are used.
We propose an efficient extraction algorithm for set of geapbntaining at least one correct process with
directed paths from this process to all correct process.

Roadmap. In the next section, we define the model used in this papere¢ti®[$, we characterize some
properties of the extraction problem. Our two algorithms jaresented in Sectiofif 4 afjd 5, respectively.
Finally, we make some concluding remarks in Secfjon 6.

A directed cut X, ') of directed graplt; = (N, E) is a partition of V' such that there no directed edge frafto X.

2 Informal Model

2.1 Distributed Systems

We begin this subsection with some definitions and notatmrgerning graphs. For a directed graph
G = (N,E), Node(G) and Edge(G) denoteN and E, respectively. Given a grapy and a setVM/ C
Node(G), G[M] is thesubgraphof G induced by)/, i.e., G[M] is the graph(M, Edge(G)[M]) where
(p,q) € Edge(G)[M] ifand only if p,qg € M and(p, q) € Edge(G).

The tuple(X,Y) is adirected cut(dicut for short) of G if and only if X andY define a partition of
Node(G) and there is no directed edgg,) € Edge(G) such thatr € X andy € Y. We say that
is adicut reductionfrom G if there exists a dicufX,Y") of G such that?’ = G[X]. A setS of graphs is
dicut-closedif and only if it is closed under dicut reduction, namelydfe S then all the graphs obtained
by a dicut-reduction of7 are inS.

Processes and Links. We consider distributed systems composea pfocesses which communicate by
message-passing through directed links. We denote thd pedbaesses byl = {pi,...,p,}. We assume
that the communication graph is complete,, for each pair of distinct processés, ¢), there is a directed
link from p to q.

A process may fail by crashing, in which case it definitivalgps its local algorithm. A process that
never crashes is sa@mbrrect faulty otherwise.

The (directed) links areeliable, i.e. every message sent through a lipk ¢) is eventually received by
q if ¢ is correct and if a message from p is received byy, m is received by at most once, and only
previously sentn to q.

The links being reliable, an implementation of tietiable broadcasff] is possible. A reliable broadcast
is defined with two primitivesr br oadcast (m) andr del i ver (m). Informally, after a correct process
p invokesr br oadcast (m), all correct processes eventuatlgel i ver (m); after a faulty process in-
vokesr br oadcast (m), either all correct processes eventuallyel i ver (m) or correct processes never
rdeliver (m).

Timeliness. To simplify the presentation, we assume the existence oferate global clock. This is
merely a fictional device: the processes do not have accésdNe take the rangg of the clock’s ticks to
be the set of natural numbers.

We assume that every correct procests timely, i.e., there is a lower and an upper bound on the
execution rate gp. Correct processes also have clocks that are not necgssardhronized but we assume
that they can accurately measure intervals of time.

Alink (p, q) istimelyif there is a bound such that no message sentibio ¢ at timet may be received
by ¢ after timet + 6.

A timeliness graplis simply a directed graph whose set of nodes are a subsketTie timeliness graph
represents the timeliness properties of the links. Invellyi for timeliness grapldiz, Node(G) is the set of
correct processes ait, ¢) is in Edge(G) if and only if the link (p, ¢) is timely.

Runs. An algorithm.4 consists of: deterministic (infinite) automata, one for each processatitomaton
for proces is denotedA(p). The execution of an algorithtd proceeds as a sequence of procasps In
a step a process atomically may send and/or receive somagessand changes its state.

A run r of algorithm A is a tupler = (T, I, E, S) whereT is a timeliness graph, is the initial state
of the processes ifl, F is an infinite sequence of steps df and.S is a list of increasing time values
indicating when each step i occurred. A run must satisfy usual properties concerninglisg and
receiving messages. Moreover, we assume that (1) all ¢grecesses make an infinite number of steps:

3

p € Node(Q) if and only if p makes an infinite number of steps and (2) the timeliness of links is
deduced from the timeliness graply; q) € Edge(G) if and only if the link (p, ¢) is timely in E.

In the following for runr = (T, 1, E, S), T'(r) denotesI" the timeliness graph of, andCorrect(r)
is the set of correct processes for the rumamely,Correct(r) = Node(T'(r)). Note that by definition,
(p,q) is a timely link if and only if(p, q¢) € Edge(T).

Remark that in the definition given here a link may be timelgreif no message is sent on the link.
If link (p,q) is FIFO (.e,, messages from to ¢ are received in the order they are sent) anegularly
sends messagesdpothen the timeliness of these messages implies the tinsslioithe link itself. So in the
following we always assume that links are FIFO.

2.2 Some Systems

We say that timeliness grapfi is compatible with timeliness grap&’ if and only if (1) Node(G) =
Node(G') and (2)Edge(G) C Edge(G"). By extension, timeliness gragh is compatible with run- if G
is compatible with'(r), the timeliness graph of. Hence, timeliness grapfi is compatible with run- if
Node(@G) is the set of correct processesriand if (p, ¢) is an edge of7 then(p, ¢) is timely inr.

A systemX’ is defined as a set of timeliness graphs. The set of runs afreystdenotedR(X) is the
set of all runs- such that there exists a timeliness grapin X compatible withr.
Below, we define the systems considered in this paper:

e ASYNC is the set of all timeliness graphs such thatEdge(G) = (. In ASYNC there is no
timeliness assumption about links aRASYNC) is the set of all runs in an asynchronous system.

o COMPLETE is the set of all complete graphs whose nodes are the sulidéts o

e ST AR is the set of all timeliness graphs witlsaurcei.e., G € ST AR ifand only if Node(G) C 11
and there existgy € Node(G) (the center of the star or the source) such fdge(G) = {(po,q)|q €
Node(G) \ {po}}. Clearly arunris in R(ST AR) if and only if there is at least orsourcein .

e TREE isthe setof all imeliness graplisthat are rooted directed treé®,, | Edge(G)| = |[Node(G)|—
1 and there existgy in Node(G) such that/q € Node(G), there is a directed path 6f from p, to q.
Clearly arunris in R(TREE) if and only if there is at least one timely path from a correcgess
to all correct processes.

e RING is the set of all timeliness graplissuch that7 is a directed cycle (a ring). Clearly a runs
in R(RZNG) if and only if there is a timely (directed) cycle over all cect processes.

e SC is the set of all timeliness graphs that are strongly comukcClearly, a rumr is in R(SC) if and
only if there exists a (directed) timely path between eadhgdalistinct correct processes.

e BIC is the set of all timeliness graplis such that for allp, ¢ € Node(G), there exist at least two
distinct paths fronp to ¢q. BZC corresponds to the set of 2-strongly-connected graphsirigle runr
isin R(BZC) if and only if there exists at least two distinct timely patietween each pair of distinct
correct processes.

e PAZR is the set of all timeliness graplds such thatFdge(G) = {(po, p1), (p1,p0)} With pg, p1 €
Node(G) andp; # po. Clearly, arun-isin R(PAZR) if and only if there exists two distinct correct
processeg, andp; such thatpg, p1) and(p1, po) are timely links.

2.3 Extraction Algorithm

Given a system¥’, the goal of anextraction algorithmis to ensure that in each runin X, all correct
processes eventually agree on the same elemeht afid that this element is, in some precise sense, an
approximation of the timeliness graph of run

For example, inlRZN G, all processes have to eventually agree on some ring andirigidhias to be
compatible with the timeliness graph of the run. In paricuhis ring contains all the correct processes.
However, the compatibility relation may be too strong: Innpaystems, it is not possible to distinguish
between a crashed process and a correct one, so the @raptwhich the processes eventually agree may
contain crashed processes and then the graph is not exantlyatible with the run. Then we weaken the
compatibility and impose only that the subgraphtbinduced by the set of correct processes of the run is a
dicut reduction of the timeliness graph of the run.

We now formally define what is an extraction algorithm. Fifstsuch an algorithm, every procegs
maintains a local variablé’,, which contains a timeliness graph. Then, we say that anitligoextracts a
timeliness graph inY’ if and only if for every runr in X there is a timeliness graph (called theextracted
graph) such that:

o Convergencefor all correct processegsthere is a time after whichG, = G
e Compatibility: G[Correct(r)] is compatible with'(r)

e Closure: G[Correct(r)] is a dicut reduction o or is equal to&7

e Validity: GisinX

Remark that for all systems that contaitSY N C there is a trivial extraction algorithm: for each run
processes extract the graghsuch thatVode(G) = 11 and Edge(G) = ().

A more constrained version of the extraction problem is tilewing: an algorithmA extracts exactly
timeliness graphs ifX’ if for every runr in systemX, the extracted grapy is compatible withZ’(r). In
this case, all correct processes eventually know the exaaifsorrect processes: it is the set of nodes of
the extracted graph.

3 Some Results about Extraction Algorithms

We begin this section by showing that an extraction algoriddlows to deduce some information about
failures.

First we show that an extraction algorithm may help to rougssages using only timely links.

Lemma 3.1 LetG be a graph extracted from run if (p, q) is in Edge(G) andq is a correct process then
p is correct.

Proof. By contradiction, assume thatis not correct, thefiCorrect(r), Node(G) — Correct(r)) is not a
dicut becausép, q) € Edge(G), p € Node(G) — Correct(r) andq € Correct(r), which contradicts the
Closure property. O

From this lemma and the Compatibility property, we deduceatliy:

Proposition 3.2 If (p = po,...,pi,...,q = pm) IS @ path in the extracted graph andand ¢ are correct
processes, then for eveiguch that) < i < m the link (p;, p;+1) is timely and process; is correct.

From a practical point of view, this proposition shows that extracted graph may be used to route
messages between processes using only timely links: the fiaum p to ¢ is a path in the extracted graph
(if any). All intermediate nodes are correct processes gnekson the extracted graph and then on the path.

For example with7 REE, the tree extracted by the algorithm enables to route mesdagm the root of
the tree to any other processes and the routing uses onlly tiimics.

Generally, the main goal of the extraction algorithm is nolydo extract a grapldz in X’ but also to
ensure thatG[Correct(r)] is in X (even if the processes do not know the set of correct progesse
particular, this property is ensuredAf is dicut-closed: the Closure property implies tiidC orrect(r)] is
in X.

Among the systems we consider, only syst®fdZR is not dicut-closed:H = ({p}, () is a dicut
reduction of G = ({p,q,r},{(¢,7),(r,q)}) but is not iINPAZR. Itis easy to verify that every other
previously introduced system is dicut-closed. For thes¢esys we obtain:

Proposition 3.3 Consider any extraction algorithm for the systém
o If X = STAR, then the center of the extracted star is a correct process.
e If X = T'REE, then the root of the extracted tree is a correct process.
o If ¥ € {SC,COMPLETE,RING,BIC}, then the extraction is exact.

Proof. ForST AR and7TREE, all the dicut reductions of the extracted graph contairast respectively
the center and the root, then the restriction of the extdagtaph contains at least these nodes, proving that
they are correct processes.

There is no dicut for a strongly connected graph. Henc8dnthere is no dicut reduction then by the
Closure property the subgraph induced by the set of correcepses of the extracted graph is the extracted
graph itself. COMPLETE, RING, andBZC are particular cases of systems only composed of strongly
connected timeliness graphs. O

An immediate consequence of Propositior} 3.3 is that anyetin algorithm gives an implementation
of eventual leader election (failure detectdyfor systemsS7T AR and7 REE as well as an implementation
of failure detectok) P for systemLOMPLETE, RING, SC andBZC.

Due to the lack of space, the proofs of the two following pigipons have been moved in the appendix.
In the first proposition we show that extraction is not alwpgssible. Actually, in the proof we exhibit
some non dicut-closed systems, namBlZR, where no extraction algorithm can be implemented.

Proposition 3.4 There exists some systegigor which there is no extraction algorithm.

In the next section we show that for all dicut-closed systtrage is an extraction algorithm. For systems
like STAR, TREE andPALR, there exists nexactextraction algorithm.

Proposition 3.5 There exists some systettisfor which there is an extraction algorithm and there is no
exact extraction algorithm.

4 An Extraction Algorithm

The aim of this section is to show that the dicut-closed prtypaf a system is sufficient to solve the extrac-
tion problem. To that end, we propose in Figle 1 an extraaigorithm, calledA(X), for dicut-closed
systemX’.

The basic idea of AlgorithmA(X) is to make processes select a graph that is compatible wath th
timeliness graph of the run. For this, each process magfaineach graph in X’ anaccusation counter
Acc|z]. This counter infinitely grows if some correct process isinat or if some directed edge afis not
timely. Then,Acc|z] is bounded if and only if: contains all correct processes and all timely links between
pairs of correct processes.

We implement accusation counters as follows. A procesdadguilames all the graphs it in which
it is not a node: it increments the accusation counters dhafie graphs. Note that if the process is correct
this accusation is justified and if the process is not corr&iter some time the process being dead stops
to increment the accusation counters. Moreover, each ggsaegularly sends on its outgoing linkGve
messages. Each process maintains an estimate of the cocatiomidelays for each incoming linkX[g]
for the incoming link(q, p)). If it does not receivelive messages within these estimates on some incoming
link it blames all timeliness graphs it containing this link {;e., increments the accusation counter for
these graphs). As the estimate of the communication delgyb@doo short, each time it is exceeded the
process increases it for the link. In this way, if the linkimmely, at some time the estimate will be greater
than the bound on communication delay.

The accusation counters are broadcast by reliable broad&zech time a process receives a new value
of accusation counter it updates its own accusation cototédre maximum of the received values and its
current values. Hence, if some timely graph stops to be hdaimen all correct processes eventually agree
on the value of its accusation counter.

By selecting the graph with the lowest accusation value (to break ties, we assurag@bdrder among
the graphs oft) if any, correct processes eventually agree on the samérigse graph oft’, moreover we
can prove that this graph contains (1) all the correct psEgsand (2) all edges that are timely links between
correct processes. As a consequence, the Convergencegriifeatbility and the Validity properties of the
extraction algorithm are ensured. Nevertheless, thishgm also contain faulty processes and edges
between correct and faulty processes.

Consider now the Closure property. dfcontains only correct processes then the Closure property
is trivially satisfied. Otherwiseg containsCorrect(r) and a setF' of faulty processes. In this case,
(Correct(r), F) is a dicut reduction of;: Indeed if there is an edge in from a faulty procesg to a
correct procesg, eventually the procegsstops to receive messages frorand the accusation counter of
grows infinitively often. Hence, in all cases, the Closureperty is satisfied.

Hence, ifX is dicut-closed, (1) Algorithmd (X)) extracts a graph ii’. Moreover from Property 3.3, if
all the graphs oft” are strongly connected then the algorithm exactly extacigph int'.

In the algorithm, each procegsuses local timers, one per process. The timep didicated toy is
set (by settingset t i mer (¢) to a positive value) to a time interval rather than absolime. The timer is
decremented until it expires. When the timer expirésrer expi r e(¢) becomegrue. Note that a timer
can be restarted before it expires.

In the algorithm, we denote by the total order relation o/’ and by<;., (see Ling]2) the total order
relation defined as followsiz, y € X, Veg, ¢y € N, (¢z, @) <iex (¢y,y) = [z < ¢y V (cz = ¢y Az < y)].

A sketch of the correctness proof df(X') is given below. In this sketch, we consider a ruaf A(X)
in dicut-closed syster®’. We will denote byvar]’; the value ofvar of procesy at timet.
We first notice that all variabledcc,] are monotonically increasing :

Lemma 4.1 For all timest andt’ such thatt > ¢/, for all processe9, for all graphsz in X, Acc;[x] >
Accg [z].

Let sup(Acc,[z]) be the supremum farof the Acc),], we say thatdcc, (2] is unbounded ifup(Acc,|x])
is equal tooo and bounded otherwise. A&cc[x] is updated by reliable broadcast we have:

Code for each process p
1: Procedureupdate ExtractedGraph()

2: G « z such that(Acc[z],) = minx,_, {(Acc[z'],2’) such tha’ € X'}
3: On initialization:

4: forall z € X do Acc[z] + 0

5: forall ¢ € IT\ {p} do

6: Alg] + 1

7: settimer(q) « Alg]

8: update ExtractedGraph()

9: start tasks 1 and 2

10: task 1:

11: loop forever

12: send(alive) to everyq € II\ {p} every K time

13: rbroadcast (ACC,L,p) every K time /# to accuse graphs that do not contair/
14: task 2:

15: uponr ecei ve(alive) from ¢ do

16: settimer(q) < Alg]

17: upont i ner expi re(q) do

18: rbroadcast (ACC, ¢, p) /* to accuse graphs that contain the lifgk p) */
19: Alg] + Alg) +1

20: settimer(q) «+ Alg]

21: uponrdel i ver (ACC\,q,h)do /«information fromh */

22: forall x € X do

23: if ¢ =1 then

24: if h ¢ Node(zx) then Acc[z] < Acc[z] + 1

25: else

26: if (¢, h) € Edge(x) then Acc[z] + Acc[z] + 1

27: update ExtractedGraph()

Figure 1: Algorithm A(X') extracts a graph i’

Lemma 4.2 For all correct processep andg, for all graphsz in X', sup(Acc,[z]) = sup(Accy[z])

Let sup(Acc[z]) be the supremursup(Acc,|x]) for any p correct of Acc,[z], thensup(Accz]) is well-
defined. If there is a least onec X” such thatup(Acc|z]) is bounded, themin{sup(Acc[z])|z’ € X} is
finite, henceG the graph such thdtdcc|G], G) = min~, {(Acc[z’],2")|x € X'} is well defined. Then all
correct processes converge to the same graph:

Lemma 4.3 If there existsr in X such thatsup(Acc|x]) is bounded then there is a time after which for
every correct procesg, G\, is G.

MoreoverG is clearly inX’ ensuring the Validity property. Now prove the Compatiiliroperty.

Consider any timeliness graph compatible vifith'), and assume that< X, then there is a timg) after
which all faulty processes are dead and the estimates of coication delays are greater than the bounds
of communication delays of timely links of the run. After &y, (1) asz contains all correct processes, no
process will blame: because it is not a node of and (2) as all edges afare timely, no process will blame
x for one of its edges then:

Lemma 4.4 If z in X’ is compatible withl'(r), thensup(Acc|x]) is bounded.

Reciprocally, letr be a timeliness graph of that is not compatible with the run. If processs not
correct there is a timeafter which it does not send anyive message, and there is a time after the timers on
p expire forever for all correct processes, thepig a node of some € X, Acc,[z] is incremented infinitely
often andsup(Acc[z]) = co. In the same way ifp, ¢) is not timely, by the fifo property of the link, the
timer for p expires infinitely often for procesgand if (p, ¢) is an edge ofc then Acc,[z] is incremented
infinitely often andsup(Acc|z]) = oco.

Then:
Lemma 4.5 For everyz in X, if sup(Acc|z]) is bounded ther[Correct(r)] is compatible withl’(r).

Hence:
Lemma 4.6 (Compatibility) G[Correct(r)] is compatible withl’(r).

It remains to prove thatr satisfies the Closure property=[Correct(r)] is a dicut reduction o or is
equal toG.
As G[Correct(r)] is compatible withI'(r), we have:

Lemma 4.7 Correct(r) C Node(G).

Let F' = Node(G) — Correct(r). If F'is empty the Closure property is trivially ensured. Consiu@v the
case wheré’ is not empty.F' contains only faulty processes aft@orrect(r), F') is a partition ofG(N ode).

If there is an edge ifvdge(G) from a faulty procesg to a correct procegs eventually the procegsnever
receives a message frarand the accusation counter Gfwill be unbounded, contradicting the choice of
G. So, we have:

Lemma 4.8 If F' # () then Edge(G) N (F x Correct(r)) = 0.

Hence,(Correct(r), F') is a dicut ofG.

Lemma[4.B and Lemn{a 4.4 prove the Convergence property, lagdbrproves the Compatibility prop-
erty and Lemmd 4.8 proves the Closure property. Moreaves, clearly in X’ proving the Validity. Propo-
sition[3.3 shows the exact extraction when all graph&’afre strongly connected. Hence, we can conclude
with the following theorem:

Theorem 4.9 Let X be a dicut-closed system. Algorithd(X') extracts a graph in¥. Moreover if all
graphs ofX are strongly connected, AlgorithpA(X’) exactly extracts a graph iA’.

5 An Efficient Extraction Algorithm

In this section, we propose another extraction algorithtedad 7 (X') (FiguregPR andl]3). This algorithm is
efficient meaning that the (correct) processes eventuallysend messages along the edges of the extracted
graph.

AF(X) (exactly) extracts a timeliness graph from syst&ywhere (1)X is dicut-closed and (2) for all
graphsg € X there is some procegs calledroot, such that there is a directed path frprto every node of
g. For exampleJ REE andRZN G systems have this property.

In the following, we refer to these systemsdisut-closed systems with a rodtor every graply in X,
the functionroot(g) returns a root of.

In the algorithm, every procegsstores several values concerning the graphsX’ such that-oot(x) =
p: (1) Acc[z] is the accusation counter efwhose goal is the same as in Algorithin 1, @)op[z] is a
proposition countewhose goal will be explained later, and ®]z] gives the expected time for a message
to go fromp (the root of ther) to all the nodes of:.

Every process also maintains a set varidbtendidates. Each element of this set is a 4-tuple composed
of a graphx of X and the freshest values dfcc[x], Prop[z], andA[x] known by the process (the exact
values are maintained abot(x)). Each element in this set is calledndidateand each process selects its
extracted graph among the graphs in the candidate elements.

As in Algorithm([1:

(1) Each procesg sendsulive messages on its outgoing links and monitors its incomirgslitHowever,
we restrain here thelive message sendings: processendsalive messages on its outgoing link
(p,q) only if (p, q) is in a graph candidate.

(2) A graph candidate is blamed if (a) a correct process igribie graph or (b) a process receives an out
of date message through one of its incoming links. In botks#se candidate is definitively removed
from the Candidates sets of all processes. To achieve this goal the process sendscusation
message ACC) using a reliable broadcast and uses an affay.rd that ensures that an identical
candidate (that is, the same graph with the same accusatioraposition values) can never be added
again. Moreover, upon deliver of an accusation messageadphg:, root[x| incrementsdcc|zx].

We now present different mechanisms used to obtain theesftiyi
For all graphse € X, only the processoot(x) is allowed to propose as a candidate to the rest. Each
procesy stores its better candidate in its variable, that is, the less blamed graptsuch that-oot(z) = p.

e If a process finds il andidates a better candidate thane, it removesne from Candidates.

e If a process finds thate is better, it addsne in Candidates and sends aew message containing
me (1) to all processes that are not Node(me), and (2) to immediate successorspah me. The
immediate successors ine addme to their Candidates set and relay theew message, and so on.
By the reliability of the links, every correct process thahdt inme eventually receives this message
and blamesne.

These mechanisms are achieved by the procedpilate ExtractedGraph(). This procedure is called
each time a graph candidate is blamed or a new candidate ppg#d. Note that th€'andidates set is
maintained with the seDtherCand (the candidates of other processes), a booleata! that is true when
the process has a candidate, amel the graph candidate.

A processp may give up a candidate without this candidate has been bltaimmehis casep is the root
of the candidate, it finds a better candidatetherCand, and removesne from Candidates. Then,p
must not incrementicc[me] when it receives accusations caused by this removing, thifese accusations
are not due to delayed messages. That is the goal of the iopaunter Prop): in Prop|x], root(x)
counts the number of times it proposeas candidate and includes this value in each ofdts messages (to
inform other process of the current value of the counterndgewhen; wants to blame:, it now includes
its own view of Prop|x] in the accusation message. This accusation will be coresides legitimate by
root|x] (that is, will provoke an increment ofcc[z]) only when the proposition counter inside the message
matchesProp[z]. Also, wheneveroot|x] removese from Candidates, root[z] incrementsProp|z] and
does not send the new value to the other processes. In thisweasgations due to this removing will be
ignored.

For any timely candidate, the accusation counter will bended and its proposition counter increased
each time it is proposed. In this way the graph with the lessisation and proposition values eventually
remains forever in th€ andidates set of all correct processes and it is chosen as extractpth.gf@his is
done in the procedurepdate ExtractedGraph().) Moreover, eventually all other candidates are given up
and it remains only this graph ifiandidates. In this way, onlyalive messages are sent and they are sent
along the directed edges of the extracted graph ensuringffibency.

A sketch of the correctness proof dfF (X') is given in the appendix. Then, we can conclude with the
following theorem:

Theorem 5.1 Let X be a dicut-closed system with a root. Algorith#ii ') efficiently extracts a graph in
X. Moreover if all graphs oft” are strongly connected, Algorithtd(X') efficiently and exactly extracts a
graph inX.

10

Code for each process p
1: Procedureupdate ExtractedGraph()

2 Let (amin, min) = minx,_ {(acc, ¢) such that(c, acc, —, —) € OtherCand} U {(co, 00)}
3 if (@min,min) < (Acc[me], me) A Local then /* Give upme */

4: r br oadcast (ACC,me,Acc|me],Prop[me],A[me])

5: Prop|me] < Prop|me| + 1

6: Local < false

7 Candidates < OtherCand

8 me < x such that(a, z) = min<,_, {(acc,) such that € X A root(c) = p}

9: if (Acc[me],me) < (amin,min) A Local = false then /+ Proposene */
10: Local < true

11: Candidates < Candidates U {(me, Acc[me], Prop[me], A[me])}

12: send(new,me,Acc[me],Prop[me],A[me]) to every process not itN ode(me)
13: forall h € II\ {p} do

14: if (h,p)€ Edge(me) then

15: Alh]+ max(A[h], A[me])

16: settimer (h) <+ A[h]

17: if (p,h)€ Edge(me) andh # root(me) then

18: send(new,me, Acc[me], Prop|me], A[me]) to h

19: G <+ z such that(a,) min<,_, {(a’,2’) such tha(z’,a’, p’, d’) € Candidates}

Figure 2: Procedure updateExtractedGraph of Algorith/(X')

6 Conclusion

In this paper we introduced the extraction problem. Thelerolzan be declined in two versions: extraction
and exact extraction.

We have shown some properties on the extraction algoritfmsarticular, in any extracted graph, any
path between a pair of correct processes is only constitiftditnely links. This property is particulary
interesting to solve the routing efficiently.

We have given an extraction algorithm for dicut-closed d$dinoeliness graphs. Moreover, we prove
that the extraction is exact when all the timeliness grapadsso strongly connected.

Given dicut-closed timeliness graphs that contains a r@etshow how to efficiently extract a graph
from it. By efficiency we mean giving a solution where evelifjumessages are only sent through the links
of the extracted graph.

It is important to note that the only purpose of the algorishwe proposed is to show the feasability of
the extraction in some conditions. So, the complexity ofalgorithms was not the main focus of this paper.
Moreover, we have to underline that our solutions are baseiready existing mechanisnis [2, 3].

As a consequence, our algorithms are somehow unrealisteube of their high complexity. Giving
more practical solutions will be the purpose of our futurekgo

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Heg&auconnier, and Sam Toueg. Stable leader election. nifdel.
Welch, editorDISC, volume 2180 of_ecture Notes in Computer Scienpages 108—122. Springer, 2001.

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hegéauconnier, and Sam Toueg. On implementing omega witk wea
reliability and synchrony assumptions. RODC, pages 306—-314, 2003.

[3] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hegrauconnier, and Sam Toueg. On implementing omega imsyste
with weak reliability and synchrony assumptiomistributed Computing21(4):285-314, 2008.

[4] Tushar Deepak Chandra and Sam Toueg. Unreliable failatectors for reliable distributed systenimurnal of the ACM
43(2):225-267, 1996.

[5] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. ®e minimal synchronism needed for distributed consensus.
Journal of the ACM34(1):77-97, 1987.

[6] Cynthia Dwork, Nancy A. Lynch, and Larry J. StockmeyemnSensus in the presence of partial synchralournal of the
ACM, 35(2):288-323, 1988.

11

Code for each process p

20: On initialization:

21: forall z € X such thatroot(z) = p do

22: Acclz] - 0; Prop[z] + 0; Alz] < n
23: forall z € X such thatroot(x) # p do Heard[z] < (—1,—1)
24: forall g e I1\ {p} do Aq] + 1

25: OtherCand <+ 0

26: Local + false

27: me + min{z such thatt € X A root(z) = p}
28: update ExtractedGraph()

29: start tasks 1 and 2

30: task 1:

31: loop forever

32: send(alive) to every procesg such thafl(z,-,-,-)€ Candidates and(p, q¢) € Edge(z) every K time
33: task 2:

34: uponr ecei ve(alive) from g do

35: settimer(q) <+ Alq]

36: upont i ner expi re(q) do /* Link (g, p) is not timely, blame all candidates that contajpsp) */
37: for all (z,a,pr,d) € OtherCand such thatlq, p) € Edge(z) do

38: rbroadcast (ACC,z,a,pr,d)

39: if (g,p) € Edge(me) then

40: r br oadcast (ACC,me,Acc|me],Prop[me],Alme])

41: uponr ecei ve(new,z, a, pr,d) from ¢ do /* Proposition of a new candidate/

42: if p ¢ Node(zx) then /* Blamez that does not contaip */

43: r broadcast (ACC,z,a,pr)

44: else

45: newCand false

46: if (x,—,—,—) ¢ OtherCandandHeard(z) < (a,pr) then /* New candidate:/
A47: newCand < true

48: if 3(z, ac,pre,dec) € OtherCand with (ac,pre) < (a,pr) then /* New candidate:/
49: OtherCand < OtherCand \ (c,ac,pre,dc)

50: newCand < true

51: if newCand then

52: OtherCand < OtherCand U (z, a, pr, d)

53: update ExtractedGraph()

54: Heard[z] < (a,pr)

55: forall h € I\ {p} do

56: if (h,p)€ Edge(z) then

57: Alh]+ max(A[h],d)

58: settiner (h)« Alh]

59: if (p,h)€ Edge(x) andh # root(x) thensend(new, z, a, pr,d) to h

60: uponr del i ver (ACC,x,a,pr,d) do

61: if root(z) = pthen

62: if £ = me A a = Acc[me] A pr = Prop[me] then /* Check if the accusation is up to datg
63: Acc[me] «+— Acc[me] + 1; Alme] < A[me] + 1

64: Local < false

65: else

66: OtherCand < OtherCand \ (z, a, pr,d)

67: if Heard[z] < (a,pr) then Heard[z] < (a, pr)

68: update ExtractedGraph()

Figure 3: Algorithm AF(X) that efficiently extracts a graph it

[7] V. Hadzilacos and S. Toueg. A modular approach to faalrant broadcasts and related problems. Technical R&port
94-1425, Department of Computer Science, Cornell Unitgrsd94.

[8] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidonghou. Chasing the weakest system model for implementing ameg
and consensusEEE Trans. Dependable Sec. Comp@t4):269—-281, 2009.

[9] Mikel Larrea, Sergio Arévalo, and Antonio FernandeEfficient algorithms to implement unreliable failure detes in
partially synchronous systems. In Prasad Jayanti, ed&C, volume 1693 ol ecture Notes in Computer Sciengages
34-48. Springer, 1999.

[10] Achour Mostéfaoui, Eric Mourgaya, and Michel RaynAkynchronous implementation of failure detectors DIBN pages
351-360. IEEE Computer Society, 2003.

12

A Appendix
A.1 Proof of Proposition 3.4

Proposition @There exists some systestigor which there is no extraction algorithm.

Sketch of Proof.

Assume there is an extraction algoritbdrfor P AZR with 5 processes.

Consider arum of A in systemP ATR with T'(r) = ({p1, P2, 3, P4, D5}, {(P1,02), (D2, P1), (P3,P4), (D1, P3)})-

To satisfy the properties of the extractidfip:, p2, p3, p4, ps}, {(p1, p2), (p2,01)}) of ({p1, 2,3, P4, 5}, { (D3, Pa),
(ps, p3)}) must be extracted from the runThere is a time, after whichr converges for example tdp1, p2, ps, pa, ps},
{(p1,p2), (P2, 1) })-

Consider now run’ of A in systemPAZR with T(r") = ({p3,p4, D5}, {(p3,p4), (P, p3)}) such that- andr’
are indistinguishable until timg andp; andp, crash i’ attimet; + 1. There is a time, after whichr’ converges
to a graph with the directed edgé®s, p4), (p4, ps3)}-

Consider now that i all messages from; andps to {ps,p4, ps} sent after timet; are delayed after time
to. Forps, the runsr andr’ are indistinguishable until,. So, at timet,, ps outputs a graph with directed edges
{(p37p4)7 (p47p3)}'

Now consider run”’ of A in systemP AZR with T'(r"") = {({p1, p2, ps }, {(p1,p2), (P2, p1)}) such that- andr”
are indistinguishable until tim& andps andp, crash inr”’ attimet, + 1. There is a time; after whichr’’ converges
to a graph with the directed edgé®1, p2), (p2, p1)}-

Consider again that in the runall messages froms andp, to {p1, p2, ps} sent after time, are delayed af-
ter t3. For ps the runsr andr” are indistinguishable. So, at timg, ps outputs a graph with directed edges
{(p17p2)7 (p27p1)}'

Inductively, we can construct the runin such a way thaps; alternates forever between a graph with directed
edges{(p1,p2), (p2, p1)} and a graph with directed edgé€&s, p4), (p4, ps)} and never converges definitively. This
contradicts the existence of an algorithm that extractaplymP AZR. O

A.2 Proof of Proposition 3.5

Proposition @There exists some systeAigor which there is an extraction algorithm and there is no@extraction
algorithm.

Sketch of Proof. Consider the systemREE with 3 processes. We prove in the next section that thereégimaction
algorithm for this system. Assume there isex@actextraction algorithm4 for this system.

Consider a rum of A in this system withl'(r) = ({p1,p2,p3}, {(p1,p2), (p1,p3)}). To satisfy the properties of
the exact extraction, there is a timeafter which the grapl{p1, p2, ps}, {(p1,p2), (p1,p3)}) is extracted.

Consider now run”’ of A in system7TREE with T'(r') = ({p1,p2}, {(p1,p2)}) such thatr and+’ are in-
distinguishable until time¢; and ps crashes in’ at timet; + 1. There is a time, after whichr’ converges to
{p1, P2}, {(p1,p2)}) -

Consider now that im all messages froms to {p1, p2} sent after time; are delayed after timg. Forp;, the
runr andr’ are indistinguishable until,. So, at timets, p; outputs({p1, p2}, {(p1,p2)}).

Inductively, we can construct the runin such a way thap, alternates forever between a grafdlp:, p2, ps},
{(p1,p2), (p1,p3)}) and a grapti{p1, p=}, {(p1,p2)}) and never converges definitively. This contradicts theterise
of an algorithm that exactly extracts a graptViREE. O

A.3 Proof of Theorem [5.1

In this section, we propose a sketch of the correctness pfabk efficient extraction algorithm 7 (X) (FiguresDZ
and[}). In this sketch, we consider a nuof AF(X) in dicut-closed system with a root,. We will denote byvar},
the value ofvar), at timet.

We first notice that all variabledcc[x] and Prop[z] can only be modified by the processt(x) and are increas-

ing:

13

Lemma A.1 For all timet and#',t > t', for all processeg, for all graphsz in X’ such thap = root(z), Accl[z] >
Acc!] and Prop [x] > Prop, [x].

Consider a graph: such that its roop crashes. Eventually, every processuch thatr € OtherCand and
(p,q) € Edge(x) reliably broadcasts an accusation for This way,z is removed from th&therCand set of any
correct process and never more added (becaisserashed), hence:

Lemma A.2 If p is faulty, there exists a timesuch that for all graphs: of X with root(x) = p, for all correct
processes inr, for all t' > t: = ¢ OtherCandy, .

As r is a run of X, there exists some timeliness grapm X such thab is compatible withT’[r]. In this case,
Nodes(o) = Correct(r) and the processvot (o) is a correct process:

Lemma A.3 There exists a timeliness graphof X' such thato is compatible withT'(r) and root(o) is a correct
process.

Moreover:

Lemma A.4 Leto be a timeliness graph ot such thato[Correct(r)] is a compatible with'(r) and root (o) is a
COITeCt ProcessAcc,.qq1 (o) 0] is bounded.

For all correct processes for all graphse in X' with root(x) = p, let A[z], be the largest value odcc[z], in 7
(o0 if Acc[z], is unbounded). Leg to be the graph with the smalled{g], (break ties by the total order on graphs).
Let C' be the value ofA[g],,.

Note that from Lemm3 and Lem@@,< oo. Moreover, by construction @f, root(g) is a correct process,
root(g) eventually electg forever (ne,..(4) = 9), and as a consequeneop|gl,..:(5) becomes constant:

Lemma A.5 There exists a time after whighe,.,.(4) = g.
Lemma A.6 There exists a time after whidhrop|g],...:(5) Stops changing.

Let P be the largest value of the proposition countey §Prop[g]). The following three lemmas are immediate
consequences of Lemrha A.5:

Lemma A.7 For every correct process # root(g), there exists a time after whighe OtherCand,.
Lemma A.8 There exists a time after whiehe,. () = g and Local,.oe(g) = true andOtherCand,qor(g) = 0.

Lemma A.9 For every correct procesg # root(g), there exists a time after whictherCand, = {g¢} and
Local, = false.

From Lemma$ Al8 anfi A9, the algorithm converges to a graph: of
Lemma A.10 There exists a timeliness graphe X’ (actuallyg) such that every correct proceg®utputse forever.
From Lemmd AB and Lemn{a 4.9, we can deduce that the algoitefiicient:

Lemma A.11 There is a time after which every correct procesends messages only to the proegssch that there
is a directed edgép, ¢) in Edge(g).

From the LemmO, we deduce the Convergence and the tygbidiperties.

It remains to prove thaf satisfies the properties of the approximation:([)orrect(r)] is compatible withl'[r],
and (2)g[Correct(r)] is a dicut reduction of or is equal tag.

Whenroot(g) setsLocal to true andne to (g, C, P, —), it sends a messagew to all processes (recall thatthe
final value of the accusation counterg@nd P the final value of its the proposition counter.). As the liaks reliable,
all correct processes eventually receives this messagecdirect procesgis not in Node(g), it reliably broadcasts
an accusation message’'C'. When processoot(g) delivers such a broadcast, it increments the accusationteou
of g contradicting the fact thatcc[g] is bounded by”, hence:

14

Lemma A.12 Correct(r) C Node(g).

When a correct process receives thisw message, it sendalive) to every procesgsuch tha{p, ¢) in Edge(g).
And it monitors all incoming linkgq, p) such thai(q, p) in Edge(g). If there is a link(a, b) of Edge(g) between two
correct processasandb, thena sends regularly/ive message td. By construction ofy, b never blameg, thenb
receives no out of date message. By the FIFO property ofiketlie link is timely:

Lemma A.13 g[Correct(r)] is compatible withl[r].

By LemmaA.IR Node(g) = Correct(r) U F.

If F'is empty the Closure property is trivially ensured. We nowsider the case wherE is not empty. F’
contains only faulty processes. If there is an edgBdge(¢) from a faulty process to a correct procegs eventually
the procesg stops receiving messages frgmand the accusation counter @Will be incremented, which contradicts
the fact that the accusation counteyaemains equal t¢” forever. So we have:

Lemma A.14 If F' # (thenEdge(g) N (F x Correct(r)) = 0.

We showed the Convergence (Lemma A.10), the Validity (Lerfinid}), the Compatibility (Lemmf A.13), the
closure (Lemm§ A.34), and the Efficiency (LemmaA.11). MeesoPropositiof 3|3 shows the exact extraction when
all graphs of” are strongly connected. Hence, we can conclude with theviolly theorem:

Theorem LetX be a dicut-closed system with a root. Algorittt\Y') efficiently extracts a graph iA’. Moreover
if all graphs of X’ are strongly connected, Algorithp(X') efficiently and exactly extracts a graph.n

15

